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Abstract 
 

In this paper, we propose a new approach to non-rigid 

structure from motion based on the trajectory basis method 

by decomposing the problem into two sub-problems. The 

existing trajectory basis method requires the number of 

trajectory basis vectors to be specified beforehand, and 

then camera motion and the non-rigid structure are 

recovered simultaneously. However, we observe that the 

camera motion can be derived from a mean shape without 

recovering the non-rigid structure. Hence, the camera 

motion can be recovered as a sub-problem to optimize an 

error indicator without a full recovery of the non-rigid 

structure or the need to pre-define the number of basis 

required for describing the non-rigid structure. With the 

camera motion recovered, the non-rigid structure can then 

be solved in a second sub-problem together with the 

determination of the basis number by minimizing another 

error indicator. The solutions to these two sub-problems 

can be combined to solve the non-rigid structure from 

motion problem in an automatic manner, without any need 

to pre-define the number of basis vectors. Experiments 

show that the proposed method improves the 

reconstruction quality of both the non-rigid structure and 

camera motion.  

Keywords: non-rigid structure, orthographic camera, 

structure from motion, automatic recovery   

1. Introduction 

Structure from motion is one of the most important 

problems in computer vision. For a 3D structure projected 

to a set of cameras, the structure from motion problem is to 

recover the structure in 3D from the 2D image projections 

[1]. Traditionally, 3D structures are assumed to be rigid and 

stationary. Such an assumption incurs a rank-3 (rank-4 in 

perspective camera case) condition on image 

measurements. With such a condition, various methods 

have been proposed [2, 3], most of which are based on rank 

constrained factorization [4, 5].  

In recent years, more and more attention is paid to the 

non-rigid structure from motion problem [6-8], where the 

3D structure is allowed to move and deform. Based on an 

assumption that the deformation of a non-rigid structure 

can be modeled by a linear combination of a set of rigid 

shapes, the traditional factorization approach for rigid 

structure reconstruction has been extended to handle 

non-rigid structure recovery [9, 10]. As the non-rigid 

structure is represented as a linear combination of a shape 

basis, the method is referred to as the shape basis method in 

literature.  

Then, Akhter et al. developed a trajectory basis method 

for non-rigid structure representation [11], which, as shown 

by the authors, is dual to the shape basis method. By 

tracking trajectories of corresponding points of a non-rigid 

structure and modeling them using a DCT (Discrete Cosine 

Transform) basis, the trajectory basis method recovers the 

structure in 3D space using not only the rank constraint, but 

also an implicit “smooth deforming trajectory” constraint. 

The introduction and enforcement of the “smooth 

deforming trajectory” constraint effectively prevents 

meaningless solutions and significantly reduce the gap 

between recovered structure and original structure. Despite 

so, the trajectory basis method has two persisting problems 

inherited from shape basis method:  

a. the number of basis for non-rigid structure 

representation, which is normally unknown in 

advance, has to be pre-defined 

b. there is no criteria for quality evaluation of the 

recovered structure and camera motion 

In this paper, we proposed a new method based on 

trajectory basis representation that solves both of these two 

problems. By disassociating camera motion recovery with 

structure recovery and proposing a criterion for quality 

evaluation, we are able to obtain better solutions for camera 

matrices. At the same time, a criterion reflecting the error of 

fitting a non-rigid structure using trajectory basis 

representation with different number of basis is proposed, 

leading to a method for automatic determination of the best 

basis number for non-rigid structure representation.  

The rest of the paper is organized as follows: In Section 

2, some preliminaries about trajectory basis method are 

introduced, together with notations used in this paper. In 

Section 3, the non-rigid structure from motion problem 

with orthographic cameras is reformulated and a new 
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method is proposed. In Section 4, experimental evaluations 

are presented, including comparisons with existing 

algorithms. Some concluding remarks are given in Section 

5. 

2. Trajectory basis for non-rigid 

structure from motion  

2.1. Non-rigid structure from motion 

Let {         |                      be the 

orthographic projections of   3D points            

projected to   frames of a moving camera. Then  

          (1) 

where         is the camera matrix associated with the 

    frame. It follows that  

  [

       

   
       

]  [
    

 
    

] (2) 

where    [             ]       is called structure 

matrix and   is called measurement matrix.  

