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Abstract

We introduce a novel subspace segmentation method

called Minimal Squared Frobenius Norm Representa-

tion (MSFNR). MSFNR performs data clustering by

solving a convex optimization problem. We theoretically

prove that in the noiseless case, MSFNR is equivalent to

the classical Factorization approach and always classi-

fies data correctly. In the noisy case, we show that on

both synthetic and real-word datasets, MSFNR is much

faster than most state-of-the-art methods while achiev-

ing comparable segmentation accuracy.

1 Introduction

Many computer vision and machine learning prob-

lems, such as structure from motion, face recognition

and text classification, often assume that the data is

drawn from a union of multiple linear subspaces. Ex-

ploiting subspaces is often crucial to the succuss of

these applications. Therefore, subspace segmentation

has attracted considerable attention in recent years.

1.1 Related Work

Existing literature on subspace segmentation can be

roughly grouped into four classes: statistical learn-

ing based methods ([7, 11]) employ the mixture-of-

Gaussians model. In this group, data is recognized as

samples from a mixture of Gaussian distributions. The

robustness of statistical methods is guaranteed while

their computational cost is usually the bottleneck. Fac-

torization based methods ([1, 3, 10]) compute a repre-

sentation matrix for the data. In noiseless scenarios,

such a matrix directly gives rise to the correct segmenta-

tion. However, this group of algorithms are too sensitive

to noise. Algebraic methods [8] model the subspaces as

polynomials. Fitting such polynomials to the data gives

rise to the underlying subspace structure. The short-

coming of this group of methods is that it is computa-

tionally too expensive when the data dimension or the

number of subspaces is relatively large. Sparsity based

methods (e.g, SR [2] and LRR [6]) employ convex op-

timization to robustly handle noise while increasing the

sparsity of the representation matrix. Solving the prob-

lem is equivalent to computing the representation ma-

trix while taking the noise into consideration. The final

segmentation is often accomplished with spectral clus-

tering methods. Sparsity based methods are usually ro-

bust. As a representative of methods in this category,

LRR [6] has reported the best segmentation accuracy

on the Hopkins155 benchmark [9]. However, LRR in-

volves nuclear norm1 minimization. Solving LRR re-

quires computing multiple SVD’s with O(n3) complex-

ity each. It gives rise to unbearable computational cost

when the data set is large.

1.2 Our Contributions

In this work, we propose a new method called

Minimal Squared Frobenius Norm Representation

(MSFNR). It employs convex optimization to perform

subspace clustering. The method minimizes the sum of

the squared Frobenius norm of the representation matrix

and the (2,1)-norm of a noise term. Our main contribu-

tions are summarized as follows:

1. We prove that in the noiseless case, MSFNR

has a unique solution which is exactly the shape

1The nuclear norm of a matrix is the sum of the singular values of

the matrix.
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interaction matrix. This indicates the essential

equivalence between MSFNR and the Factoriza-

tion method for the ideal case.

2. The computational complexity of MSFNR is

O(n2) while the complexity of LRR is O(n3).
Nevertheless, the accuracy of MSFNR is highly

competitive in comparison to any state-of-the-art

methods including LRR.

3. As a noise removal algorithm, MSFNR is also able

to accurately recover the original data.

The remainder of this paper is organized as follows.

Section 2 studies the relationship between MSFNR and

the classical Factorization method. Section 3 solves

the convex optimization problem defined by MSFNR

to demonstrate its efficiency. Experimental results are

shown in Section 4. Conclusions and thoughts are dis-

cussed in the final section. And the appendix has the

proof of the key theorem proposed in Section 2.

2 The MSFNR Model

2.1 Problem Definition

Let X be a collection of m dimensional data vec-

tors drawn from a union of k linear subspaces {Si}
k
i=1

.

Let {ri}
k
i=1

be the dimension of these subspaces respec-

tively. The task of subspace segmentation (or cluster-

ing) is to cluster the vectors in X so that the vectors

inside the same cluster belong to the same subspace.

