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ABSTRACT

Faced by soaring power cost, large footprint of carbon emis-
sion and unpredictable power outage, more and more mod-
ern Cloud Service Providers (CSPs) begin to mitigate these
challenges by equipping their Datacenter Power Supply Sys-
tem (DPSS) with multiple sources: (1) smart grid with time-
varying electricity prices, (2) uninterrupted power supply
(UPS) of finite capacity, and (3) intermittent green or re-
newable energy. It remains a significant challenge how to
operate among multiple power supply sources in a comple-
mentary manner, to deliver reliable energy to datacenter
users over time, while minimizing a CSP’s operational cost
over the long run. This paper proposes an efficient, online
control algorithm for DPSS, called MultiGreen. MultiGreen
is based on an innovative two-timescale Lyapunov optimiza-
tion technique. Without requiring a priori knowledge of
system statistics, MultiGreen allows CSPs to make online
decisions on purchasing grid energy at two time scales (in the
long-term market and in the real-time market), leveraging
renewable energy, and opportunistically charging and dis-
charging UPS, in order to fully leverage the available green
energy and low electricity prices at times for minimum op-
erational cost. Our detailed analysis and trace-driven sim-
ulations based on one-month real-world data have demon-
strated the optimality (in terms of the tradeoff between min-
imization of DPSS operational cost and satisfaction of data-
center availability) and stability (performance guarantee in
cases of fluctuating energy demand and supply) of Multi-
Green.

Categories and Subject Descriptors

D.4.7 [OPERATING SYSTEMS]: Organization and De-
sign—Distributed systems
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Figure 1: An illustration of the datacenter power
supply system (DPSS).
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1. INTRODUCTION
The proliferation of cloud computing services has pro-

moted massive, geographically distributed datacenters. Cloud
service providers (CSPs) are typically facing three major
power-related challenges: (1) Skyrocketing power consump-
tion and electricity bills, e.g., Google with over 1, 120GWh
and $67M , and Microsoft with over 600GWh and $36M [31].
(2) Serious environmental impact, as IT carbon footprints
can occupy 2% of the global CO2 emissions reportedly [18].
(3) Unexpected power outages, e.g., Amazon experienced
an outage in October 2012 in its US-East-1 region, which
was triggered by a series of failures in the power infrastruc-
ture [17].

To address these challenges, modern CSPs begin to equip
their datacenter power supply systems (DPSS) with mul-
tiple power sources in a complementary manner, as illus-
trated in Fig. 1. First, modern datacenters obtain their pri-
mary power from a smart grid. Smart grids typically pro-
vide different pricing schemes at different timescales, such
as a long-term-ahead pricing market and the real-time mar-
ket [1, 15, 19, 21, 37]. Next, datacenters are equipped with
uninterrupted power supplies (UPSs) to guard against pos-

149

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38026644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sible power failures. The supply of UPSs may mostly keep
a datacenter running for 5 ∼ 30 minutes upon a power out-
age [36]. Finally, CSPs are also starting to green their dat-
acenter operations by integrating on-site renewable energy,
such as solar and wind energies [8, 10, 22–24, 35, 41]. The
renewable energy is connected to the grid via a grid-tie de-
vice, which combines electricity produced from the renew-
able sources and the grid on the same circuit for power sup-
ply [4,10]. The amount of renewable energy produced could
vary significantly over time [18]. UPS can be used to store
energy during periods of high levels of renewable energy gen-
eration and/or low electricity prices in the grid markets.
When the renewable energy is insufficient or prices from the
grid are high, the UPS battery can be discharged to provide
power [11–13,20,36,38].

An important problem faced by CSPs is how to minimize
the long-term cost of running their datacenters. Several key
decisions need to be made in an online fashion when oper-
ating such a DPSS. (1) How much power to be purchased
from the grid’s long-term market and the real-time market,
respectively? (2) How to efficiently utilize the available re-
newable energy? (3) How to opportunistically use the UPS
battery to store excess power generated/purchased and sup-
ply power when needed? It is challenging to optimally utilize
the multiple sources to reliably power a datacenter, while
minimizing its operational cost. On the demand side, power
demand in a datacenter is time-varying, due to variant re-
source usage of different applications running in the data-
center; on energy supply side, the grid may offer long-term
prices and real-time prices, which change over time; further,
the unpredictable nature of renewable energy adds onto the
supply uncertainties.

There have been a number of works investigating datacen-
ter power supply in cases of varying power demand, renew-
able energy supply and electricity prices from smart grids.
These work may either assume a priori knowledge of the
power demand [1,19,20,37], or require a substantial amount
of statistics of the system dynamics, in order to predict the
future demand based on different forecast techniques [10,15,
21, 41]. Some only optimize single-day or single-household
power supply [14,21], while others do not consider the inter-
actions among renewable energy usage, multi-timescale grid
power purchasing and energy storage from the prospective
of a datacenter operator [14,19,20,27,29,30,33]. In contrast,
we seek to design an efficient online control strategy for long-
term cost minimizing operation of the DPSS under dynamic
power demand and uncertain renewable energy supply in a
synergetic manner, without requiring a priori knowledge or
stationary distribution of system statistics.

Specifically, based on a stochastic optimization model that
characterizes time-varying power demand and renewable en-
ergy supply, finite UPS capacity and two-timescale grid mar-
kets, we derive an online DPSS control algorithm –MultiGreen
– by applying a two-stage Lyapunov optimization technique [9,
26, 39]. MultiGreen decides the amount of energy to pur-
chase from the grid’s long-term market in intervals of longer
periods of time, as the basic energy supply to address de-
mand dynamics and real-time price fluctuations in the future
interval; MultiGreen also decides the amount of energy to
purchase from the real-time market, as well as the amount of
energy to store into or discharge from the UPS batteries, in
shorter time scales. The online decisions are set to best uti-
lize the available renewable energy produced over time and
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Figure 2: An illustration of the system model. Each
coarse-grained time slot is divided into NT = 5 fine-
grained time slots.

the periods with low electricity prices, in order to minimize
the operational cost in the long run of the datacenter.

