
Title Capacity of P2P on-demand streaming with simple, robust and
decentralized control

Author(s) Zhao, C; Zhao, J; Lin, X; Wu, C

Citation
The 32nd IEEE Conference on Computer Communications (IEEE
INFOCOM 2013), Turin, Italy, 14-19 April 2013. In IEEE Infocom
Proceedings, 2013, p. 2697-2705

Issued Date 2013

URL http://hdl.handle.net/10722/186480

Rights IEEE Infocom. Proceedings. Copyright © IEEE Computer
Society.

Capacity of P2P On-Demand Streaming with
Simple, Robust and Decentralized Control

Can Zhao∗, Jian Zhao†, Xiaojun Lin∗, Chuan Wu†
∗School of Electrical and Computer Engineering, Purdue University, West Lafayette

email: {zhao43, linx}@purdue.edu
†Department of Computer Science, The University of Hong Kong, Hong Kong

email: {jzhao, cwu}@cs.hku.hk

Abstract—The performance of large-scaled peer-to-peer (P2P)
video-on-demand (VoD) streaming systems can be very challeng-
ing to analyze. In practical P2P VoD systems, each peer only
interacts with a small number of other peers/neighbors. Further,
its upload capacity may vary randomly, and both its downloading
position and content availability change dynamically. In this
paper, we rigorously study the achievable streaming capacity of
large-scale P2P VoD systems with sparse connectivity among peer-
s, and investigate simple and decentralized P2P control strategies
that can provably achieve close-to-optimal streaming capacity. We
first focus on a single streaming channel. We show that a close-
to-optimal streaming rate can be asymptotically achieved for all
peers with high probability as the number of peers N increases,
by assigning each peer a random set of Θ(logN) neighbors and
using a uniform rate-allocation algorithm. Further, the tracker
does not need to obtain detailed knowledge of which chunks
each peer caches, and hence incurs low overhead. We then study
multiple streaming channels where peers watching one channel
may help in another channel with insufficient upload bandwidth.
We propose a simple random cache-placement strategy, and show
that a close-to-optimal streaming capacity region for all channels
can be attained with high probability, again with only Θ(logN)
per-peer neighbors. These results provide important insights into
the dynamics of large-scale P2P VoD systems, which will be useful
for guiding the design of improved P2P control protocols.

I. INTRODUCTION

Peer-to-Peer (P2P) Video-On-Demand (VoD) streaming sys-

tems have already become a major player on today’s Internet.

Their success (e.g., PPLive, TVAnts, UUSee, and Zattoo)

has made high-quality on-demand streaming of rich contents

available to millions of users at low server costs [1]. In contrast

to their commercial success, however, in-depth theoretical

understanding of these systems appears to be lacking. The

performance of large-scaled P2P VoD systems can be extremely

complex to study. As time progresses, the part of the video

that a peer is interested in viewing, the cached content that it

can use to serve others, and its upload capacity can all change

substantially. Further, these systems are highly decentralized in

nature, and each peer often only has a very limited view of the

overall system through its sparsely-connected neighbors. Due

to these reasons, it remains a challenging problem to under-

stand the fundamental performance limits of highly dynamic

and decentralized P2P VoD systems.

In this paper, we study a problem of fundamental interest to

P2P VoD systems, i.e., what is the optimal streaming rate that

all peers can reliably receive, and how to achieve this optimal

rate with simple, robust and decentralized control. Note that

a trivial upper-bound on the streaming rate can be obtained

by dividing the total upload capacity of all peers by the total

number of peers. In P2P live-streaming systems, it has been

shown in our prior work that streaming rates close to this

optimal value can be achieved through simple and decentralized

control [2]. However, in P2P VoD system, it is unclear whether

such an optimal rate can still be attained. In contrast to live-

streaming [2]–[10], each peer in a VoD system is interested in

playing a different portion of the video. Further, its viewing

position may jump back and forth [11], [12]. As a result, the

content availability at each peer can be highly discontinuous

and dynamic. One way to alleviate this difficulty is to assume

that some peers (referred to as “caches”) have cached the entire

video beforehand, and other downloading peers request the

content only from the caches. In [13]–[15], the authors have

studied the optimal cache-placement problem based on this

assumption. An implicit assumption along this line of work

is that there exists a central entity that can perfectly balance

the downloading requests among caches. Otherwise, such a

global balancing problem by itself can be very challenging in

a decentralized setting when the upload capacity of the peers

varies.

