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Abstract—MapReduce has become the dominant programming
model for processing massive amounts of data on cloud platforms.
More and more enterprises are now utilizing hybrid clouds,
consisting of private infrastructure owned by themselves and
public clouds such as Amazon EC2, to process their spiky
MapReduce workloads, which fully utilize their own on-premise
resources while outsourcing the tasks only when needed. With
disparate workloads of different MapReduce tasks, an efficient
scheduling mechanism is in need to enable efficient utilization of
the on-premise resources and to minimize the task outsourcing
cost, while meeting the task completion time requirements as well.
In this paper, a fine-grained model is described to characterize
the scheduling of heterogeneous MapReduce workloads, and an
online algorithm is proposed for joint task admission control into
the private cloud, task outsourcing to the public cloud, and VM
allocation to execute the admitted tasks on the private cloud,
such that the time-averaged task outsourcing cost is minimized
over the long run. The online algorithm features preemptive
scheduling of the tasks, where a task executed partially on the on-
premise infrastructure can be paused and scheduled to run later.
It also achieves desirable properties such as meeting a pre-set
task admission ratio and bounding the worst-case task completion
time, as proven by our rigorous theoretical analysis.

I. INTRODUCTION

The MapReduce framework [1] and its open source versions
such as Hadoop [2] have become the dominant programming
models for data-intensive and computation-intensive applica-
tions in cloud data centers. In the MapReduce framework, a
job may spawn many small Map and Reduce tasks that can be
executed concurrently on multiple virtual machines, achieving
significant fault tolerance and job completion time reduction.
With the rapid increase of the number of jobs that are coded
based on the MapReduce framework, efficient schedulers for
such workloads on cloud computing resources are becoming
increasingly important.

Although there have been a number of models and solutions
for scheduling MapReduce workloads on cloud platforms
[3][4], we point out the following important aspects that are
not receiving sufficient attention from the existing work, as
the motivation for our research:

(1) Temporally spiky workloads: Arrival of MapReduce
jobs is not only non-uniform but even spiky. Instead of
provisioning resources according to the peak-level workload, it
is common for an enterprise to dispatch its workloads across a
hybrid cloud, consisting of its own on-premise data center and
a public cloud, as long as moderate job outsourcing cost can be
achieved and job service delay can be guaranteed [5]. It is not

trivial to design a scheduler that can strategically dispatch the
workloads to guarantee long-term cost optimality, especially
when the a priori knowledge about the job arrival pattern
is unknown. Hajjat et al. [6] focus on one-time application
deployment on hybrid clouds, without considering dynamic
arrivals of workloads. Zhang et al. [5] propose an intelligent
algorithm to factor workloads and dynamically determine the
service placement across an on-premise server and a cloud,
without diving into resource scheduling inside a private cloud.

(2) Heterogenous workloads: Different MapReduce jobs
may contain different numbers of Map and Reduce tasks,
which can span several orders of magnitude [7], with highly
heterogenous task running times, which generally follow a
long-tailed distribution [8]. Scheduling with the assumption
that all jobs are the same or all tasks are the same, is not
practical and results in low efficiency. We seek to model
the MapReduce workloads at a fine-grained level, i.e., to
characterize the lifespans and execution sequence of the tasks
in each MapReduce job in details, in order to schedule the
jobs efficiently onto the available cloud resources.

(3) Preemptive job execution: Preemption refers to pausing a
running task, checkpointing its status and resuming it later on,
making resource available for another task to run first [9]. As
a task may span multiple time slots, preemption is a necessary
mechanism to guarantee that more urgent jobs, e.g., production
jobs, are not starved, while also allowing the cloud to be used
for less urgent jobs when available, e.g., experimental and
research jobs [7]. On the other hand, different amounts of
workloads may remain after a task is preempted, which adds
complexity to the optimization model for task scheduling. The
Dynamic Priority Scheduler [10] uses preemption to achieve
fairness among users, without guaranteeing the completion
time of each job. Maguluri et al. [11] discuss preemptive
algorithms for job scheduling to achieve optimal throughput
in cloud computing clusters, without theoretically addressing
the job service delays.