A salient feature of MultiGreen is that, even without re-
quiring any a priori knowledge of the system dynamics, it
can arbitrarily approach the optimal offline cost which is
computed with full knowledge of the system over its long
run within a provable O(1/V ) gap. The algorithmic param-
eter V serves as a control knob, by adjusting which CSPs
can control the tradeoff between the minimization of the
DPSS operational cost and satisfaction of the constraints of
datacenter availability and UPS lifetime. We analyze the
performance of our online control algorithm with rigorous
theoretical analysis. Further, we demonstrate the optimality
(in terms of the tradeoff between minimization of DPSS op-
erational cost and satisfaction of datacenter availability con-
straint) and stability (performance guarantee in cases of fluc-
tuating power demand and supply) achieved by MultiGreen,
using extensive simulations based on one-month worth of
traces from live power systems.

2. SYSTEM MODEL AND OBJECTIVE
As illustrated in Fig. 2, we consider a DPSS system oper-

ating in a discrete-time model. Time is divided into K(K ∈
N+) coarse-grained slots of length T in accordance with
the interval length of grid’s long-term market, e.g., days or
hours [21]. Each coarse-grained time slot is further divided
into NT (NT ∈ N+) fine-grained time slots, e.g., NT = 5
in Fig. 2. Empirically, each fine-grained time slot is 15 or
60 minutes long per which the datacenter can adjust power
control strategies in a more prompt fashion [19,39].

2.1 Online Control Decisions
We assume that datacenter energy demand d(t) and re-

newable energy generation g(t) are random variables. We
don’t assume they follow any specific probability distribu-
tion functions. We assume a datacenter provider can buy
electricity from the grid’s long-term contracts or buy elec-
tricity in spot markets. While it is not common in today’s
markets for datacenters to directly buy energy from energy
markets, this may change in the future. In fact, Google
formed a subsidiary Google Energy LLC, and get approval
by FERC (US Federal Energy Regulatory Commission) 3
years ago [16]. This approves that Google LLC can buy and
even sell electricity. As we can imagine, in the future, more
datacenter providers will participate in electricity markets,
as cloud-scale datacenters grow rapidly and can draw tens
to hundreds of megawatts. The operation of DPSS includes
four key control decisions in two timescales:
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2.1.1 Long-term-ahead Energy Purchase

At the beginning (the first fine-grained time slot) of each
coarse-grained time slot t = kT (k = 1, 2, ..., K), the DPSS
observes the energy demand d(t) and renewable energy g(t)
generated during time slot t. Then, the DPSS makes a
decision on how much energy ybef (t) to be purchased at
a price plt(t) (with an upper bound price Pmax) in the
long-term market. The DPSS averagely schedules energy
ylt(t) = ybef (t)/NT to be used in each fine-grained time slot
in this coarse-grained time slot. For example, if the DPSS
decides to purchase 100KW in the day-ahead grid market
according to the observation of the current demand and re-
newable energy production, it will schedule 20KW for each
fine-grained time slot in the next day when NT = 5.

2.1.2 Real-time Energy Balancing

Since the primary costs for renewable energy generation
are construction costs such as deploying solar panels and
wind turbines, their operational cost is negligible [35], and
we focus on operational cost minimization in this paper.
Thus, the renewable energy is assumed to be harvested free
after deployment, and we preferentially use it. When the
renewable energy is generated during time slot t, we use
it to meet energy demand as much as possible. If there is
excess renewable energy, we use the battery to store it.

Specifically, at each fined-grained time slot τ ∈ [t, t+T−1],
the actual energy demand d(τ ) and available renewable en-
ergy g(τ ) can be readily observed by the DPSS. If the long-
term-ahead purchasing and the renewable energy are enough
to meet the current energy demand, i.e., ylt(t)+g(τ ) ≥ d(τ ),
then no real-time energy discharging/purchasing is needed.
Otherwise, the DPSS has to make a decision on whether to
discharge energyD(β(τ )) from the battery. If the discharged
power is still not enough, the DPSS decides how much addi-
tional energy yrt(τ ) to be purchased from the grid’s real-time
market at the real-time price prt(τ )(≤ Pmax) to fulfill the
current demand. Any superfluous energy is used to charge
the battery R(τ ). Thus, we have:

ylt(t) + yrt(τ ) +D(β(τ )) + g(τ )−R(τ ) = d(τ ), (1)

whereD(β(τ )) denotes the amount of UPS energy discharged
at the depth-of-discharge (DoD) level of β(τ ) (β(τ ) ∈ [0, 1]).
DoD is a measure of how much energy has been withdrawn
from the battery, expressed as a percentage of the full dis-
charging capacity. For example, let Dmax denote the maxi-
mum energy that we can discharge per time, thenD(β(τ )) =
β(τ )Dmax. The battery is either charged or discharged or
not in use at each time slot, i.e., R(τ ) ·D(β(τ )) = 0.

2.2 Online Control Constraints
There are a series of constraints that the above decision-

making should satisfy:

2.2.1 Balancing procurement accuracy and cost

In practice, the price of electricity in the grid’s real-time
market tends to be higher on average than that in the grid’s
long-term market, i.e., Eprt(τ ) > Eplt(t) [1, 21, 37], as up-
front payment is associated with cheaper contract prices in
the long-term market. Hence, when procuring energy in
the two-timescale markets, the DPSS should make the best
tradeoff between procurement accuracy and power cost. Ad-
ditionally, we assume that the maximal amount of power
that the datacenter can draw from the grid at each time is

limited by Pgrid:

0 ≤ ylt(t) + yrt(τ ) ≤ Pgrid. (2)

2.2.2 Guaranteeing datacenter availability

Let m(τ ) denote the UPS energy level at time τ . We
assume that the efficiencies of UPS charging and discharging
are the same, denoted by η ∈ [0, 1], e.g., η = 0.8 means that
only 80% of the charged or discharged energy is useful when
charging or discharging. The dynamics of UPS level m(τ )
can be expressed as:

m(τ + 1) = m(τ ) + ηR(τ )−D(β(τ ))/η. (3)

We assume that under any feasible control algorithm, the
UPS battery always reserves a minimum energy level Mmin,
to guarantee reliable datacenter operation in case of power
outage. For instance, the energy buffer eBuff [11] always re-
tains five-minute-worth of reserved energy in UPS to ensure
datacenter availability. We assume that UPS has a capacity
of MUPS , thus we have:

Mmin ≤ m(τ ) ≤ MUPS. (4)

Typically, Mmin can power the peak demand of a datacenter
for about a minute, while MUPS can for 5 ∼ 30 minutes [36].