An alternate (and perhaps practically more relevant) ap-

proach is to directly model how peers downloading the same

video can use their upload capacity to help each other, which

is unfortunately more difficult. Such models were proposed

in, e.g., [12], [16], [17]. However, it appears difficult to

establish whether they can achieve close-to-optimal streaming

rates. More recently, [18] proposes an algorithm that allocates

the overall upload capacity in the system sequentially from

the “oldest” peer to the “youngest” peer. For each peer, its

requested capacity is first allocated from older peers. If there

is no sufficient upload capacity, capacity is then requested

from the server. Similarly, [19] proposes a global optimization

problem for rate-allocation given the age of the peers. While

these algorithms have been found to exhibit good performance,

the resulting rate-allocation may need to be completely recal-

culated when the peers’ upload capacity changes. Further, these

analyses have not accounted for the possibility that the peers’

playback positions may jump back and forth, in which case

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

2697

even an older peer may not have the content to serve younger

peers.

In summary, existing analytical studies of the streaming

capacity of P2P VoD systems either require extensive cen-

tralized control, are sensitive to upload-capacity variations or

do not account for the random-seek behavior of the peers.

In contrast, in this paper we provide the first rigorous study

of the streaming capacity of large-scale P2P VoD systems

with simple decentralized control that are robust to upload-

capacity variations, and random-seek behaviors. We focus on

the setting of “hot” videos, i.e., there are a large number of

peers interested in viewing each video. We first study a single-

channel system, i.e., all users are interested in viewing the

same video. Assuming that the contribution of bandwidth and

cache capacities from the dedicated server(s) is minimal, we

show that by using a (properly-designed) random neighbor-

selection algorithm and a uniform rate-allocation algorithm,

with probability approaching 1 as the total number of peers N
increases, all peers can achieve a close-to-optimal streaming

rate of (1 − ε)μ, where μ is the average upload capacity

per peer and ε is a small positive constant. In our algorithm,

each peer is only assigned Θ(logN) upstream neighbors, with

which they exchange content-availability information. These

neighbors are chosen uniformly randomly from a suitable

choice set determined at the tracker (note that this is the only

part of the algorithm that requires centralized knowledge). To

determine the choice set, the tracker only needs to know the

current downloading position of each peer, but does not need

to know the detailed content/chunk availability at each peer.

Further, regardless of the variation of its upload-capacity, each

peer evenly distributes its upload capacity among downstream

neighbors for whom it has the available chunk(s). As readers

will see in Section II, our analytical studies provide key insights

as to why these simple design principles can result in near-

optimal performance, which was conjectured in some prior

simulation-based studies [20]. Further, these insights reveal the

critical and non-trivial roles that different design choices, e.g.,

the size of the choice set and the extent of content availability,

play in the overall system.

We then turn to a multi-channel P2P VoD system where dif-

ferent groups of peers are interested in viewing different videos.

Based on the single-channel control algorithm discussed earlier,

we propose a cache-placement algorithm that can achieve

(with high probability) a close-to-optimal streaming rate region

for all channels (see Section III for the precise definition).

Our cache placement policy shares some similarity to the

“proportional-to-deficit-bandwidth” strategy in [18], which was

conjectured to be close-to-optimal. However, our policy does

not require a sequential rate-allocation algorithm as in [18].

Our results have a similar flavor to the results in our earlier

work [2] for P2P live-streaming systems. However, as we

discussed earlier and will elaborate further in Section II, P2P

VoD systems are significantly different from live-streaming

systems in many aspects. Thus, new control algorithms and

analytic techniques are required. To the best of our knowledge,

this work provides the first analytic result that demonstrates

how to achieve close-to-optimal streaming capacity in large-

scale P2P VoD systems using simple, robust, and decentralized

control.