(4) Quality-of-service (QoS) guarantee: Two types of QoS
are important for MapReduce task scheduling over a hybrid
cloud. One is the admission rate of the workloads, defined as
the ratio between the amount of workloads admitted into the
system and the amount of workloads users submit. The other
is the maximum allowed completion time of each job (referred
to as the maximum tolerable job completion time), defined to
be the duration from the time when the job is admitted into the
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Fig. 1. System Model.

system to the time when it is completed in the private cloud or
outsourced to the public cloud. For example, production jobs
are typically associated with a tight completion time, while
non-production jobs can tolerate more scheduling delay. The
scheduler needs to strategically schedule the incoming jobs,
in order to satisfy a pre-set workload admission ratio, while
completing every admitted job by its completion deadline.

To the best of our knowledge, there are no existing studies
that address all the above four aspects in their MapReduce
scheduler design. Our contributions in this paper are high-
lighted as follows:
. We describe a detailed model to characterize Map and

Reduce tasks with different workloads spanning one or
more time slots, and the execution sequence of the tasks
in a MapReduce job.

. We build an optimization framework for joint task admis-
sion control into the private cloud, task outsourcing to the
public cloud, and VM allocation to execute the admitted
tasks on the private cloud, such that the time-averaged
outsourcing cost is minimized over the long run.

. We design an online algorithm based on the Lyapunov
optimization framework, which features efficient task
preemption, and is proven to meet a pre-set job admission
ratio and bound the worst-case task completion times,
based on our rigorous theoretical analysis.

In the remainder of this paper, we detail the system model
and problem formulation in Sec. II, design algorithms for job-
to-task arrival process conversion and online scheduling in
Sec. III, rigorously prove the guarantee of worst-case task
completion time and cost optimality of the algorithms in
Sec. IV, and conclude the paper in Sec. V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted system. In each time slot, users
in the enterprise submit a number of MapReduce jobs to be
processed by the hybrid cloud. Description of each job contain-
s Map/Reduce tasks in the job and expected completion time
for the job, to be detailed in Sec. II-A. The system will first
convert the completion time requirement of each MapReduce
job to the completion time requirements of Map and Reduce
tasks contained in the job, and then makes admission control
decisions, i.e., either enqueueing the tasks into appropriate task

TABLE I
IMPORTANT NOTATION

D′ Max. tolerable completion time for a job
J Set of Map tasks for a job
K Set of Reduce tasks for a job
Tmj Required running time for Map task j
T rk Required running time for Reduce task k
e(j, k) Binary variable indicating whether Map task j depends

on Reduce task k (= 1) or not (= 0)
Dmj Max. tolerable completion time for Map task j
Drk Max. tolerable completion time for Reduce task k
C(t) Outsourcing cost at t
M Set of all VM types
D Set of all max. tolerable completion times
L Set of all possible task workloads, measured by the

number of time slots required to complete a task
Amdl(t) No. of tasks of type (m, d, l) submitted by users, at t
Amax Upper bound of Amdl(t), ∀m ∈M, d ∈ D, l ∈ L
Imdl(t) No. of tasks of type (m, d, l) admitted to Qmdl, at t
Omdl(t) No. of tasks of type (m, d, l) outsourced to the public

cloud directly without being admitted to task queues, at
t

Qmdl(t) No. of unit workload in task queue for type-(m, d, l)
tasks, at t

Dmdl(t) No. of unit workload outsourced to the public cloud from
queue Qmdl, at t

Nmdl(t) No. of type-(m, d, l) tasks scheduled to run on VMs of
the private cloud, at t.

Nmdl(t
−) No. of leftover type-(m, d, l) tasks, at t.