2.2.3 UPS lifetime and operational cost

In practice, UPS is constrained by the maximum amounts
of energy for recharge and discharge per time:

0 ≤ D(β(τ )) ≤ Dmax, 0 ≤ R(τ ) ≤ Rmax, (5)

where Dmax and Rmax are the maximum energy that we
can recharge and discharge UPS per time, respectively.

It has been practically shown that the UPS lifetime is a
decreasing function of DoD and charge/discharge cycles [11].
The cost of operating the battery is a function of how of-
ten/much it is charged and discharged. We assume that
the costs of each recharging and discharging operation are
the same, denoted as Cr. If a new UPS costs Cups to pur-
chase and it can sustain Lups total cycles of charging and
discharging at the maximum DoD, then Cr = Cups/Lups. If
the lifetime of the UPS is Lifeups, then the maximum al-
lowable discharging and charging number over the long run
[0, t − 1] where t ∈ KT is Nmax = Lups · KT

Lifeups
. Nmax

satisfies:

0 ≤
∑t−1

τ=0
a(τ ) ≤ Nmax, (6)

where a(τ ) denotes whether the UPS is used in time slot τ
or not, that is a(τ ) = 1 if D(τ ) > 0 or R(τ ) > 0, a(τ ) = 0
otherwise. Hence, at time slot t, the operational cost of UPS
operation is a(t)Cr.

2.3 Stochastic Cost Minimization Formulation
At each fine-grained time slot τ , the DPSS operational

cost is the sum of costs for grid energy purchasing and UPS
charging/discharging. Therefore, Cost(τ ) , ylt(t)plt(t) +
yrt(τ )prt(τ ) + a(τ )Cr. We seek to design an online DPSS
control algorithm that can systematically make online deci-
sions by solving the following stochastic cost minimization
problem P1:

min
ybef ,yrt,D(β),R

Costav , lim inf
t−→∞

1

t

t−1∑

τ=0

E[Cost(τ )] (7)

s.t. ∀t : constraints (1)(2)(4)(5)(6).
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Since the battery can be charged to store energy or dis-
charged to serve demand, the current control decisions are
coupled with the future decisions. For example, current de-
cisions may leave insufficient battery capacity for storing
renewable energy produced in the near future, or overuse
the battery and threaten datacenter availability. To solve
this optimization problem, the commonly used dynamic pro-
gramming technique andMarkov decision process suffer from
a curse of dimensionality and require significant knowledge
of the demand and supply over the long term [2,15]. In con-
trast, the recently developed Lyapunov optimization frame-
work [9, 26] is shown to enable the design of online control
algorithms for such constrained optimization of time-varying
systems without requiring a priori knowledge of the future
workload and costs. In particular, our above two-timescale
power delivery model fits well the two-stage Lyapunov op-
timization framework [39], that enables us to perform two
levels of control strategies at two levels of time granularity.
Therefore, we design our online control algorithm based on
the two-timescale Lyapunov optimization technique.

2.4 An Optimal Offline Algorithm
Now we present a polynomial-time optimal offline solu-

tion for problem P1 as a benchmark for comparison. In
the theoretically optimal scenario, DPSS knows all future
system statistics including energy demand d(t), renewable
energy production g(t) and grid energy prices plt(t), prt(t),
∀t ∈ [0, 1, ..., KT ]. First, we present the following straight-
forward Lemma 1 about the optimal real-time energy pur-
chasing without proof for brevity.

Lemma 1. In every optimal solution of the optimization
problem P1, it holds ∀τ , yrt(τ ) ≡ 0 or prt(τ ) ≡ 0.

The above lemma implies that real-time energy purchas-
ing is unnecessary in the optimal solution, where all the
future statistics are known in advance. Thus, solving the
optimization problem P1 is equivalent to solving K single
time-slot problems P2 as follows, ∀t ∈ [0, 1, ..., KT ], at the
first fine-grained time slot of each coarse-grained time slot
over the long horizon KT .

min
ybef ,D(β),R

ylt(t)plt(t) + a(t)Cr (8)

s.t. ylt(t) + g(t) +D(β(t))−R(t) = d(t),

0 ≤ ylt(t) ≤ Pgrid,

∀t : constraints (4)(5)(6).

P2 only includes linear terms, and hence can be solved in
polynomial time using standard linear programming tech-
niques, e.g., interior point methods [3].

3. ONLINE ALGORITHM DESIGN
Now we develop an online algorithm to achieve near-optimal

solution without a priori knowledge of power demand and
renewable energy generation.

3.1 A Lyapunov Optimization Solution
To guarantee datacenter availability and deliver reliable

energy to datacenter power demand, we should guarantee
constraint (4) of battery level. We use an auxiliary variable
X(t) to track the battery level, defined as follows:

X(t) = m(t)− V Pmax/T −Mmin −Dmax/η, (9)

where V ≥ 0 is a control parameter to be specified later,
which affects the distance to the optimal value and is related
to the battery capacity. The intuition behind X(t) is that by
carefully tuning the weights V for decision-making, we can
ensure that whenever charging/discharge the battery, the
energy level in the battery always lies in the feasible region
[Mmin,MUPS ]. Recall that m(t) is the actual battery level
in time slot t and evolves according to Eq. (3). The dynamics
of X(t) is given as:

X(t+ 1) = X(t) + ηR(τ )−D(β(τ ))/η. (10)

In Theorem 2, we will prove that for any time slot t, the
battery level m(t) is always in the safe range, since X(t) is
deterministically lower and upper bounded.

