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Abstract—Evaluation of gene regulatory network (GRN) 
discovery methods relies heavily on synthetic time series. 
However, synthetic data generated by traditional method 
deviate a lot from real data, making such evaluation 
questionable. Guiding by decaying sinusoids, we propose a new 
method that generates synthetic data resembling human 
(HeLa) cell-cycle gene expression data. Using the new synthetic 
data, a simple comparison between four GRN discovery 
methods reveals that Granger causality (GC) methods 
substantially outperform Pearson correlation coefficient 
(PCC), while time-shifted PCC can give comparable 
performance as GC methods. The new synthetic data 
generation would also be useful for generating other kinds of 
cell-cycle time series. Using data generated by our proposed 
method, evaluation of GRN discovery methods should be more 
trustworthy for real-data applications.  

Keywords-gene regulatory network; synthetic data; cell-
cycle; time series; vector autoregressive model; Pearson 
correlation coefficient; Granger causality. 

I.  INTRODUCTION 
In gene regulatory network (GRN) discovery, gene-gene 

interactions are inferred from gene expression data [1]–[7]. 
Identified genes involved in disease development can 
become future drug targets, hence promoting medical 
advances. Since gene regulation is a temporal process, data 
from time-series experiment are more informative [1]. A 
number of recent studies have focused on inferring GRN 
from time-series data, e.g. [3]–[7]. To evaluate the 
performance of their proposed methods, usually both 
synthetic data and real biological data are used. However, the 
ground truth (i.e. the true underlying biological network of 
interactions) of real data is usually unknown or unreliable [3], 
[6], making it difficult (or not reliable) to draw conclusion 
from results on real data. Thus, evaluation of performance 
relies heavily on synthetic data. Yet, most synthetic data 
people used do not resemble real data, making this part of 
evaluation also questionable.  

In this paper, we propose a method that generates 
synthetic data resembling the real data more closely, so that 
evaluation using these data should be more reliable. First, we 
shall briefly describe a dataset widely used in GRN 
discovery. Secondly, we shall give a typical (traditional) 
method for generating synthetic data before we describe our 

new method. The new method will then be compared with 
the traditional method. Finally, we shall apply our new 
synthetic data to carry out a simple comparison on four GRN 
discovery methods. 

II. THE HUMAN (HELA) CELL-CYCLE GENE EXPRESSION 
DATASET 

HeLa dataset [8] is one of the most commonly adopted 
dataset for GRN discovery. The dataset contains 5 time-
series experiments carried out with cDNA microarrays, and 
about one thousand genes are identified to be periodically 
expressed with period ≈ 16 hours. Since we intend to 
compare our new method with the traditional (vector-
autoregressive based) method given in 2 papers [3] and [4], 
and these 2 papers analyzed 9 selected periodic genes using 
experiment 3, we shall focus on these 9 genes, too. In 
experiment 3, gene expression levels were measured at time 
0, 1, 2, …, 46 hours. So, the number of time points is 47. The 
expression profiles of these 9 genes are plotted in Fig. 1.  

III. SYNTHETIC DATA GENERATION 

A. Vector Autoregressive Model 
Time-series data can be easily generated by vector 

autoregressive (VAR) model. Suppose we would like to 
generate data for n genes and number of time points (data 
length) is T. Let an n×1 vector xt denote the gene expressions 
at time t, the VAR model of order p can be expressed as 
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where Al is an n×n coefficient matrix containing parameters 
of the VAR model, and et is an n×1 vector representing 
independent Gaussian white noise of zero mean. 

Suppose the GRN has L edges, they can be represented 
by off-diagonal elements of the coefficient matrices Al 
(l=1,…,p). As long as Al are specified and initial values of xt 
are given, time series of n genes can be obtained by 
repeatedly applying (1). In this paper, initial values of xt are 
taken to have the same nature as et. After iteration with (1), 
the first 100 time points (regarded as transient) are dropped 
and the subsequent T time points are taken as generated data. 
In the following, model order p=2 is adopted. 
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B. Traditional Method 
Previous works [3] and [4] specified coefficient matrices 

Al by random sampling from Gaussian distribution only. 
Here we follow the parameters used in [3]. All diagonal 
elements of Al are randomly sampled from Gaussian 
distribution of mean 0 and standard deviation (SD) 0.25. For 
the GRN edges, L off-diagonal positions are randomly 
selected from Al and these positions are filled by values 
taken from Gaussian distribution of mean 0 and SD 0.25. 
Other elements of Al are zeros. (In our investigation, iteration 
with (1) is highly unstable and time series blow up 
exponentially if SD>0.35 is used.) 