II. A SINGLE-CHANNEL P2P VOD SYSTEM

In this section, we focus on a system with a single channel,

i.e., all users are interested in viewing the same video. We first

describe the system model. We will then propose simple, robust

and decentralized peer selection and rate allocation algorithms

that result in at most Θ(logN) upstream neighbors per peer.

We then prove that all peers can achieve the close-to-optimal

streaming rate with high probability, when N is large.

A. System Model

We consider a P2P VoD system where users/peers1 would

like to watch a common video. Let T (0) denote the length

of the video. There is a server S and totally N peers. Let

N denote the set of all peers in the system, i.e., |N | = N .

We assume that the number of peers N is fixed. In other

words, if a peer leaves the system, a new peer is assumed

to immediately join the system at a possibly random initial

position. This assumption simplifies the analysis, while we

believe that the insights under this assumption will also hold for

a more dynamic model where peers randomly join and leave the

system. In a VoD system, the viewing/downloading progress

of different peers in the same channel is typically different.

Peers who have already downloaded certain parts of the video

can then serve the cached content to later peers. We define

the downloading position of a peer as the immediately next

position in the video that the peer will download. We assume

that, the downloading position of each peer is i.i.d. according

to a distribution with density function γ(t). In other words,

for a small δt, γ(t)δt is the probability that the downloading

position of a peer is between t and t + δt. Note that the

downloading position of a peer is typically larger than its

viewing position, with some buffering in between to absorb any

fluctuations in the downloading speed. Some peers who have

finished watching a channel may stay for some period of time

and serve other peers in the channel. We thus allow γ(t) to have

a Dirac delta function at point T (0). Equivalently, let Q̄ denote

the probability that a peer’s downloading position is T (0). For

ease of exposition, we assume that, with probability 1, the

downloading position of each peer before T (0) is different from

that of other peers. From now on, we will index a peer watching

a channel by its downloading position t. Let N− denote the

set of all peers with downloading position t < T (0).
To model how peers serve other peers, each peer t has a

set of downstream neighbors Dt that this peer t may upload

content to. Correspondingly, each peer t ∈ N− also has a

set of upstream neighbors Ut = {s ∈ N|t ∈ Ds} that this

peer t can potentially download the content from. However,

since peer may perform random seeks, it may not have all

1We use the terms “user” and “peer” interchangeably throughout the rest of
the paper.

2013 Proceedings IEEE INFOCOM

2698

the content “before” its downloading position. Hence, not all

neighbors in the upstream neighbor set Ut of peer t have the

requested content of peer t. We denote U t ⊂ Ut as the set of

upstream neighbors of peer t who have the data that peer t
is requesting and is willing to serve peer t. Correspondingly,

let Dt = {s|t ∈ Us} ⊂ Dt denote the set of downstream

neighbors that peer t can actually serve. We call Dt and U t
the effective downstream neighbors and the effective upstream

neighbors, respectively. Let Ut = |Ut|, Dt = |Dt|, Dt = |Dt|
and U t = |U t|.2

Let Vt denote the upload capacity of peer t. We assume

that Vt is a bounded random variable between [0, Vmax] with

mean value μ, which is i.i.d. across all peers. Like other work

[2]–[4], [8], [9], we assume that the download capacity and

the core network capacity are sufficiently large, and hence the

upload capacity is the only resource bottleneck. The system

performance is determined by the relationship between the

targeted streaming rate and the downloading rates. Let R
denote the targeted streaming rate of the video. Let Cs→t
denote the streaming rate from peer s to peer t. Clearly,

Cs→t = 0 for any s /∈ U t (or equivalently for all t /∈ Ds).
We have the following upload capacity constraint on each peer

s: ∑
t∈N

Cs→t =
∑
t∈Ds

Cs→t ≤ Vs.

Let Ct denote the achievable downloading rate for peer t, which

is then given by:

Ct =
∑
s∈N

Cs→t =
∑
s∈Ut

Cs→t.