With the queue, we transform the inequality constraint (4)
into a queue stability problem [26]. As a scalar measure of
the queue length, we define a quadratic Lyapunov function
as:

L(t) ,
1

2
X2(t). (11)

This represents a scalar metric of queue congestion in the
system. To keep the system stable by persistently pushing
the Lyapunov function towards a lower congestion state, we
introduce the T -slot conditional Lyapunov drift as:

△T (t) , E[L(t+ T )− L(t)|X(t)]. (12)

Then following the Lyapunov drift-plus-penalty framework [9],
we add a function of the expected operational cost over T
slots (i.e., the penalty function) to (12) to obtain the drift-
plus-penalty term. Our control algorithm is designed to
make decisions on ybef (t),yrt(t),D(β(t)) and R(t) to min-
imize an upper bound on the following drift-plus-penalty
term in every time frame of length T :

△T (t) + V E{
∑t+T−1

τ=t
Cost(τ )|X(t)}, (13)

where the control parameter V is chosen by the CSP to tune
the tradeoff between DPSS cost minimization and datacen-
ter availability (battery level). For instance, if V is set to
be larger and more emphasis is put to cost minimization,
then UPS will be overly used for certain times and thus dat-
acenter availability only achieves a weak satisfaction. A key
derivation step is to obtain an upper bound on this term.
The following Theorem 1 gives the analytical bound on the
drift-plus-penalty term.

Theorem 1. (Drift-plus-Penalty Bound) Let V > 0 and
t = kT (k ∈ Z+). Considering the quadratic Lyapunov func-
tion Eq. (11), we assume that E[L(0)] < ∞. Under all pos-
sible energy management actions to ensure the constraints
in problem P1, the drift-plus-penalty of the cloud datacenter
system satisfies:

△T (t) + V E{
∑t+T−1

τ=t
Cost(τ )|X(t)} (14)

≤ B1T + V E{
∑t+T−1

τ=t
Cost(τ )|X(t)}

where B1 = 1
2
max{R2

maxη
2, D2

max/η
2}.

Proof. Let t = kT (k ∈ Z+) and τ ∈ [t, t + T − 1].
Squaring the queue update Eq. (10) yields: X2(τ + 1) =
X2(τ )+2X(τ )[R(τ )η−D(β(τ ))/η]+[(R(τ )η−D(β(τ ))/η]2.
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As D(β(τ )) ∈ [0, Dmax], R(τ ) ∈ [0, Rmax], we obtain:

[X2(τ + 1)−X2(τ )]/2

= [R(τ )η −
D(β(τ ))

η
]X(τ ) + [(R(τ )η −

D(β(τ ))

η
]2/2

≤ X(τ )[R(τ )η−
D(β(τ ))

η
] + max{R2

maxη
2,

D2
max

η2
}/2.

Taking expectations over d(t), g(t), plt(t) and prt(t), condi-
tioning on X(t), we get the 1-slot conditional Lyapunov drift
△1 (Q(t)):

△1 (t) ≤ B1 + E{X(τ )[R(τ )η −D(β(τ ))/η]|X(t)},

where B1 = 1
2
max{R2

maxη
2, D2

max/η
2}. Summing the above

inequality over τ ∈ [t, t + 1, ..., t + T − 1], we obtain the
following inequality:

△T (Q(t))

≤ B1T + E{
∑t+T−1

τ=t
X(τ )[R(τ )η−D(β(τ ))/η]|X(t)}

Adding the operational cost V E{
∑t+T−1

τ=t
Cost(τ )|X(t)} to

both sides, we prove the theorem.

Remarks: Our control algorithm is then constructed fol-
lowing the “minimizing drift-plus-penalty” principle of the
Lyapunov optimization technique: at every time slot, choose
a set of feasible energy purchasing and UPS battery charg-
ing/discharging actions to minimize the right-hand-side (RHS)
of (14). The parameter V is chosen to enforce different
weights to time-averaged operational cost Costav and queue
drift △T (t) for the CSP to tune the tradeoff between DPSS
cost minimization and datacenter availability. The opera-
tional cost achieved can be smaller if datacenter availability
is just weakly satisfied, e.g., slightly overcharge the UPS
battery.

3.2 Relaxed Optimization Problem
The key principle of Lyapunov optimization framework

is to choose online control policies to minimize the right-
hand-side (RHS) of (14) in Theorem 1, i.e., an upper bound
of the drift-plus-penalty framework in (13). However, to
minimize the RHS of (14), the DPSS needs to know the
concatenated queue backlog X(t) over future time frame τ ∈
[t, t + T − 1]. The queue X(t) depends on UPS battery
level m(t), the energy demand d(t) and available renewable
energy g(t). The highly variable nature of energy demand,
renewable energy and electricity prices has been a major
obstacle to make accurate decisions. In practice, system
operators can use forecast techniques to predict the future
statistics. However, the 90th percentile forecast error for
1-hour-ahead prediction of the renewable energy can be as
high as 22.2% [10]. For a 25% penetration of wind energy
in a smart grid, the day-ahead forecast error of wind energy
generation can result in an additional operational cost of
$4.41 per MWh for the operator [40].

Therefore, we instead approximate near-future queue back-
log statistics using the current values, i.e., X(τ ) = X(t) for
t < τ ≤ t + T − 1. This significantly reduces the compu-
tational complexity and eliminates the need for any fore-
cast technique in our algorithm, while only bringing a slight
“loosening” of the upper bound on the drift-plus-penalty
term, as proved in Corollary 1. For this approximation, we
will show that our algorithm can still approach the optimal

performance with a proven bound in Theorem 3 in Sec. 4
and simulations in Sec. 5.3.

Corollary 1. (Loosening Drift-plus-Penalty Bound) Let
V > 0 and t = kT for some nonnegative integer k. Replac-
ing the concatenated queue X(τ ) with X(t), the drift-plus-
penalty satisfies:

△T (t) + V E{
∑t+T−1

τ=t
Cost(τ )|X(t)} (15)

≤ B2T + E{

t+T−1∑

τ=t

X(t)[R(τ )η −D(β(τ ))/η]|X(t)}

where B2 = B1 + T (T − 1)[R2
maxη

2 −D2
max/η

2]/2, and B1

is given in Theorem 1.