The structure from motion problem refers to the problem 

of recovering camera matrix    and structure matrices    

given the measurement matrix  .  

For a rigid stationary object, the structure matrices    are 

equal across all frames. Thus a rank-3 constraint can be 

enforced in the measurement matrix, which is the basis for 

all factorization based algorithms for solving the rigid 

structure from motion problem.  

For a non-rigid object, the rank-3 constraint does not 

hold anymore. Thus other constraints are necessary in order 

to make the problem solvable. A common assumption 

made is that the structure deformation can be modeled by a 

linear combination of a fixed set of   shape basis    
                . Formally, the assumption can be 

written as 

    ∑      

 

   

                     (3) 

where    [             ] and     is the coefficient 

of the     frame at the     shape basis.  

Such an assumption imposes a rank-   constraint on the 

measurement matrix and thus makes it possible to extend 

the factorization approach from rigid structure to non-rigid 

structure recovery.   

2.2. Trajectory basis for non-rigid structure 

representation 

Trajectory basis representation can be regarded as the 

dual of the shape basis representation by taking     in 

equation (3) as the     trajectory basis entry at the     

frame and     as a corresponding vector of weighting 

coefficients. The trajectory basis method has been 

demonstrated to be more stable in non-rigid structure 

recovery by restricting the recovered non-rigid structure to 

be smoothly deforming in consecutive frames. Moreover, 

the trajectory basis is pre-defined and is independent of the 

non-rigid structure dataset, thus reducing the parameters to 

be solved in the optimization problem.  

With trajectory basis method, the measurement matrix in 

equation (2) can be rewritten as 
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    (6) 

where    [             ]       is a row vector 

consisted of trajectory basis entries of the     frame, 

         represents a scaled motion matrix and 

        is a coefficient matrix.   

3. Non-rigid structure and motion 

recovery  

3.1. Problem decomposition  

Equation (6) suggests that the measurement matrix of a 

non-rigid structure with orthographic cameras is subject to 

a rank-   constraint, and thus both structure and camera 

matrices can be obtained using a factorization method 

similar to that for rigid structure reconstruction. The idea 

can be summarized with the following equations.  

   ̂  ̂ (7) 

  ̂       ̂ (8) 

where   is first factorized into rank 3K matrices  ̂ and  ̂ 

in a projective space, and then a metric upgrade is 

performed by finding          that satisfies 

 ̂       ̂            (9) 

where  ̂       represents recovered camera matrix of 

the     frame with row-orthonormal properties.  

An inherent problem with the above method is that the 

number of basis required for non-rigid structure description 

needs to be specified beforehand. Notice however that the 

camera matrices in (4) are independent of the structure 

model in 3D space. It may be possible to recover camera 

matrices without the recovery of non-rigid structure. Also, 

the recovery of 3D structure is independent of the method 

used for camera motion recovery. As long as camera 

matrices are given, structure in 3D space can be recovered 

optimally from 2D measurements under the trajectory basis 

model.  

Hence, we propose to decompose the non-rigid structure 



   

 

 

 

from motion problem into two sub-problems. The first one 

is to recover camera motion, and the second problem is to 

recover the structure in 3D space when camera motion is 

already known.  

The benefit of the problem decomposition is that optimal 

solutions can be obtained in both of these two sub-problems. 

Furthermore, both sub-problems can be solved in an 

automatic manner with the help of error indicators that may 

not be available when solving the two sub-problems as a 

whole.  

3.2. Recovery of camera projection matrices 

If the trajectory basis in (4) is generated using DCT, the 

first basis vector is given by [             ]
  

 

√ 
[       ] . Hence we may rewrite (5) as: 
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]
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    D (11) 

where        [             ],   consists of the stacked 

rotation matrices, and   and   are defined in an obvious 

manner.  