Without loss of generality, we assume X =
[X1, X2, ..., Xk], where all vectors in Xi belong to

Si. Note that here each Xi is a submatrix, not a

vector. Denote the number of vectors in Xi as di.
There must be at least one block diagonal matrix Z∗ =
diag{Z∗

1
, Z∗

2
, ..., Z∗

k} satisfying X = XZ, where the

size of the i-th block, Zi, is di. Since Z actually has

multiple solutions, any one in the solution set is called

a representation matrix. Thus, the clustering task is ac-

tually equivalent to computing a block diagonal repre-

sentation matrix Z∗.

In the ideal case, we assume the data set is noise-

less and the subspaces are mutually independent, i.e.
∑k

i=1
Si = ⊕k

i=1
Si. Under such assumptions, the fac-

torization based method correctly obtains the shape in-

teraction matrix (SIM) as the solution of the block di-

agonal representation matrix [1]. The Shape Interaction

Matrix of X is defined as SIM(X) = VrV
′

r , where

X = UrSrV
′

r is the skinny singular value decomposi-

tion of X .

Algorithm 1 MSFNR Solver

Input: data matrix X , parameter λ.

Initialize : Z,J ,E,Y1,Y2,µ,maxµ,ρ,ǫ
while not converged do

1. Update J by: J = (Zµ+ Y2)/(2 + µ).
2. Update Z by: Z = (I +XtX)−1(XtX −XtE+
J + (XtY1 − Y2)/µ).
3. Update E by solving: argmin λ

µ
‖E‖2,1 +

1

2
‖E −

(X −XZ + Y1/µ)‖
2

F . (Lemma 3.3 in [6])

4. Update Y1, Y2 by: Y1 = Y1 + µ(X − XZ − E)
and Y2 = Y2 + µ(Z − J).
5. Update µ by: µ = min(ρµ,maxµ).
6. Check ‖X −XZ − E‖∞ < ǫ and ‖Z − J‖ < ǫ
end while .

2.2 A Convex Formulation

Real-word datasets are often heavily polluted by

noise. Because it is very sensitive to noise, the Fac-

torization method loses its power in this case. Never-

theless, we have the following observation:

Theorem 2.1. The shape interaction matrix SIM(X)
is the unique solution of the optimization problem:

minY |Y |2F s.t. X = XY. Thus the optimal solution

of this problem equals to rank(X).

Proof. See Appendix.

Motivated by the above theorem, we formulate a

convex optimization problem to take noise into consid-

eration. By adding a noise term, we propose the mini-

mal squared Frobenius norm representation:

min
Z,E

||Z||2F + λ||E||2,1 s.t. X = XZ + E, (1)

where E denotes the noise term. After solving (1), it

is straightforward to apply spectral clustering to Z to

obtain the final segmentation.

3 A Solver for MSFNR

MSFNR gives rise to a convex optimization problem.

By adding a constraint Z = J to (1), we can solve it

by inexact ALM [5]. The pseudo-code is presented in

Algorithm 1.

Recall the LRR model [6], which solves:

min
Z,E

‖Z‖∗ + λ‖E‖2,1, s.t. X = XZ + E. (2)

It is straightforward to see that the complexity of Algo-

rithm 1 is O(n2). So far as we know, nuclear norm min-

imization problems, including LRR, can hardly avoid
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the computation of multiple SVD’s each of which has

O(n3) cost. Therefore, nuclear norm minimizations are

not scalable to large datasets. Thus compared with ex-

isting sparsity based methods such as LRR, MSFNR has

a natural advantage on computational cost.

4 Experimental Results

In this section, we verify the performance of MSFNR

on both synthetic and real-word datasets. All the exper-

iments were run on an Intel Pentium Dual core 2.0GHz

processor.

Synthetic Data

We first compared the robustness and speed of

MSFNR and LRR on synthetic data. We constructed 5

independent linear subspaces with dimensionality equal

to 4. Twenty 100-dimensional data vectors were sam-

pled from each subspace. We randomly chose data

vectors, and added noise with zero mean and variance

0.3‖x‖ to them. The symbol ‖ · ‖ denotes the 2-norm of

a data vector. The optimal parameters of each method

were used during the comparison. We repeated the ex-

periment 50 times for every percentage of corruption

and then recorded the average accuracy. As shown in

Figure 1, MSFNR and LRR achieve a comparable seg-

mentation accuracy.
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Figure 1. Segmentation accuracy of LRR
and MSFNR. Parameter setting: λLRR =
0.12 and λMSFNR = 0.37.