Proof. According to Eq. (10), for any τ ∈ [t, t+ T − 1],
we can get that:

X(t)− (τ − t)Dmax/η ≤ X(τ ) ≤ X(t) + (τ − t)ηRmax,

Therefore, recalling each term in Eq. (14), we have:
∑t+T−1

τ=t
X(τ )[R(τ )η−D(β(τ ))/η]

≤
∑t+T−1

τ=t
[X(t) + (τ − t)ηRmax]R(τ )η

−
∑t+T−1

τ=t
[X(t)− (τ − t)Dmax/η]D(β(τ ))/η

=
∑t+T−1

τ=t
X(t)[R(τ )η −D(β(τ ))/η]

+
∑t+T−1

τ=t
(τ − t)[RmaxR(τ )η2 −DmaxD(β(τ ))/η2]

≤
∑t+T−1

τ=t
X(t)[R(τ )η −D(β(τ ))/η]

+ T (T − 1)[R2
maxη

2 −D2
max/η

2]/2.

Therefore, by definingB2 = B1+T (T−1)[R2
maxη

2−D2
max/η

2]/2,
substituting the above inequality into (14), we prove the the-
orem.

3.3 Two-timescale Online Control Algorithm
Comparing RHS of (14) with RHS of (15), we can see that

the RHS of (15) gives a larger upper bound than the RHS
of (14). We seek to minimize the RHS of (15), to derive
the online decisions. The control decision ybef (t) should be
made at the beginning of each coarse-grained time slot while
yrt(τ ), D(β(τ )), and R(τ ) are made at each fine-grained time
slot. Thus, we can separate the problem into two indepen-
dent sub-problems P3 and P4 as given in our MultiGreen
Algorithm 1, to make decisions in the two timescales, re-
spectively. At each coarse-grained time slot t = kT , Multi-
Green decides how much energy ybef (T ) = NT ylt(t) to be
purchased from the grid’s long-term energy market. The
decision should make sure that the current energy demand
is met and the battery stores enough energy for the future
need. At each real-time slot τ ∈ [t, t + T − 1], MultiGreen
decides real-time market procurement yrt(τ ), and UPS bat-
tery discharging D(β(τ )) and charging R(τ ) to supply en-
ergy when needed or store additional energy, so as to match
the power demand and supply. At the end of each time slot,
MultiGreen updates its queue statistics.

Remarks: MultiGreen is computationally efficient. Each
time it only needs to solve two linear programs with four
variables (ybef (t), yrt(τ ),D(β(τ )), R(τ )) and four linear con-
straints in (1)(2)(3)(5)(6). We can easily solve the two sub-
problems P4 and P5 using classical linear programming
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Algorithm 1: The Online Algorithm MultiGreen.

1) Long-term-ahead Energy Planing : At each
coarse-grained time slot t = kT (k ∈ Z+), the DPSS
decides the optimal power procurement ybef (t) in the
grid’s long-term market to minimize the following
problem P3:

min E{
t+T−1∑

τ=t

V
[
ylt(t)plt(t) + yrt(τ )prt(τ )

]
|X(t)}

+E{

t+T−1∑

τ=t

X(t)[R(τ )η −D(β(τ ))/η]|X(t)}

s.t. (1)(2).

2) Real-time Energy Balancing : Then the DPSS averagely
schedules energy ylt(t) = ybef (t)/NT to be used for each
fine-grained time slot τ ∈ [t, t+ T − 1]. The DPSS
decides real-time energy procurement yrt(τ ), and UPS
battery discharging D(β(τ )) and charging R(τ ) to
minimize the following optimization problem P4:

min V yrt(τ )prt(τ ) +X(t)
[
R(τ )η −

D(β(τ ))

η

]

s.t. (1)(2)(5)(6)

3) Queue Update: Update the actual and virtual queues
using Eq. (3) and Eq. (10).

approaches, e.g., interior point methods [3]. MultiGreen
makes online control decisions ybef (t), yrt(τ ), D(β(τ )) and
R(τ ) solely based on the current available statistics at each
time slot, including queue statistics, energy demand, vol-
ume of the available renewable energy, energy prices and
UPS energy level. These statistics typically only require a
few bits to store, and take very little time to calculate and
transmit. Besides, interior point methods have a low com-
putational complexity (usually polynomial time) in prac-
tice [3]. Though advanced prediction techniques can com-
plement MultiGreen to make more accuracy decisions, a
tradeoff exists between the benefits of decision accuracy and
complexity of implementing the forecast techniques. Note
that, MultiGreen is more suitable for delay-sensitive energy
demand than delay-tolerant demand. That is, MultiGreen
seeks to address energy demand when it is generated imme-
diately. No energy demand should be delayed to a future
time to address. We leave it as the future work to design a
smart power supply system for mixed workloads.

4. PERFORMANCE ANALYSIS
In this section, we analyze our MultiGreen algorithm in

terms of performance bound and robustness.

4.1 Performance Bound
We first analyze the gap between the result achieved by

MultiGreen, if accurate knowledge of X(τ ) in the future
coarse-grained interval is employed rather than our approx-
imation. We assume that the theoretical offline optimal ob-
jective function value is φopt of the cost minimization prob-
lem P1.

Theorem 2. (Performance Bound): The time-averaged
cost CostGreen

av achieved by the MultiGreen algorithm based

on accurate knowledge of X(τ ) in the future coarse-grained
interval satisfies the following bound with any given control
parameter V (V > 0):

(1) The time-average cost CostGreen
av achieved by Multi-

Green satisfies the following bound:

CostGreen
av , lim inf

t−→∞

1

t

t−1∑

τ=0

E[Cost(τ )] ≤ φopt +
B2

V
, (16)

where B2 is given in Corollary 1.
(2) The UPS battery level m(t) is always in the range

[Mmin,MUPS ]. Datacenter availability is satisfied.
(3) All control decisions are feasible.