 We may interpret (11) as decomposing   into two 

components: (i) the projection of a mean shape   with 

orthographic camera matrices in  , and (ii) the projection 

of deformations   of the non-rigid structure. Furthermore, 

we note that the camera matrices can be recovered from the 

first component (i) alone if   is decomposed as in (11). In 

view of (11), we propose to recover the camera matrices by 

a partial upgrade of only the mean shape component of the 

non-rigid structure, by writing (7) – (9) as:  

   ̂  ̂ (12) 

  ̂[      ][      ]    ̂ (13) 

 [ ̂    ̂   ] [ ̂
 ̂
] (14) 

 [ ̂  ̂   ] [ ̂
 ̂
] (15) 

  ̂ ̂   ̂    ̂ (16) 

subject to  

 ̂       
  ̂ 

               (17) 

where   is factorized into two rank-K matrices  ̂  

      and   ̂      ,          and              

are the 1st-3rd columns and    -     columns of an 

upgrade matrix, respectively,   ̂        is the recovered 

stacked camera matrix,   ̂       is mean shape of the 3D 

structure, and   ̂           is a matrix spanning the 

deformation space of the non-rigid structure.      

Equation (16) suggests that camera matrices with 

non-rigid structure projections can be obtained by a rank-K 

factorization followed by applying a metric upgrading 

matrix          which is subject to a non-linear 

constraint stated in equation (17). An algorithm to solve for 

camera matrices is described in Table 1.  

At a given factorization rank, Algorithm 1 looks for a set 

of rotation matrices satisfying the orthonormality constraint 

stated in (17) which is shown to be sufficient to recover 

camera projection matrices [12]. As factorization rank in 

(12) is unknown, it is necessary to identify the best 

factorization rank for each dataset. To achieve such a goal, 

we propose to employ 2D reprojection error as an error 

indicator at different factorization rank, as described in the 

next subsection.  

3.3. Error indicator using 2D reprojection 

error  

Using different factorization rank in (12) results in 

different level of approximation to the non-rigid structure. 

The approximation of non-rigid structure leads to errors in 

the mean shape, and thus affects the error of recovered 

camera matrices. Hence it is necessary to have an indicator 

reflecting the quality of recovered camera matrices at 

different factorization rank. Noting that the error of 

recovered camera matrices based on (16) is correlated to 

the reprojection error evaluated with a full projection model 

shown in (5), we propose to take the difference norm of 

equation (5) as an error indicator for recovered projection 

matrices. The key problem of evaluating the difference 

norm of equation (5) is that the coefficient matrix  ̂  is 

unknown. Here we use a coarse to fine approach for 

obtaining the coefficient matrix. Let         be the     

trajectory basis vector, and 

   ⌊         ⌋ (18) 

be the maximum number of basis that can be chosen for 

current non-rigid structure description where ⌊ ⌋ means the 

maximum integer   . The coefficient matrix  ̂  can be 

obtained by iteratively solving the following problem: 

 ̂        
 ̂ 

‖  
  [           ] ̂ ̂ ‖

 
 

           
(19) 

where 

  
    (20) 

  
      

  [           ] ̂ ̂ 

            
 (21) 

Table 1: Algorithm for camera motion recovery 

Objective 

Given a set of image measurements of a non-rigid structure 

projected by orthographic cameras and a factorization rank 𝐾, 

compute a set of rotation matrices that enforce condition (17).  

Algorithm 1 

Camera motion recovery 

1. Factorize measurement matrix with equation (12).  

2. Find a triple column metric upgrading matrix     that 

satisfying equation (17). 

3. Output stacked rotation matrices  ̂   ̂    
 

 



   

 

 

 

Thus error indicator for recovered camera matrices using 

2D reprojection error can be defined as   

  ∑‖   [    ̂ ] ̂‖
 

 

   

 (22) 

Although the correct number of basis remains unknown, 

we add basis vectors one by one and solve for optimal 

coefficients for each newly added basis vector until the 

maximum number of basis allowed is reached. This 

procedure has the effect of avoiding over-fitting caused by 

unnecessary basis vectors because the optimization of 

equation (19) would not disturb the trajectory coefficients 

that have already been recovered using a smaller number of 

basis vectors. Hence,   is defined without the need to 

specify the number of basis, and is an indicator of the 

quality of the camera matrices alone.  