Kmdl(t) Backlog of virtual queue for guaranteeing the admission
ratio of type-(m, d, l) tasks, at t

Zmdl(t) Backlog of virtual queue for guaranteeing worst-case
completion time of type-(m, d, l) tasks, at t

α Pre-set admission ratio of tasks

queues to be potentially handled by the on-premise data center,
dispatching tasks to the public cloud, or rejecting the job. For
tasks in the task queues, the system further decides whether to
schedule their execution on VMs in the on-premise data center,
or outsource them to the public cloud, in order to minimize the
outsourcing cost while guaranteeing all the QoS requirements.
An illustration of the system is given in Fig. 1.

We address the following two problems: (1) Given the
scheduling is carried out at the task level rather than the job
level, how should the input job completion deadline require-
ment be converted to individual tasks’ completion deadlines
for efficient scheduling? (2) How should the system schedule
the tasks strategically to achieve minimized outsourcing cost
while satisfying all the QoS requirements? We model these
problems as follows. Key notation is summarized in Table I
for ease of reference.

A. Job-to-task Completion Deadline Conversion

The system receives job submissions from users, in the
sequence of Hi, i = 1, 2, 3, .... Since we are going to restrict
the discussion in this sub-section within the scope of one job,
we drop the subscript that distinguishes the jobs, for simplicity
of the notation. Each job can be represented by a 6-tuple
< J,K,D′, Tm, T r, E >, which is defined as follows:
• J is the set of Map tasks. K is the set of Reduce tasks.
• D′ is the user-specified maximum tolerable completion

time for the job.



Fig. 2. An illustration of the MapReduce job model.

• Tmj ,∀j ∈ J , and T rk ,∀k ∈ K, are sets of workloads of
all the Map tasks and all the Reduce tasks, respectively.
The workload of a task is characterized by the number
of required time slots to complete the task on a VM of
the required type.

• E is a set of binary variables that describe the dependency
between any Map task Tmj ,∀j ∈ J , and any Reduce task
T rk ,∀k ∈ K. The dependency relationship is determined
by the partition functions that assign keys of intermediate
pairs to the Reduce nodes. Reduce task T rk is dependent
on Map task Tmj if Tmj generates an intermediate key-
value pair whose key is in the specified key range of
T rk . In that situation, T rk cannot be started until Tmj has
been completed, and we have e(j, k) = 1; otherwise,
e(j, k) = 0.

This general job model, as illustrated in Fig. 2, applies
to any categories of applications running on the MapReduce
platforms. The parameters in a job descriptor can be specified
by the user who submits the job, or obtained by profiling [12].

Our optimal scheduling algorithm works at the task level
instead of the job level, in order to achieve more efficient
resource utilization. To this end, the system needs to convert
the job submission process into task submission processes,
as well as decides the maximum tolerable completion time
requirements for tasks in a MapReduce job based on that
of the job. Let Dm

j ,∀j ∈ J , and Dr
k,∀k ∈ K, denote the

maximum tolerable completion time for each Map task and for
each Reduce task, respectively. The set of feasible completion
times for the tasks should satisfy the following constraints:

max
j∈J,k∈K

e(j, k)(Dm
j +Dr

k) ≤ D′, (1)

Tmj ≤ Dm
j , ∀j ∈ J,

T rk ≤ Dr
k, ∀k ∈ K.

(1) means that the sum of the tolerable completion times of any
Map task and any Reduce task with dependency in between
should not exceed the tolerable completion time of the job.

We will detail the algorithm that derives the set of feasible
task completion times and task submission times in Sec. III-A.
Each task can then be characterized by a 3-tuple (m, d, l):
m ∈M is the type of VMs the task requires to use; d ∈ D is
the maximum tolerable completion time for the task, i.e., the
duration from the time slot when the task is enqueued to the
time slot when the task is completed; l ∈ L is the required
running time of the task. Here, M, D and L are the sets of
all possible VM types, all possible tolerable completion times,
and all possible running times, respectively. The latter two are

in the units of time slots in our system. The tasks submitted
in the same time slot t and with the same 3-tuple (m, d, l)
produce a task arrival process with arrival rate Amdl(t) in t.
We suppose the arrival rates are upper bounded by Amax.