Proof. (1) Let t = kT (k ∈ Z+) and τ ∈ [t, t + T −
1]. From the optimal offline policy in Sec. 2.4, we know
that there is an optimal solution φopt. Since MultiGreen
minimizes the RHS of Eq. (15), plugging the policy π into
the RHS of Eq. (15), we have:

△ (t) + V E{
∑t+T−1

τ=t
CostGreen

av (τ )|X(t)}

≤ B2T + V φopt.

Taking the expectation of both sides and rearranging the
terms, we get:

E{L(t+ T )− L(t)} + V TE{CostGreen
av (t)}

≤ B2T + V Tφopt.

Summing the above over t = kT, k = 0, 1, 2, ...K − 1, using
the fact that L(t) > 0, and dividing both sides by VKT , we
obtain:

1

KT
E{

∑KT−1

τ=0
CostGreen

av (τ )} ≤ φopt +
B2

V
.

Taking the limit as K → ∞, we complete the proof.
(2) We first observe that subproblem P4 has the following

properties related to battery operation:

Lemma 2. If X(t) > 0, then R(t) = 0; ifX(t) < −V Pmax/T ,
then D(β(t)) = 0.

We first prove that −V Pmax/T − Dmax/η ≤ X(t) ≤
MUPS − V Pmax/T − Mmin − Dmax/η. We prove the re-
sult using induction. Since X(0) = m(0) − V Pmax/T −
Mmin − Dmax/η, Mmin ≤ m(0) ≤ MUPS , we know that
−V Pmax/T − Dmax/η ≥ X(0) ≤ MUPS − V Pmax/T −
Mmin −Dmax/η.

Now we first consider 0 < X(t) ≤ MUPS − V Pmax/T −
Mmin − Dmax/η, then R(t) = 0. Since there is no battery
recharging and the maximum discharged energy is Dmax/η
each time, we have: −V Pmax/T − Dmax/η < −Dmax/η <
X(t+ 1) ≤ X(t) ≤ MUPS − V Pmax/T −Mmin −Dmax/η.

Next, suppose −V Pmax/T < X(t) ≤ 0, then D(β(t)) = 0.
The maximum charging and recharging energy each time are
Rmaxη andDmax/η, respectively. Thus we obtain: −V Pmax/T−
Dmax/η < X(t+1) ≤ X(t)+Rmaxη ≤ MUPS−V Pmax/T −
Mmin −Dmax/η.

Finally, we consider the case of −V Pmax/T −Dmax/η ≤
X(t) ≤ −V Pmax/T . Since X(t) < −V Pmax/T , D(β(t)) =
0. Then −V Pmax/T − Dmax/η ≤ X(t) ≤ X(t + 1) ≤
−V Pmax/T ≤ −V Pmax/T +MUPS −Mmin −Dmax/η.

Then, from Eq. 9, we have: −V Pmax/T − Dmax/η ≤
X(t) = m(t) − V Pmax/T − Mmin − Dmax/η ≤ MUPS −
−V Pmax/T−Mmin−Dmax/η. It is easy to see thatMmin ≤
m(t) ≤ MUPS.
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Figure 3: Energy demand, renewable energy levels
and energy prices in January 2012.

(3) Since MultiGreen makes decisions to satisfy all the
constraints in problemP3 andP4, combining the constraints
together, all the constraints of problem P1 are satisfied.
Therefore, MultiGreen control decisions are feasible to prob-
lem P1.

Remarks: MultiGreen can approach the optimal solu-
tion of problem P1 within a deviation of B2/V . As CSPs
increase the value of V , they can push the average cost to
be arbitrarily close to the minimum value, according to a
desired tradeoff between DPSS cost minimization and data-
center availability. The length of time slot T decides how fre-
quently MultiGreen performs energy procurement and bat-
tery charging and discharging. We will carry out detailed
evaluations in Sec. 5.2.2 to show that even infrequent ac-
tions can still achieve significant cost reduction.

4.2 Robustness Analysis
Since MultiGreen approximates future queue backlogX(τ )

using its current level, an important question remained to be
answered is: is the performance still bounded if MultiGreen
makes its decisions based on an approximated queue back-

log X̂(τ ) that is different from the actual value X(τ )? The
dynamic UPS energy levels reflect the variation of energy
demand and renewable energy supply. The following The-
orem 3 demonstrates the robustness of MultiGreen in its
performance to uncertainties of energy demand and supply.

Theorem 3. (Robustness): We assume that the estimated

virtual battery level X̂(τ ) and its actual level X(τ ) satisfy

|X̂(τ )−X(τ )| ≤ θ. Then, if we use this approximated UPS
battery level in the MultiGreen algorithm, we can obtain:

CostGreen
av , lim inf

t−→∞

1

t

t−1∑

τ=0

E[Cost(τ )] ≤ φopt +
Bε

V
, (17)

where Bε = B2 + Tθ(Dmax + Rmax + MUPS + Mmin) and
B2 is given in Corollary 1. Here, Dmax and Rmax are the
maximum amounts of UPS energy that we can recharge and
discharge, respectively; Mups and Mmin are the maximum
and minimum UPS energy levels, respectively.

Proof. Let εX(t) = X(t)−X(τ ), that is a function of the
variation of demand εd(t) and renewable supply εg(t). Given

X̂(t) and εX(t), when minimizing the RHS of Eq. (15), we
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Figure 4: Impact of parameter V .

try to minimize f(X̂(t)) defined as below:

f(X̂(t)) ,
∑t+T−1

τ=t
X(t)[R(τ )η −D(β(τ ))/η]

= f(X(τ )) +
∑t+T−1

τ=t
εX(t)[R(τ )η−D(β(τ ))/η]

≤ f(X(τ )) + Tθ(Rmaxη +Dmax/η)

Substituting the above result into the inequality (15), we

know that (15) holds with X(τ ) replaced by X̂(t), and B2

replaced by Bε = B2 + Tθ(Rmaxη + Dmax/η). The rest of
proof is similar to the proof of Theorem 2.

Remarks: Comparing (16) in Theorem 2 and (17) in
Theorem 3, we can see that the upper bound in (17) is looser,
i.e., V needs to be set to a larger value when the future
demand and supply are estimated, in order to obtain the
same time-averaged operational cost as when the accurate
future information is known. The larger the uncertainty θ
is, the larger V should be. This implies that the robustness
of MultiGreen in cases of inaccurate future information, can
be achieved at the cost of weaker datacenter availability.