To guarantee smooth playback, the downloading rate of each

viewing peer must be no smaller than the targeted rate R of

the video. Note that the peers whose downloading position is

T (0) do not need to download new data, and hence we are only

interested in the downloading rate of those peers in N−. We

thus define the streaming capacity of the system as the largest

value of R such that Ct ≥ R for all peers t ∈ N−.

We note that there is a simple upper bound on the streaming

capacity. We assume that Q̄ is away from 0 even with large

N , and the contribution of the server capacity is negligible. In

this case, it is easy to see that the largest possible streaming

rate that all peers can attain is Nμ
N(1−Q̄) =

μ
1−Q̄ on average.

However, this upper bound completely ignores the details of

the VoD system, especially whether a peer has the content

and the upload capacity to help the other peer. Hence, it is

unclear whether this upper bound is attainable in a large and

decentralized VoD system. In practice, Q̄ is usually not very

large. Hence, in the rest of this section, we will omit the

contribution of Q̄ in the streaming capacity, and we will say

that the channel achieves a close-to-optimal streaming capacity

(1− ε)μ with a small ε > 0 if all peers attain a streaming rate

no smaller than (1− ε)μ. Our goal in this section is to design

simple, robust and decentralized algorithms that can achieve

this close-optimal streaming capacity with high probability.

2As a convention, we will use script variable to denote a set (e.g., Ut), and
use a normal variable to denote its size (e.g., Ut).

B. A Simple and Distributed Peer Selection and Rate Alloca-
tion Algorithm

In our prior work for P2P live-streaming systems [2], we

proposed a simple peer selection strategy where each peer

uniformly randomly selects Θ(logN) downstream neighbors,

and divides its upload capacity evenly among its downstream

neighbors. This simple algorithm has been shown to achieve a

close-to-optimal streaming rate for live-streaming P2P systems.

Although this result serves as a useful starting point, as reader

will see below, the same design would have led to very poor

performance in VoD systems. Thus, we need to design a new

set of control algorithms tailored to VoD systems.

(i) Peer Selection: We first explain why a uniformly-random

peer-selection algorithm will not work well for VoD systems.

Note that unlike live-streaming systems, in a VoD system

different peers are viewing different parts of the video, and

their cached content is also different. If an older peer (whose

downloading position is in the later part of the video) chooses

a younger peer (whose downloading position is in the earlier

part of the video) as an upstream neighbor, there is a high

chance that the younger peer does not have the content to help

the older peer. Hence, the connection between them is of no

use. This problem will be the most severe for the oldest peers

that are close to the end of the video. With uniformly-random

peer selection, the peers who are interested in downloading this

part of the video will find that most of their selected upstream

neighbors are younger and do not have the desired content.

Hence, the streaming rate to these oldest peers will be very

poor. Hence, we need to design a new peer selection strategy

for VoD P2P systems.

A key idea of our new strategy is to restrict the random

neighbor selection of each peer t to be done within a choice
set Ūt, which contains peers with downloading positions larger

than t. More specifically, we use the “random sequential

choice-set selection strategy” as follows. Let Q be a constant

such that 0 < Q < Q̄. In this strategy, the choice set

Ūt of peer t ∈ N− consists of the next NQ peers whose

downloading positions are immediately larger than t’s. If there

are less than NQ peers after t and immediately before T (0),
Ūt will be the set of all peers with downloading positions

larger than t. In practice, the tracker can order all the peers

according to their downloading positions and assign choice sets

according to the above strategy. Recall our assumption that no

two peers before T (0) are at the same downloading position.

In practice, if this assumption does not hold, the tracker can

always break ties arbitrarily. Then, the tracker server picks

M = α logN (where α is a positive constant to be determined

later) peers uniformly randomly from peer t’s choice set Ūt,
which constitute peer t’s set of upstream neighbors Ut. We

have Ut ⊂ Ūt. Correspondingly, define the client set of peer

t as D̄t = {s ∈ N−|t ∈ Ūs}. The set Dt of downstream

neighbors of t must come from this client set and is given by

Dt = {s ∈ N−|t ∈ Us}. Let Ūt = |Ūt| and D̄t = |D̄t|.
Remark: It appears that the tracker must maintain the current

downloading position of all peers, which may incur high

2013 Proceedings IEEE INFOCOM

2699

overhead. However, as we will explain later, by enforcing that

all peers advance their downloading position at the same speed,

this overhead can be significantly reduced.