3.4. Cross validation for automatic basis 

number decision 

Given rotation matrices, the problem of non-rigid 

structure recovery using a trajectory basis model is to find 

suitable coefficient matrix  ̂  that solves the following 

problem: 

   
 ̂

∑‖   [    ̂ ] ̂ ‖
 

 

   

 (23) 

The key issue in solving the above problem is that the 

number of basis    for the non-rigid structure description is 

unknown. As long as    is defined, the above problem can 

be solved with standard least square techniques. In order to 

decide the best number of basis for the non-rigid structure 

representation, it is necessary to have an error indicator 

signifying the quality of recovered non-rigid structure at 

different number of basis.  

Similar to [13], we use cross validation score as an error 

indicator. The idea is to partition the image measurements 

of each frame into training data and testing data. While the 

collection of training data is used to recover the non-rigid 

structure; that of testing data is used to quantify how well 

the recovered non-rigid structure is by evaluating the 

distance between testing data measurements and testing 

data reprojections. The cross validation score is taken to be 

the average distance of several such partitions. An 

algorithm for automatic basis number decision is given in 

Table 2.  

3.5. Algorithm for non-rigid structure 

recovery 

The solutions to the two sub-problems, namely 

Algorithms 1 and 2, can now be combined to recover the 

non-rigid structure using trajectory basis representation in 

an automatic manner. An overview of the algorithm for 

non-rigid structure recovery is given in Table 3.  

4. Experimental results 

The proposed method is evaluated with both synthetic 

images of non-rigid structures and images of deforming 

structures in the real world. Comparisons with existing 

trajectory basis method are also made in this section. 

Table 2: Algorithm for automatic basis number decision 

Objective 

Given a set of image measurements of a non-rigid structure and 

a set of camera matrices, compute a suitable number of 

trajectory basis such that its cross validation score is the 

smallest.  

Algorithm 2 

Automatic bases number decision 

1. Randomly partition measurements of each frame into 

training data and testing data for 𝐾𝑝 times.  

2. For 𝑘   ∶ 𝐾𝑚 

a) Define trajectory basis matrix c with 𝑘 basis vectors. 

b) For each partitioned dataset, solving for coefficient 

matrix  ̂ in (23) with the collection of training data.  

c) Obtain non-rigid structure using recovered 

coefficients and defined trajectory basis.  

d) Reproject the recovered non-rigid structure onto 

images; evaluate the distance between measurements 

of testing data and reprojections of testing data.  

e) Average the distance over 𝐾𝑝 trials and record it as 

cross validation score 𝑠. 

3. Find the smallest cross validation score 𝑠 and output its 

corresponding basis number. 

 

Table 3: Algorithm for non-rigid structure recovery 

Objective 

Given a set of image measurements of a non-rigid structure 

projected by orthographic cameras, reconstruct the non-rigid 

structure in 3D space.  

Algorithm 3 

Non-rigid structure recovery 

1. For     ∶          

a) Seek for rotation matrices  ̂𝑘 using Algorithm 1 with 

rank-𝑘 factorization.  

b) Evaluate the 2D reprojection error 𝑒 using equation 

(22) with rotation matrices  ̂𝑘.  

2. Select rotation matrices  ̂ with smallest 2D reprojection 

error 𝑒.  

3. Find the optimal basis number 𝐾𝑏 using Algorithm 2 with 

recovered rotation matrices  ̂.  

4. Define trajectory basis matrix c𝑏 with 𝐾𝑏 basis vectors for 

non-rigid structure description. 

5. Solve for optimal coefficients  ̂  by solving (23) with 

camera matrices  ̂ and trajectory basis matrix c𝑏.  

6. Evaluate equation (3) with c𝑏  and  ̂ , and obtain the 

non-rigid structure in 3D space.  

 



   

 

 

 

4.1. Performance on synthetic non-rigid 

structure 

A total of 20 points are randomly generated in a 

            cube in 3D space. The points are allowed 

to move in such a way that their locations are defined by 

equation (3) using trajectory basis model with    . 

Around those points, 36 randomly positioned orthographic 

cameras are pointing at them, producing 36 images of size 

       . Each image contains a set of measurements of 

the non-rigid structure. Those measurements are stacked 

together forming a noise-free measurement matrix. 