5. PERFORMANCE EVALUATION
We evaluate MultiGreen through trace-driven simulations

with realistic parameters and one-month data on datacenter
energy demand, renewable energy production and electricity
prices.

5.1 Real-World Trace and Experimental Setup
Real-World Traces: To simulate the intermittent avail-

ability of renewable energy, we use solar energy data from
the Measurement and Instrumentation Data Center (MIDC)
[25]. Specifically, we use the meteorological data from Jan.
1st, 2012 to Jan. 31th, 2012 from central U.S.. To sim-
ulate the varying electricity prices, we use the electricity
prices in central U.S. between Jan. 1st, 2012 and Jan. 31th,
2012, from the New York Independent System Operator
(NYISO) [28]. Similar to [38], we use the energy demand
from a Google Cluster including Web search and Webmail
services. We regulate the data to our assumed datacenter by
removing demand peaks above Pgrid. The traces are shown
in Fig. 3.

System Parameters: According to results in recent em-
pirical studies, we assume that the limits of UPS charg-
ing and discharging rates are Dmax = Rmax = 0.5MW ,
and charging/discharging costs are Cr = Cd = 0.1 dol-
lars [36]. The minimum battery level Mmin is 5-minute
worth of energy of the UPS [11]. The maximum number
of UPS charge/discharge cycles is LUPS = 5, 000 with a
4-year lifetime constraint [11]. The efficiency of UPS charg-
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ing/discharging is η = 0.8 [20]. We set the grid energy limit
as Pgrid = 2MW [36].

Algorithms for Comparison: We compare MultiGreen with
the offline optimal algorithm (Optimal) and an online al-
gorithm Green that solely leverages renewable energy pro-
duction, without exploiting time-varying electricity prices.
The Green algorithm also tries to maximize the usage of
renewable energy, i.e., leveraging UPS battery to store ex-
cess renewable energy production for future need. However,
the Green algorithm ignores the two-timescale grid markets,
and does not store grid energy in UPS when the electricity
prices are low and supply energy when the electricity prices
are high.

5.2 Analysis of Sensitivity on Critical Factors
From Theorem 2, we note that the performance of Multi-

Green depends on parameters V and T , battery capacity
and the energy prices in the two-timescale grid markets. We
conduct sensitivity analysis on these critical factors to char-
acterize their impact on the DPSS operational cost.

5.2.1 Impact of Control Parameter V

As shown in Fig. 4, to simulate a 1-day-ahead power mar-
ket, we fix T to be 24 time slot and each fine-grained time
slot is 1 hour, i.e., NT = 24. We conduct experiments with
different values of V , which show that as V increases from
0.5 to 100, MultiGreen achieves a time-averaged cost that
becomes closer to the optimal solution. This quantitatively
confirms Theorem 2 that MultiGreen can approach the op-
timal solution within a diminishing gap of O(1/V ). In con-
trast, the Green algorithm has a constant cost that is ir-
relevant with V . Interestingly, the crossover between cost
curves of MultiGreen and Green clearly captures the trade-
off between the average operational cost and constraint sat-
isfaction. When V < 7.48, MultiGreen has a higher cost and
a higher level of constraint satisfaction than Green. On the
other hand, when V > 7.48, due to more frequent battery
charging/discharging, MultiGreen has a lower cost and a
lower level of constraint satisfaction than Green. By choos-
ing an appropriate value of V , e.g., V = 10, MultiGreen
can achieve a significantly lower cost compared with Green
while guaranteeing acceptable satisfaction of constraints on
datacenter availability and UPS lifetime.

5.2.2 Impact of Coarse-grained Time Frame T

In Fig. 5, we fix V to be 10 and vary T from 3 time slots
(3 hours) to 144 time slots (6 days), which is a sufficient-
long range for exploring the impact of different timescales
of the grid’s long-term market. We observe that T has rel-
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Figure 6: Impact of battery capacity and grid
market structure. Two Markets—TM, Real-Time
Market—RTM, No Battery—NB.

atively less impact on the cost of operating the DPSS. The
fluctuation of the time-averaged cost is more notable when
T becomes longer. The rationale is that the term Bε in
Theorem 3 is proportional to T , which means that the un-
certainties of energy demand and renewable energy increase
with the increase of T . Nevertheless, the time-averaged cost
only fluctuates within [−9.7%,+8.5%]. This corroborates
Theorem 3 that, even with infrequent decisions of the DPSS
operations, MultiGreen can still achieve significant cost re-
duction.

5.2.3 Impact of Battery Capacity and Grid Markets

In Fig. 6, we compare the time-averaged total cost under
different battery sizes (MUPS ∈ {0, 0.25, 0.5, 1}MWh) over
the 31-day period with V = 10 and T = 24. It shows that
the time-averaged total cost decreases with the increase of
the UPS battery capacity. The rationale is that an UPS with
larger capacity can store more superfluous renewable energy
generated, or more energy purchased from the grid when the
price is low, to serve the demand, resulting in lower overall
costs.

In Fig. 6, we also compare the case with energy purchase
in two-timescale markets with the case where only the real-
time market exists, both with V = 10, T = 24,MUPS =
0.5MWh. We can observe that the existence of the grid’s
long-term market can bring in additional cost reduction.
The reason is that DPSS can purchase certain amount of
energy beforehand in the grid’s long-term market with rela-
tive lower prices

In addition, we can observe that even without the UPS
battery, the MultiGreen algorithm with the two-timescale
markets can reduce the cost by 10.06%, compared to the
Green algorithm. With two markets, when we increase the
battery size from 0 to 1MWh, the average operational cost
reduction ranges from 10.06% to 34.21%. The benefit brought
by energy storage is higher than that of exploiting the two
markets. When the battery size is large enough, MultiGreen
can approach the optimal offline algorithm.