(ii) Content Availability: Even with the above peer-

selection strategy, the streaming rate for some peer can still be

very poor. This is because peers may fast-forward/backward

in a VoD system. This discontinuous random-seek behavior

means that a peer t may not always have all the content

before t. Thus, even if a peer only picks an older peer as an

upstream neighbor, the connection and the capacity may still

be wasted. Unfortunately, the random-seek behavior of peers

is quite complicated to model. To the best of our knowledge,

no existing analytical works on P2P VoD systems are able to

take into account the impact of this random-seek behavior.

Our strategy is to develop a condition for content availability

that is sufficient for achieving close-to-optimal streaming rates,

yet easy to satisfy even with random-seeks. This is perhaps the

most difficult part of our design. To see why such a condition

is non-trivial to formulate, consider the following scenario.

Suppose that the NQ peers in the choice set Ūs of peer s
are uniformly in the range (s, s+Δ). Let t0 = s+Δ/2. Each

peer t ∈ (s, t0) has all the content before t. However, each

peer t ∈ (t0, s + Δ) only has the content in (t0, t), possibly

because it random-sought to t0 before. Further, suppose that

we use our peer-selection strategy described earlier, and each

peer uniformly divides its constant upload capacity μ among its

effective downstream neighbors. Then, peer s has M upstream

neighbors uniformly in (s, s+Δ). However, only those peers

in (s, t0) can help peer s, each of which has on average M
effective downstream neighbors. Hence, the average streaming

rate of peer s is only μ
M

M
2 = μ

2 , which is far from optimal.

Clearly, the key difficulty here is that, due to its particular

position, compared to other downstream neighbors, peer s has

a much smaller probability to become an effective downstream

neighbor of upstream peers in (t0, s+Δ).

Our condition below addresses this difficulty. Fix a positive

constant qmin ∈ (0, 1). We require that, for any peer s and

any one of its upstream neighbor t, the probability that peer t
has the content for (and is willing to help) peer s is equal to

qt > qmin, independently of the position of peer t. This content

availability condition can be implemented as follows. Choose

q′min such that (1 − e−q
′
min)/2 = qmin. Suppose that a peer

(denoted by t) randomly seeks to position t = t0 first. It will

first download a fraction of the content from the range that may

be requested by the peers in its client set. More specifically, let

ψ(t0) be the downloading position of the youngest peers in this

peer’s client set D̄t0 . This peer then selects K intervals within

[ψ(t0), t0], each of which has a length of q′t(t0 − ψ(t0))/K,

where q′t ≥ q′min > 0 satisfies 1−
(
1− q′t

K

)K
= qt. These K

intervals are selected independently and uniformly randomly.

At this point, it is easy to see that the above content-availability

condition holds: for any peer s in [ψ(t0), t0], the probability

that peer t = t0 has the required content for peer s is equal to

the probability that peer s is in at least one of the K intervals,

TABLE I
RELATIONSHIP BETWEEN D̄t , D̂t , Dt AND Dt . THE RELATIONSHIP

BETWEEN Ūt , Ût , Ut AND Ut ARE SIMILAR.