Different levels of Gaussian noise (standard deviation σ 

ranging from 0 to 0.35) are added to the measurement 

matrix, which is then used for motion and structure 

recovery.  

Let    and  ̂  be the ground truth and recovered camera 

matrix of the     image frame, respectively, and    and  ̂  

be ground truth structure and recovered structure at the     

frame, respectively. We define the rotation matrix error    

and structure error    as 

      
 

√
 

 
∑‖    ̂  ‖
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 (25) 

where   is a 3×3 matrix aligning recovered camera (or 

structure) matrices with ground truth. 

Figure 1(a) shows the proposed algorithm’s performance 

with regard to noise. At each noise level, a total of 30 trials 

are performed, and their average errors are plotted in Figure 

1(a). It shows that both camera matrix error and structure 

error increase almost linearly with regard to noise 

contamination in the measurement matrix, indicating the 

structure and motion can be recovered robustly. 

The camera matrix error recovered using Gaussian noise 

(σ=0.05) contaminated measurement matrix at different 

factorization rank is shown in Figure 1(b) in blue squares, 

together with 2D reprojection error shown in green circles. 

The correlation between 2D reprojection error and camera 

matrix error is evident, and thus the best factorization rank 

can be identified using 2D reprojection error, in case of real 

images where the camera error is unknown. In this example, 

as the measurements are generated exactly using equation 

(5), it is expected that the best factorization rank is   . 

For a given set of camera matrices (recovered from 

       Gaussian noise contaminated measurements with 

factorization rank     ), the structure error for different 

number of trajectory basis vectors is shown in Figure 1(c). 

Also shown in the figure is the cross validation score which 

indicates the quality of recovered non-rigid structures. It 

can be seen that cross validation score correlates with 

structure error well and thus is a good indicator of the 

quality of recovered non-rigid structure. 

4.2. Real non-rigid structure 

The proposed algorithm is also quantitatively evaluated 

with images of deforming object in the real world. Datasets 

containing real world object deformations are obtained 

from the project website of Akhter et al. [14]. In each 

dataset, a sequence of synthetic orthographic cameras are 

rotating 5 degrees per frame around the z-axis, pointing to 

the object and generating image measurements.  In our 

experiments, noises are added in such a way that the 

standard deviation of Gaussian noise is 5% of the standard 

deviation of measurement matrix. And, in order to make 

error comparison more meaningful, non-rigid structure is 

centroid removed and normalized with standard deviation 

being equal to 1 before evaluating structure error using 

equation (25).   

Table 4 shows a quantitative comparison with existing 

trajectory basis method [6] whose code is provided by the 

authors at their project website [14]. Both recovered 

Figure 1: Algorithm performance evaluation with synthetic data. (a) Algorithm performance with regard to noise contamination of 

measurement matrix. (b) Correlation between the error of rotation matrices and the 2D reprojection error evaluated using equation (22).  

(c) Correlation between structure error and cross validation score.   
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rotation matrices and recovered structure are compared 

with ground truth, and the errors are evaluated using 

equation (24) and (25). Also, in Table 4 we show the 

factorization rank    and basis number    that are 

generated by the proposed method; whereas the basis 

number   for the method of [6] is suggested by the authors 

(with the same basis number chosen in noisy case). 

An example of recovered non-rigid structure (shown in 

grey circles) using noise contaminated Yoga dataset is 

shown in Figure 2, with ground truth structure (shown in 

black dots) superimposed. The upper row of Figure 2 is the 

structure recovered using the proposed decomposition 

method, and the lower row is the structure recovered using 

the method of [6].  

5. Conclusions 

In this paper, we proposed a new method to recover 

camera motion and non-rigid structure with a trajectory 

basis representation for the non-rigid structure. By 

decomposing the problem into two sub-problems and 

solving for optimal solution to each sub-problem, the 

method first recovers camera motion without the need to 

pre-define the basis number. Then, with recovered camera 

motion, the method finds the best number of basis that 

should be used for non-rigid structure representation. 

Hence, the proposed method leads to a completely 

automatic algorithm for non-rigid structure reconstruction. 

Experiments demonstrate that the method improves the 

reconstruction quality of both the non-rigid structure and 

the camera motion.    
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