5.3 Characterizing Algorithm Robustness
As mentioned in Sec. 3, our MultiGreen algorithm approx-

imates the future queue statistics as the current values. Now
we explore the influence of approximation errors on the per-
formance of MultiGreen. We add a random approximation
error to the datacenter energy demand, solar energy gener-
ation and energy prices, e.g., uniformly distributed ±50%
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Figure 7: DPSS operational cost at various levels of
renewable energy penetration and energy demand
variation.

errors [39]. We let MultiGreen make all the control deci-
sions based on the data set with such random errors under
different values of V . In Fig. 8, we show the differences
in percentage between the DPSS operational costs achieved
with approximated values and the results we obtained using
the original traces. We observe that the difference fluctuates
within [−1.3%, 2.1%] for all values of V . Thus, MultiGreen
is robust to inaccurate future information.

Further, we study the impacts of renewable energy pen-
etration (the percentage of renewable energy in the total
datacenter energy supply) and the variation of datacenter
energy demand on the total cost. In Fig. 7, x-axis represents
renewable energy penetration in the range of [0,100%]. Y
axis represents the standard deviation of the demand, i.e.,√∑KT−1

t=0 [d(t)− E(
−→
d )]2 × pd(t), where E(

−→
d ) is the expec-

tation of the series of demand d(t) over time length t ∈
[0, KT ], and pd(t) is the distribution probability of d(t). We
assume that the random variable of the datacenter energy
demand is uniformly distributed (pd(t) = 1/KT ). As ex-
pected, Fig. 7 shows that with the increase of penetration
of renewable energy, the DPSS operational cost decreases
significantly. The rationale is that renewable energy is har-
vested cost-free (we do not consider the construction cost).
In contrast, as the variation of demand increases, the opera-
tional cost increases slightly. The rationale is that intensive
variation incurs large approximation errors.

6. RELATED WORK
In this secton, we discuss the research most pertinent to

this work as follows. The first category of works is exploiting
renewable energy in datacenters. Many large IT companies
recently consider greening their datacenters with renewable
energy [7,8,10,22–24,35,41]. However, the intermittent na-
ture of renewable energy poses significant challenges to make
use of them. Some works make the traffic “follow the renew-
ables” to execute workload when/where renewable energy is
available [10,22–24,41] or carbon footprint is low [7]. How-
ever, these approaches require prediction of renewable en-
ergy production when scheduling workload, or sacrifice per-
formance to avoid wasting renewable energy. Other works
supply renewable energy to deferrable loads to align demand
with intermittent available renewable energy [27,29,30]. But
they are from the prospective of renewable energy providers
and do not consider energy storage and multiple markets in
the smart grid.
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Figure 8: The impact of approximation errors in
operational cost reduction.

The second category of works is leveraging energy stor-
age in datacenters. Recently, UPS shows its benefits to
reduce electricity costs in datacenters [11–13, 36, 38]. Dat-
acenters can store energy in the UPS when energy prices
are low and discharge UPS when prices are high, to reduce
the power drawn from the grid [13,36]. Moreover, UPS can
shave peaks [11, 12]. During periods of low demand, UPS
batteries store energy, while stored energy can be used to
temporarily augment the grid supply during hours of peak
load. However, these works focus on studying the benefits
of UPS battery for power cost reduction, and no renewable
energy and grid markets are considered. On the contrary,
we leverage UPS to study how to manage multiple power
supplies of a datacenter in an integrated way.

Third stream of works is on multiple timescale dispatch,
pricing and scheduling in smart grid. Nair et al. [1] studied
the optimal energy procurement from long-term, interme-
diate, and real-time markets under intermittent renewable
energy supplies. Jiang et al. [19] proposed an optimal multi-
period power procurement and demand response algorithm
without energy storage. “Risk-limiting-dispatching” is pro-
posed in [37] to manage integrated renewable energy. How-
ever, the above three approaches assume that the demand
can be known ahead. Jiang et al. [21] solved the optimal day-
ahead procurement and real-time demand response problem
using dynamic programming, while He et al. [15] formulated
the multi-timescale power dispatch and scheduling problem
as a Markov decision problem. Both these approaches need
substantial system statistics and are computationally expen-
sive. We mitigate these disadvantages by applying two-stage
Lyapunov optimization that makes online control decisions
without a priori knowledge or any stationary distribution
of energy prices, demand and supply. Recently the authors
in [13,32,33,39,41] distributed requests across multiple data
centers to reduce electricity costs by leveraging both time
diversity and location diversity of electricity prices in the
smart grid. In contrast, we study how to reduce the op-
erational cost in a datacenter powered by multiple power
sources rather than how to distribute requests across data-
centers.

In addition, interest has been growing in power manage-
ment in smart grids and datacenters using Lyapunov opti-
mization [5,6,9,26,42]. On smart grids, several works have
proposed optimal power management based on single-stage
Lyapunov optimization. However, they either focused on
managing individual household demand [14] or did not con-
sider the interaction between renewable energy and energy
storage [14, 19, 20, 27]. In contrast, we manage the uncer-
tain datacenter demand and multi-source energy supply in
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a systematic fashion using two-stage Lyapunov optimiza-
tion. Although [34, 39] have used two-stage Lyapunov to
design a two-timescale algorithm and a T -Step Lookahead
algorithm, both of them study how to schedule jobs or dis-
tribute requests in solely grid-powered geographical data-
centers rather than how to supply multi-source energy in a
datacenter with uncertain demand.

7. CONCLUSION
In this paper, we study an important problem of how to

minimize the operational cost of datacenters by using muti-
ple energy resouces. We propose MultiGreen, an online con-
trol algorithm applying the two-stage Lyapunov optimiza-
tion technique, which optimally schedules multiple energy
supply sources to power a datacenter, in a cost minimizing
fashion. Without requiring a priori knowledge of system
statistics, MultiGreen can deliver reliable energy to data-
centers while minimizing the operational cost in the dat-
acenter’s long-run operation. Both mathematical analyses
and trace-driven evaluations demonstrate the optimality and
robustness of MultiGreen. Especially, it can approach the
offline optimal cost within a diminishing gap of O(1/V ),
which is mainly decided by the UPS battery capacity, grid
market structure and DPSS operation frequency for energy
purchasing and UPS charging/discharging.
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