SD for et and xt is 0.1. In fact, this SD is not important 
because it merely scales the generated data. 

C. Our New Method 
To generate synthetic data with a form similar to HeLa 

data, we consider a decaying sinusoidal function 
tbetf at ωsin)( −= , which has a z-transform satisfying the 

following discrete-time relation: 
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and 1−ke  is discrete input to the system f(t). To make fk look 
similar to HeLa data which have period ≈ 16 hours, we take 
Δt=1 and 3927.016/2 ≈= πω . The coefficients a1 and a2 
are the diagonal elements of coefficient matrices A1 and A2. 
The n genes may have different parameters a which are 
randomly sampled from a uniform distribution over the 
interval [0.6, 1]. These diagonal elements give some degrees 
of periodic pattern to the synthetic series. To construct L 
edges for the n-gene network, off-diagonal elements are 
generated as follows. Off-diagonal elements of A1 are 
obtained by random sampling from a uniform distribution 
over [0.2, 0.8] with a positive/negative sign also added 
probabilistically, such that their magnitudes are comparable 
to the diagonal elements. Off-diagonal elements of A2 are 
similarly generated but have a smaller magnitude within 
[0.15, 0.6]. If two off-diagonal elements of A1 and A2 occur 
at the same position, they only correspond to one edge. Thus, 
A1 and A2 should be superimposed when counting the 
number of edges formed. We stop generating off-diagonal 
elements when exactly L edges are constructed. All 
remaining off-diagonal elements are zero. The above 
parameter settings ensure that elements in A2 generally have 
smaller magnitudes than A1, enabling the iteration with (1) to 
be more stable and time series are less likely to blow up 
exponentially. 

Initial values of xt are randomly taken from a Gaussian 
distribution of mean 0 and SD 0.5 (again this SD is just a 
scaling), and so is the white noise input et.  

IV. COMPARISON OF SYNTHETIC DATA 
To concord with the real data shown in Fig. 1, n=9, T=47 

and L=11 are adopted to generate synthetic data with the 
traditional method and our new method. The plots of these 
synthetic time series are shown in Fig. 2. It is clear that 
synthetic data generated by traditional method look like 
noises and deviate a lot from the real data, whereas synthetic 
data generated by our proposed method exhibit some form of 
periodic pattern resembling the real data.  

Besides the plots, the following 2 measures are also used 
for comparison: 

A. Model Consistency 
Given time-series data of n genes and length T, the 

underlying GRN can be discovered by conditional Granger 
causality (CGC) [7], where the input data are regressed by a 
VAR model. Model consistency measures if the correlation 
structure of the data is captured by the VAR model properly 
[9]. Consistency is computed as: 
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where Ri and Rp are reshaped row vectors (of length n2) from 
covariance matrices of input time series and predicted time 
series by the VAR model, respectively. If C is low, the 
discovered network is unreliable. Here, with the same 
regression method in CGC [7], a low C means that the 
standard CGC is not able to reconstruct a reliable network 
from the time-series data, revealing that the data quality is 
low. 

B. Statistical Power 
An n-gene network has a total of )1( −= nnM  possible 

directed edges. Application of CGC returns a p-value for 
each of these M possible edges. The L edges with lowest p-
values can be taken to constitute the discovered network. If 
these p-values are small, then the time-series data offer 
higher statistical power, meaning that the data quality is 
high. Besides looking at the minimum and maximum of 
these L p-values, we also compute the geometric mean of all 
the L p-values – denoted by pgm. 

 
Table I shows the results of the above 2 measures for the 

real data and the synthetic data generated using both the 
traditional and our proposed methods. Obviously, the 
traditional method gives a C much lower than that of real 
data; whereas our method gives a comparable C as real data. 
Regarding the statistical power, the traditional method yields 
p-values one order of magnitude higher than that of real data, 
revealing a much lower statistical power. The maximum p-
value of 0.16 is not statistically significant. On the other 
hand, synthetic data generated by our proposed method yield 
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even higher statistical power than that of real data. If this 
statistical power is higher than desired for specific 
applications, it can be easily decreased by adding noise. 