B. Queueing Model and Control Decisions

Tasks that are submitted to the system are queued before
they are scheduled to run. Especially, tasks with the same
(m, d, l) are enqueued in queue Qmdl, ∀m ∈ M, ∀d ∈ D,
∀l ∈ L. Each element in a task queue represents one unit of
task workload, i.e., the workload corresponding to one-time-
slot execution of the task on a type-m virtual machine. When
a task is enqueued into Qmdl, l elements are appended to
the tail of the queue; when a task is scheduled to run on its
required VM for one time slot, an element belonging to that
task departs from the queue; when a decision has been made
for outsourcing a task in Qmdl, all the remaining elements
associated with that task are removed from the queue. We
denote the backlog of task queue Qmdl at t as Qmdl(t), which
indicates the number of elements (i.e., the number of unit
workload) in the queue.

We formulate decision variables in our scheduling frame-
work as follows:

1) Task admission or outsourcing upon arrival: In time slot
t, Imdl(t) tasks among the Amdl(t) arrived tasks are admitted
into queue Qmdl, by appending lImdl(t) elements at the end of
the queue. Omdl(t) newly arrived tasks are outsourced to run
in the public cloud, and the rest Amdl(t)− Imdl(t)−Omdl(t)
tasks are rejected.

2) Task outsourcing after admission: At time slot t, Dmdl(t)
units of workloads at the head of the queue Qmdl are out-
sourced to the public cloud. These Dmdl(t) units of workloads
may span a number of tasks at the head of the queue, which
are partially completed or not scheduled for running at all yet.
For outsourced workload, on-demand VMs from the public
cloud are rent to run them immediately without occurring any
further delay.

3) Task scheduling on the private cloud: At the beginning
of time slot t, Nmdl(t) VMs of type m are scheduled to run
tasks of type (m, d, l). Nmdl(t−) is the number of left-over
type-(m, d, l) tasks observed at the start of time slot t, i.e.,
tasks that were scheduled to run on type-m VMs before time
slot t, and have not yet been completed until the end of time
slot t− 1. When t = 1, we set Nmdl(t−) = 0.

If Nmdl(t) ≥ Nmdl(t
−), it denotes that all Nmdl(t−)

left-over tasks continue running on their occupied VMs in
time slot t, and Nmdl(t)−Nmdl(t−) type-m VMs are newly
allocated to run the next Nmdl(t)−Nmdl(t−) waiting tasks in
queue Qmdl. If Nmdl(t) < Nmdl(t

−), only Nmdl(t) among
the Nmdl(t

−) left-over tasks can continue running, and the
other Nmdl(t−)−Nmdl(t) left-over tasks are preempted. We
maintain the first-come-first-served (FCFS) principle at the
task level, i.e., between any two running tasks, the one arrived
earlier at the queue has higher priority to continue running.

In time slot t, one unit of workload for each of the Nmdl(t)
head-of-the-queue tasks is removed from queue Qmdl, i.e.,



Nmdl(t) elements are removed from Qmdl. We note that since
each task is represented by multiple adjacent elements in the
queue, the removed elements belong to different tasks, and
may not be neighboring elements. Essentially, we maintain the
FCFS principle at the task level only, while it is not necessarily
FCFS at the level of elements. An illustration of this queueing
model is given in Fig. 3. Devising a scheduling algorithm
with guarantee of worst-case completion time under such a
queueing model is challenging.

Fig. 3. An illustration of the task queueing model: A—E represent task
indices.

The update of queue Qmdl is as follows:

Qmdl(t+ 1) = max[Qmdl(t)−Nmdl(t)
−Dmdl(t), 0] + l Imdl(t), ∀m ∈M, d ∈ D, l ∈ L. (2)

We note that Qmdl(t) and Dmdl(t) are in the number of unit
task workload, while the other quantities Amdl(t), Imdl(t),
Omdl(t) and Nmdl(t) are in the number of tasks.