D̄t client set of peer t (containing roughly NQ peers)

a subset of D̄t that peer t has the requested contentD̂t and is willing to serve

a subset of D̄t with size M that are actual down-Dt
stream neighbors of peer t

Dt intersection of D̂t and Dt, which are the peers that

peer t serves

which is calculated as 1 −
(
1− q′t

K

)K
= qt. For sufficiently

large K, we will have qt ≥ (1 − e−q
′
min)/2 = qmin. Next, as

peer t continues to watch the video, it downloads the content

from t0 to its current downloading position t > t0. In order

to meet the content availability condition for all peers in the

client set D̄t, as long as D̄t contains at least one peer s whose

downloading position is smaller than t0, then for all other peers

in D̄t∩(t0, t), peer t is only willing to serve it with probability

qt, independently of other peers. This restriction will continue

until all peers s ∈ D̄t advance past t0. Then, peer t can serve

all of its downstream neighbors (equivalently, qt = 1). As we

will see later, this condition will be sufficient to achieve a

close-to-optimal streaming rate.

(iii) Rate Allocation: To serve downstream neighbors, each

peer applies a uniform rate-allocation algorithm that takes into

account content-availability. Specifically, let D̂t ⊂ D̄t denote

the set of peers in peer t’s client set D̄t, whom peer t has

the requested data and is willing to serve. We call D̂t the

effective client set of peer t. Let D̂t = |D̂t|. Thus, the effective
downstream neighbor set Dt of peer t will be the intersection

of the effective client set and the downstream neighbor set

of peer t, i.e., Dt = D̂t ∩ Dt. Then, each peer divides its

upload capacity equally among all of its effective downstream

neighbors. Thus, the streaming rate from peer s to peer t,
Cs→t, is equal to Vs/Ds if t ∈ Ds, and Cs→t = 0, otherwise.

Correspondingly, we can define the effective choice set Ût of

peer t as the set of peers in the choice set Ūt who has the

required content of peer t. We have U t = Ût ∩Ut. See Table I

for a summary of the relationship between these notations. Note

that for rate-allocation, peers only need to know the content

availability information at their neighbors. There is no need for

the tracker to maintain content availability information, which

leads to low control overhead.

(iv) Uniform Progress: There remains one serious high-

overhead problem. In a P2P VoD system, it is possible that

some peer downloads content at a higher speed than others.

If that is the case, the tracker needs to constantly update and

re-order their downloading positions. Further, some upstream

neighbors of peer t may either fall behind or advance too far

ahead. As a result, the neighbors of each peer may need to be

re-selected constantly. There will then be significant overhead

at the tracker.

We introduce the following condition to significantly reduce

the overhead. Suppose that the targeted streaming rate is (1−

2013 Proceedings IEEE INFOCOM

2700

ε)μ at the video’s normal playback speed. We enforce that the

downloading position of each peer will also advance ahead of

its playback position at the normal playback speed of the video.

In other words, even if the available download rate that a peer

receives from its upstream neighbors is larger than (1 − ε)μ,

it will still download content at the speed of (1 − ε)μ. This

condition ensures that the downloading positions of all peers

advance at the same speed. In practice, the above design choice

can be easily satisfied by the following protocol design: a peer

will prefetch content for the video only up to a maximum lead-

time ahead of its current playback position.

There are three benefits of this design. First, since the

streaming rate of a video is known before-hand, the tracker

can easily predict the advancement of each peer’s downloading

position. Unless a peer fast-forwards/backwards, there is no

need for the tracker to update and re-order peers’ downloading

position. Hence, the signaling overhead is reduced significantly.

Second, the upstream neighbors and downstream neighbors of

each peer do not need to change constantly either, unless a

neighbor leaves the system or fast-fowards/backwards. Third,

the above design significantly simplifies our analysis because

it is sufficient to focus on the streaming rates at a snapshot of

time. On the other hand, some readers may be concerned that

this design may unnecessarily constrain the downloading speed

of those peers who could have downloaded faster. However,

since our goal is to achieve the highest possible streaming rate

for all peers, it is in fact more beneficial to maintain fairness.

As we will show in our main result, our design is sufficient

for attaining the close-to-optimal streaming capacity.

C. Performance Analysis

We have proposed a simple and decentralized algorithm that

is easy to implement, is robust to changes in the peers’ upload

capacity, and incurs low control overhead at the tracker. Next,

we show that the above algorithm will attain close-to-optimal

streaming rate. Recall from the content availability condition

that qt ≥ qmin for all peers t, and Ct is the downloading rate

of peer t.