We also compared the speed of MSFNR with that of

LRR. In this experiment, the data size ranged from 50

to 500. We generated data in the same way as the last

experiment. The percentage of polluted vectors is set to

a random number. For each data size, we ran both LRR

and MSFNR 10 times, and recorded the average com-

putation time. According to Figure 2, it is obvious that

MSFNR is much faster than LRR, especially for large

data sizes. In particular, MSFNR is almost an order of

magnitude faster for the largest data size in our experi-

ments.
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Figure 2. Computational speed of LRR
and MSFNR for different data sizes.

Real-World Data

We also tested the performance of MSFNR on the

Hopkins155 motion database [9]. The Hopkins155

database has 156 video sequences and each of them is

a separate clustering task. Within each sequence, there

are 39 ∼ 550 data vectors belonging to two or three

motions, and each motion corresponds to a subspace.

Table 1 shows the segmentation error rate of MSFNR in

comparison to state-of-the-art methods. On this motion

dataset, MSFNR is again stable and competitive with

respect to LRR.

METHODS GPCA SR LRR MSFNR

MEAN 30.41 3.44 3.21 3.11

MEDIAN 32.85 0.35 0.41 0.61

STD 11.71 7.55 5.55 4.81

Table 1. Segmentation error rates (%) on

the Hopkin155 database.

We finally tested the Extended Yale Database B [4].

This database consists of 640 frontal face images of 10

subjects. Each subject has about 64 images. More than

half of the face images are polluted with shadows or

specular lights. We resized the images to 48 × 42 pix-

els. The purpose of this experiment is to show the ro-

bustness of MSFNR on heavily corrupted data. Some

results on this database are shown in Figure 3. Note

that the result on the first image is a very impressive

example.
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Figure 3. Results of MSFNR on Extended

Yale Database B. For each of the eight
pairs of images, the left one is the orig-

inal, and the right one is the result after
noise removal. λ is always set to 1.0 here.

5 Conclusions and Future Work

In this paper, we have developed a solution for the

subspace segmentation problem with a minimal squared

Frobenius norm representation. The equivalence be-

tween MSFNR and the Factorization method for the

noiseless case guarantees its performance. The com-

plexity of our solution is only O(n2) and thus is much

less expensive than the state-of-the-art method called

LRR. In addition to being highly accurate and efficient,

MSFNR is also able to successfully perform noise re-

moval on the input data.

We notice that the mechanism to solve Algorithm 1

can naturally be made online. A corresponding online

solver may be more flexible and efficient. This potential

extension of our method will be studied in future.
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Appendix: Proof of Theorem 2.1

Proof. Let [Ux, Sx, Vx] and [Uy, Sy, Vy] be the full

SVD of X and Y respectively. Denote M = V ′

xVy

and N = V ′

xUy . Then X = XY is equivalent to

SxM = SxNSy. Suppose X is of rank r. We have

Mr = NrSy , where Mr and Nr are matrices formed

by the first r rows of M and N respectively.

For the optimization problem in (2.1), we have

r = |NrSyM
′

r|
2

F ≤ |NSyM
′|2F = |Y |2F . Note that

SIM(X) belongs to the optimal set. (5 becomes an

equation only if the rank of Y is r. Suppose Y0 is a so-

lution. According to the proof of Theorem 3.1 in [6],

the rank of Y0 must be r. Thus Mr = NrSy implies

that the first r columns of Mr form a r × r orthonor-

mal matrix. If the smallest nonzero singular value of

Y0 is less than 1, the norm of Nr’s r-th column must

be greater than 1, which is a contradiction. This is to

say Y0’s smallest nonzero singular value should not be

less than 1. Then all of Y0’s nonzero singular values are

equal to 1. For both N and M , the first r × r block

forms an orthonormal matrix while the remaining el-

ements of those r columns and r rows must be zero.

Then Y0 = (VxN)Sy(VxM)′ = VrV
′

r = SIM(X).
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