C. Quality-of-Service Constraints
The first QoS metric under consideration is the task admis-

sion ratio, which is the ratio between the number of processed
tasks (including outsourced tasks and scheduled tasks) and the
number of submitted tasks. The task admission ratio in the
system should be no smaller than a given threshold α (set by
the enterprise), i.e.,

lim
T→∞

∑T
t=0(Imdl(t) +Omdl(t))∑T

t=0Amdl(t)
≥ α. (3)

The other QoS requirement is to guarantee the worst-case
completion times of tasks admitted into the queues, i.e., the
tasks are processed within a specified maximum tolerable
completion time. Instead of modeling this constraint explicitly,
we treat it as a property of our proposed scheduling algorithm,
which will be proved by rigorous analysis in Sec. IV.

D. Outsourcing Cost Minimization

Since the on-premise infrastructure is constructed and al-
ways maintained by the enterprise regardless of the workloads,
our scheduling algorithm focuses on the minimization of the
task outsourcing cost, which is the payment to the public
cloud, over the long run. Let H(m) denote the charge by
the public cloud for processing a unit of task workload on a
type-m VM. The overall outsourcing cost in time slot t is

C(t) =
∑
m∈M

∑
d∈D

∑
l∈L

(l Omdl(t) +Dmdl(t))H(m). (4)

Our objective is to minimize the time-averaged outsourcing
cost in the long term as follows:

min lim
T→∞

1

T

T∑
t=0

C(t) (5)

subject to:
lim
T→∞

∑T
t=0(Imdl(t) +Omdl(t))∑T

t=0Amdl(t)
≥ α,

∀m ∈M,d ∈ D, l ∈ L, (6)∑
d∈D

∑
l∈L

Nmdl(t) ≤ N tot
m , ∀m ∈M,∀t ∈ [0, T ], (7)

Imdl(t) +Omdl(t) ≤ Amdl(t),
∀m ∈M,d ∈ D, l ∈ L, t ∈ [0, T ], (8)

Dmdl(t) ≤ Dmax
mdl ,∀m ∈M,d ∈ D, l ∈ L, t ∈ [0, T ], (9)

Dmdl(t) ∈ Z+ ∪ 0, ∀m ∈M,d ∈ D, l ∈ L, t ∈ [0, T ],(10)
Imdl(t) ∈ Z+ ∪ 0,∀m ∈M,d ∈ D, l ∈ L, t ∈ [0, T ], (11)
Omdl(t) ∈ Z+ ∪ 0,∀m ∈M,d ∈ D, l ∈ L, t ∈ [0, T ],(12)
Nmdl(t) ∈ Z+ ∪ 0, ∀m ∈M,d ∈ D, l ∈ L, t ∈ [0, T ].(13)

Here, N tot
m is the total number of type-m VMs , and Dmax

mdl is
the maximum number of units of outsourced workloads. (6)
is to specify the admission ratio requirement. (7) shows that
the number of scheduled tasks for each type of VM should
not exceed the total number of VMs of that type in the private
cloud.

III. THE ONLINE SCHEDULING ALGORITHM

We next detail the algorithm for converting job submission
sequence into task submission sequences, and then design
the dynamic scheduling algorithm based on the Lyapunov
optimization framework.

A. Converting Job Submission Sequence to Task Submission
Processes

For each submitted job, we need to decide the submission
time and maximum tolerable completion time for each of
the Map and Reduce tasks contained in the job, in order to
generate the task arrival process Amdl(t).

Although there exist many feasible solutions satisfying the
constraints in (1), we seek to derive a simple and efficient solu-
tion method, which provably achieves performance optimality
together with our scheduling algorithm, as follows.