Theorem 1. For any ε ∈ (0, 1) and d > 1, choose α ≥ 8d
pqminε2

with p = μ
Vmax

. Suppose that each peer chooses M = α logN
upstream neighbors. Then for sufficiently large N and K, the
following holds

P
(
Ct ≤ (1− ε)μ, for some t ∈ N−) ≤ O

(
1

Nd

)
. (1)

Theorem 1 shows that Θ(logN) upstream neighbors are

sufficient for achieving close-to-optimal streaming rate of

(1−ε)μ for all peers with high probability. Further, it provides

additional insights on the required number of neighbors as a

function of the system parameters. First, if we wish to achieve

a closer-to-optimal streaming rate (i.e., smaller ε) or a faster

convergence of the probability (i.e., larger d), we need more

neighbors per peer. Second, α is inversely proportional to

p = μ
Vmax

. Hence, if there are higher levels of variation in

the distribution of upload capacities (i.e., the peak rate Vmax is

large and/or a significant fraction of peers have small upload

capacities), the required number of neighbors per peer must

also be larger to tackle the extra level of randomness.

Another important consequence of Theorem 1 is that α is

inversely proportional to qmin. First, it is no longer necessary

to ensure that an upstream neighbor of peer t always has the

content that peer t requests (i.e., qt = 1 for all t). According

to Theorem 1, in order to ensure near-optimal streaming rates,

it would be sufficient if each peer has at least qmin fraction of

the content that its downstream peers will likely request. This

relaxation significantly simplifies the system design when there

are random-seeks. For example, the content availability strategy

described earlier would be sufficient. On the other hand, in

order to improve system performance, we should design P2P

protocols with large values of qmin, since it reduces the required

number of neighbors.

We next provide a sketch of the proof of Theorem 1. We first

fix any peer t and show that the probability for its downloading

rate Ct to be smaller than (1 − ε)μ is 1
N2d . Theorem 1 then

follows by taking the union bound. Note that peer t has

exactly M upstream neighbors that may help it. Index these

M upstream neighbors as i = 1, ...,M . Let Ii be the indicator

function of the event that the i-th upstream neighbor of peer t
is an effective upstream neighbor, and let I = [I1, I2, ...IM]

T .

Then Ct can be represented by Ct =
∑M
i=1

ViIi
Di

. We note

that compared to our prior work [2] for live streaming, a main

difficulty here stems from the number of effective downstream

peers Di for each upstream neighbor i. In [2], each upstream

neighbor serves exactly M downstream peers. In contrast,

here Di is random and varies with an unknown parameter qi.
Further, there exists non-trivial correlation across i because the

client sets of different upstream neighbors of peer t overlap. To

address this difficulty, we use the following main supporting

lemma.

Lemma 2. Fix qmin > 0. (a) Let Ĩ = [Ĩ1, Ĩ2, ..., ĨM]
T be a

set of M independent Bernoulli random variables such that
P(Ĩi = 1) = qi ≥ qmin. (b) Let D̃+

i , i = 1, 2, ...,M , be M
positive (and possibly correlated) random variables such that
E[D̃+

i |̃I, Ĩi = 1] ≤ ρqiM for some constant ρ > 0. (c) Let
D̃i, i = 1, 2, ...,M be M positive (and possibly correlated)
random variables such that for any r1, r2, ..., rM ≥ 0,

E

[
exp

(
−

M∑
i=1

ri

D̃i

)∣∣∣∣∣ Ĩ
]
≤

M∏
i=1

E

[
exp

(
− ri

D̃+
i

)∣∣∣∣∣ Ĩ
]
. (2)

(d) Let Ṽi, i = 1, 2, ...,M , be M i.i.d. random variables
independent from D̃+

i ’s and Ĩi’s such that E[Ṽi] = μ and
0 < Ṽi < Vmax for all i. For and d > 0, let α ≥ 2dVmax

ε2μqmin
.