TABLE I.  RESULTS OF 2 MEASURES REVEALING DATA QUALITY 

 Real Data 
Synthetic Data 

Traditional Ours 

C 93 % 43 % 90 % 

Lowest L  
p-values 

Min 4.5×10�4 3.5×10�3 1.0×10�6 

Max 5.3×10�2 1.6×10�1 5.9×10�2 

pgm 6.3×10�3 5.3×10�2 1.2×10�3 

 

V. APPLICATION OF OUR SYNTHETIC DATA 
This section gives a simple example for applying our new 

synthetic data generation to compare GRN discovery 
methods. The synthetic data series in Fig. 2(b) come from an 
underlying network as shown in Fig. 3(a), which corresponds 
to the non-zero off-diagonal elements of Al. In the following, 
we reconstruct GRNs by four methods using the data series 
in Fig. 2(b). Fig. 3(a) is used as the ground truth network for 
computing precisions [7] of reconstructed (or discovered) 
networks. 

Two methods belong to the class of correlation score, 
where Pearson correlation coefficient (PCC) [10] is used. 
Since the simple PCC can only detect an interaction between 
two genes but direction of influence cannot be determined, 
we also implement a time-shifted PCC (TSPCC) as follows. 
For each pair of genes i and j, gene j series is shifted by –2,  
–1, 0, 1 or 2 time points, and its PCC with gene i series is 
computed for each time shift. The maximum PCC and the 
corresponding time shift are taken. A positive time shift 
infers that j influences i, and vice versa. In this way, a 
directed network can also be obtained by correlation method. 
The maximum time shift is 2 because the synthetic data are 
generated by a second order (p=2) VAR model. Fig. 3 (b) 
and (c) show the reconstructed networks by simple PCC and 
TSPCC, where each reconstruction takes the L edges with 
largest PCC magnitude.  

The other two methods are pairwise Granger causality 
(PGC) and CGC [7]. Model validation as described in [7] is 
used with PGC. For both PGC and CGC, the L edges with 
lowest p-values are taken to be the reconstructed network. 
Fig. 3 (d) and (e) show the results.  

Fig. 3 clearly shows that simple PCC is not effective in 
reconstructing GRN, whereas Granger causality (GC) 
methods work much better. (The outperformance of CGC 
over PGC was explained in [7].) Yet, it is a bit surprising that 
a straight-forward time-shifted version of PCC also gives 
comparable performance as GC methods. TSPCC is also 
good in the sense that if a correct interaction is identified 
between two genes, the direction of influence is obtained 
correctly, while PGC is not able to do so. (cf. CGC can also 
achieve this.) Comprehensive comparisons will be left to 
future works. 

VI. CONCLUSION 
Synthetic data in GRN discovery are commonly 

generated by VAR model, of which the coefficient matrices 
are crucial. Traditional method specifies the coefficient 
matrices by random sampling and synthetic data resulted 
deviate a lot from real data, so evaluation of GRN discovery 
methods using these synthetic data is questionable. In this 
paper, we have proposed a new method where the choice of 
coefficient matrices is guided by decaying sinusoids. 
Synthetic data so generated resemble the human (HeLa) cell-
cycle gene expression data fairly well. Evaluation of GRN 
discovery methods using these data should be more reliable 
and valuable. Other cell-cycle time series may be 
synthesized by adjusting the parameters in our proposed 
method. 

A simple comparison of four GRN discovery methods is 
carried out using our synthetic data. Results show that GC 
methods outperform simple PCC. However, a time-shifted 
version of PCC gives comparable performance to GC 
methods. 
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Figure 1.  Time series of the 9 genes in HeLa 
dataset. For visualization, each series is 
normalized to zero mean and unit variance, and 
then each displaced by 5 units. Gene names from 
the top to bottom are CDC2, CDC6, E2F1, 
CCNA2, CDKN3, RFC4, CCNE1, PCNA, 
CCNB1. 

 
Figure 2.  Time series of synthetic data generated by (a) the traditional method, and (b) our 
new method. For visualization, each series is normalized to zero mean and unit variance, and 
then each displaced by 5 units. 

 
 

 

 
Figure 3.  GRNs. (a) is the ground truth network corresponding to our synthetic data shown in Fig. 2(b). Other GRNs are reconstructed from these data by 
four methods. Solid black arrows represent true positives, dotted red arrows represent false positives. For (b) PCC, edges are undirected and solid lines 
represent correct edges. 
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(b) PCC 
  precision=0.32 

(c) TSPCC 
  precision=0.55 

(d) PGC 
  precision=0.45 

(e) CGC 
  precision=0.64 
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