For each Reduce task k ∈ K, find the Map task that has
the maximum required running time among all the Map tasks
that task k depends on, i.e., select

j′ = arg max
j∈J
{e(j, k)Tmj }. (14)

Hence, the slack time to allow timely scheduling of Map task
j’ and Reduce task k is D′ − Tmj′ − T rk . We allocate one half
of this slack time to the scheduling of Reduce task k, and set
its maximum tolerable completion time as

Dr
k = T rk +

D′ − Tmj′ − T rk
2

. (15)

Suppose this MapReduce job is submitted at t0. The submis-
sion time of Reduce task k is set to dt0 +D′ −Dr

ke.
After deciding the submission time and maximum tolerable

completion time of each of the Reduce tasks using the above
method, we then decide the submission time and tolerable time
of each of the Map tasks. For Map task j ∈ J , the maximum
tolerable completion time is computed as the job’s tolerable



completion time minus the largest tolerable completion time
among those of all the Reduce tasks depending on Map task
j, i.e., Dm

j = D′ −Dr
k′ ,where k′ = arg max

k∈K
e(j, k)Dr

k. (16)

The submission time of each Map task is set to the same as
that of the job, i.e., t0.

The above method guarantees that a Reduce task will not
be enqueued until all of its dependent Map tasks have been
completed. As this conversion method is deterministic, when
the arrival process of the jobs is ergodic, the task arrival
processes into the system are also ergodic.
B. Solving the Online Scheduling Problem

We apply the Lyapunov Optimization framework [13][14]
to design an online algorithm to solve problem (5).

To guarantee the satisfaction of admission ratio constraints
in (6), we associate a virtual queue Kmdl with each task
queue Qmdl(∀m ∈ M, d ∈ D, l ∈ L), with initial backlog
Kmdl(0) = 0 and queue update
Kmdl(t+1) = max[Kmdl(t)+αlAmdl(t)−l Imdl(t)−l Omdl(t), 0].

(17)
To bound the worst-case completion time for each task, we

apply the ε-persistent service technique [14] to build a virtual
queue Zmdl associated with each task queue Qmdl, ∀m ∈
M, d ∈ D, l ∈ L, with initial backlog Zmdl(0) = 0:

Zmdl(t+ 1) = max[Zmdl(t) + 1{Qmdl(t)>0}(εmdl −Nmdl(t)
−Dmdl(t))− 1{Qmdl(t)=0}N

tot
m , 0]. (18)

Here εmdl is a pre-defined constant whose value is related to
the desired worst-case completion time d of tasks in queue
Qmdl. We will reveal their relationship in Sec. IV-B.

Let Θ(t) = [Q(t),Z(t),K(t)] denote a vector consisting
of all queues in our system, where Q(t) = {Qmdl(t),∀m ∈
M, d ∈ D, l ∈ L}, Zmdl(t) = {Zmdl(t),∀m ∈M, d ∈ D, l ∈
L}, Kmdl(t) = {Kmdl(t),∀m ∈ M, d ∈ D, l ∈ L}. Define
the Lyapunov function as
L(Θ(t)) =

1

2

∑
m∈M

∑
d∈D

∑
l∈L

[Qmdl(t)
2 + Zmdl(t)

2 +Kmdl(t)
2].

The one-slot conditional drift-plus-penalty is
∆(Θ(t)) + V C(t)

≤ B1 + Zmdl(t)(1{Qmdl(t)>0}εmdl − 1{Qmdl(t)=0}N
tot
m )

+
∑
m∈M

∑
d∈D

∑
l∈L

l Imdl(t)[Qmdl(t)−Kmdl(t)]

+
∑
m∈M

∑
d∈D

∑
l∈L

l Omdl(t)[V H(m)−Kmdl(t)]

+
∑
m∈M

∑
d∈D

∑
l∈L

[Dmdl(t)(V H(m)−Qmdl(t)

− 1{Qmdl(t)>0}Zmdl(t))]−
∑
m∈M

∑
d∈D

∑
l∈L

Nmdl(t)(Qmdl(t)

+ 1{Qmdl(t)>0}Zmdl(t)), (19)

where V is a controlling constant the purpose of which will
be detailed in Sec. IV, and B1 is a constant as follows:
B1 =

∑
m∈M

∑
d∈D

∑
l∈L

(Dmax
mdl )2 + 2

∑
m∈M

N tot
m (

∑
d∈D

∑
l∈L

Dmax
mdl )

+ |D||L|
∑
m∈M

(N tot
m )2 +

∑
m∈M

∑
d∈D

∑
l∈L

max{(1−α)2, α2}(Amax)2

+
∑
m∈M

∑
d∈D

∑
l∈L

max{ε2mdl, (N tot
m +Dmax

mdl )2}. (20)

Based on the Lyapunov optimization framework [13], we
derive a dynamic algorithm that observes queues in Θ(t) in
each time slot t and makes control decisions on Imdl(t),
Omdl(t), Dmdl(t), Nmdl(t), ∀m ∈ M, d ∈ D, l ∈ L,
that minimize the RHS (Right-Hand-Side) of (19), such that
an upper bound for the time-averaged outsourcing cost is
minimized. Except the constant terms, RHS of (19) can be
decomposed into three parts, which we seek to minimize
respectively in each time slot as follows.

1) Admission control: We solve the following optimization
problem to derive Imdl(t) and Omdl(t), for each m ∈M, d ∈
D, l ∈ L:
min Imdl(t)[Qmdl(t)−Kmdl(t)] +Omdl(t)[V H(m)−Kmdl(t)]

(21)Subject to: constraints (8)(11)(12).
(21) is a linear optimization problem. We observe the

coefficients of the two variables Imdl(t) and Omdl(t), i.e.,
Qmdl(t)−Kmdl(t) and V H(m)−Kmdl(t), in (21), and derive
the following solutions:
Case (1): If Qmdl(t)−Kmdl(t) ≥ 0 and V H(m)−Kmdl(t) <
0, the solution is I∗mdl(t) = 0 and O∗mdl(t) = Amdl(t);
Case (2): If Qmdl(t)−Kmdl(t) < 0 and V H(m)−Kmdl(t) ≥
0, the solution is I∗mdl(t) = Amdl(t) and O∗mdl(t) = 0;
Case (3): If Qmdl(t)−Kmdl(t) ≥ 0 and V H(m)−Kmdl(t) ≥
0, the solution is I∗mdl(t) = 0 and O∗mdl(t) = 0;
Case (4): When Qmdl(t) − Kmdl(t) < 0 and V H(m) −
Kmdl(t) < 0, if Qmdl(t) − Kmdl(t) < VH(m) − Kmdl(t),
i.e., Qmdl(t) < VH(m), the solution is I∗mdl(t) = Amdl(t)
and O∗mdl(t) = 0; otherwise, the solution is I∗mdl(t) = 0 and
O∗mdl(t) = Amdl(t).

2) In-queue task outsourcing: We solve the following linear
minimization problem to derive Dmdl(t), for each m ∈
M, d ∈ D, l ∈ L:

minDmdl(t)(V H(m)−Qmdl(t)− 1{Qmdl(t)>0}Zmdl(t)) (22)
Subject to: constraints (9)(10).
The solution to problem (22) is

D∗mdl(t) =

{
0 if V H(m) ≥ Qmdl(t) + 1{Qmdl(t)>0}Zmdl(t)
Dmax
mdl otherwise

In our system, if part of the workloads of a task in a task
queue is to be outsourced, all the remaining units of workloads
of the task should be outsourced together. Hence, we set
Dmdl(t) to be D∗mdl(t) plus the smallest number of elements
that can cover complete tasks. The increment is smaller than
l, i.e., Dmdl(t) < D∗mdl(t) + l.

3) VM allocation for in-queue tasks: We derive Nmdl(t),
for each m ∈ M, by solving the following maximization
problem:

max
∑
d∈D

∑
l∈L

Nmdl(t)(Qmdl(t) + 1{Qmdl(t)>0}Zmdl(t)) (23)

Subject to: constraints (13)(7).
As Qmdl(t) + 1{Qmdl(t)>0}Zmdl(t) is always non-negative,

to maximize (23), we simply need to find
{d′, l′} = argmaxd∈D,l∈LQmdl(t) + 1{Qmdl(t)>0}Zmdl(t)), (24)

and then set N∗md′l′ = N tot
m and N∗mdl = 0, ∀d 6= d′, l 6= l′.

The above dynamic algorithm can be implemented by a
controller module in the enterprise as follows: At the beginning



of each time slot t, the controller receives submitted jobs
and converts them into task arrivals at the current and future
time slots. Then the controller solves the three optimization
problems (21)(22)(23) to decide the optimal values of control
variables on task admission, outsourcing and VM allocation,
and schedules the tasks accordingly. Especially for in-queue
task outsourcing and VM allocation, the controller first out-
sources tasks that are covered by Dmdl elements at the head
of each queue Qmdl, and then schedules the next Nmdl(t) in-
queue tasks to run on VMs. At the end of the time slot, the
controller updates the status of all queues.

IV. PERFORMANCE ANALYSIS

The proof of all lemmas and theorems in this section can
be found in our technical report [15].
A. Strong Stability of Queues

Lemma 1: (Strong Stability of Queues) Our algorithm guar-
antees in all time slots,

Kmdl(t) ≤ Kmax
mdl = V H(m) + αlAmax, (25)

Qmdl(t) ≤ Qmaxmdl = V H(m) + (1 + α)l Amax, (26)
Zmdl(t) ≤ Zmaxmdl = V H(m) + εmdl. (27)

As Lemma 1 shows the strong stability of queue (17),
inequality (6) is always satisfied, i.e., the pre-set admission
ratio is guaranteed.
B. Guarantee of Worst-Case Task Completion Time

Theorem 1: (Guarantee of Worst-Case Completion Time)
The worst-case completion times of all tasks admitted into
queue Qmdl are upper bounded by the constant

Umdl = d (1 + l)Qmaxmdl + Zmaxmdl

εmdl
e, (28)

where Qmaxmdl and Zmaxmdl are upper bounds of Qmdl(t) and
Zmdl(t) defined in (26) and (27).

This shows that we can set εmdl as

εmdl =
(1 + l)Qmaxmdl + Zmaxmdl

d
,

such that the completion times of tasks in Qmdl are no larger
than the maximum tolerable completion time of d.

C. Optimality of Time-averaged Outsourcing Cost

For simplification of notation, we use X to represent
limT→∞

1
T

∑T
t=0E(X(t)).

Lemma 2: (Existence of Optimal Stationary, Randomized
Policy): For any ergodic job arrival process, there exists a
stationary randomized control policy π that chooses Imdl(t) ∈
[0, Amax], Omdl(t) ∈ [0, Amax], Nmdl(t) ∈ [0, N tot

m ], that
solve problem (5) augmented with the following constraints:

εmdl ≤ Nmdl +Dmdl, ∀m ∈M, d ∈ D, l ∈ D, (29)

with optimal time-averaged outsourcing cost C
π

, only if the
new problem is feasible.

Theorem 2: (Optimality of Outsourcing Cost): The time-
averaged outsourcing cost achieved by our dynamic algorithm
(denoted as C

∗
hereafter) is within a constant gap from the

cost of any stationary randomized control policy that solve
problem (5) augmented with constraint (29), i.e.,

C
∗ ≤ Cπ +

B1

V
+ |D|

∑
l∈L

l
∑
m∈M

H(m), (30)

where B1 is the constant defined in (20).
The theorem shows that the performance of our dynamic

algorithm can approach the optimal cost of the augmented
problem within a constant gap, which decreases with the
increase of V . Meanwhile, from (26) we see worst-case
backlogs grow linearly in V . Therefore, V can be adjusted to
achieve a desired tradeoff between the outsourcing cost and
the completion times of tasks in the task queues.

V. CONCLUSION

This paper proposes a fine-grained model to characterize
the scheduling of heterogeneous MapReduce workloads over a
hybrid cloud, and an online algorithm for joint task admission
control, task outsourcing and VM allocation. Based on the
Lyapunov optimization framework, we show that the online
algorithm can achieve close-to-minimal time-averaged task
outsourcing cost over the long run, with guarantee of task
admission ratio and worst-case task completion time. As on-
going work, we are implementing the algorithm in practical
systems to further evaluate its performance.
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