Then, for any ε > 0 there exists N0 such that when N > N0

and M = α logN , the following holds

P

(
M∑
i=1

ṼiĨi

D̃i

≤ (1− ε)μ
ρ

)
≤ O

(
1

N2d

)
.

The proof is omitted due to page limits and is available in

[21]. We will soon relate Ĩi, D̃i and Ṽi to Ii, Di and Vi. To

2013 Proceedings IEEE INFOCOM

2701

interpret the result of Lemma 2, note that if D̃i = D̃+
i and

D̃+
i ’s are independent from each other conditioned on Ĩ, then

the condition in (2) trivially holds. Using Jensen’s inequality, it

is then easy to see that E[C̃t] ≥ μ/ρ, where C̃t =
∑M
i=1

ṼiĨi
D̃i

.

Lemma 2 implies that, as long as M = α logN , the probability

that C̃t ≤ (1− ε)μ/ρ will diminish to zero. The conditions in

the lemma, however, allows the result to hold even if D̃i’s are

correlated, and hence is very useful.
We will use Lemma 2 to show Theorem 1. For ease of expo-

sition, we consider instead an alternative choice-set selection

strategy called “random sequential-range”, which is slightly

different from the “random sequential” choice set selection

strategy that we originally used. In such a “random sequential-

range” choice set selection strategy, each user t choose a choice

set Ūt that contains all the other peers whose downloading

position are in the range (t, φ′(t)], where φ′(t) satisfies that∫ φ′(t)
t

γ(τ)dτ = Q, if
∫ T (0)−

t
γ(τ)dτ ≥ Q, and φ′(t) = T (0),

otherwise. Correspondingly, the client set D̄t of each peer

t contains all the peers in the range [ψ′(t), t), where ψ′(t)
satisfies that

∫ t
ψ′(t) γ(τ)(d)τ = Q, if

∫ t
0
γ(τ)dτ ≥ Q, and

ψ′(t) = 0, otherwise. Clearly, for any t < T (0) − ψ′(T (0)),
E[Ūt] = NQ. When N is large, Ūt should concentrate on

NQ. Hence, we would expect that the performance of the two

choice-set selection strategy are close to each other. A more

general statement can be made as in the following lemma.

Lemma 3. Let X be the collection of all continuous intervals
Γ ⊂ [0, T (0)). Fix L ≥ 1. Given any ε ∈ (0, 1), let

A =

{∣∣∣∣∣
∑L
l=1 nl
N

−
∫
∪L

l=1Γl

γ(τ)dτ

∣∣∣∣∣ ≤ ε

∫
∪L

l=1Γl

γ(τ)dτ + ε,

for all disjoint Γ1, ...,ΓL ∈ X
}
,

where nl is the number of peers in Γl. Then, for any d > 1,
there exists N0 such that for any N > N0, P(A) ≥ 1 −
O
(

1
N2d

)
.

The proof of Lemma 3 is provided in [21]. Note that if A
happens, then the number of peers in every ∪Ll=1Γl will be

close to its mean value. Lemma 3 states that such an event A
happens with high probability. In the following, we will focus

on the situation when event A holds. Let PA(·) and EA(·)
denote the probability and the expectation conditioned on A.

We are now ready to prove Theorem 1. Fix a peer t and

its set of M upstream neighbors i = 1, ...,M . First, we note

that Ii’s are independent because the content availability of

each upstream neighbor i is independent. Further, let qi be the

parameter introduced in the content availability condition in

Section II-B. Then P(Ii = 1) = PA(Ii = 1) = qi ≥ qmin.

Thus, condition (a) of Lemma 2 is met with Ĩi = Ii. Next,

we will analyze the correlation between Di’s. Consider an

upstream neighbor i. Let ti be its current downloading position.

If peer i recently random-sought to a position before ti, let

ti0 < ti be the position that it first jumped to. Further, let Γi
be the range of content from [ψ′(ti0), ti0] that peer i randomly

downloaded when it first jumped to ti0 , according to the content

availability strategy in Section II-B. Recall that the effective

client set D̂i is a subset of D̄i that peer i has the requested

content. D̂i consists of two parts: (a) all the n1 peers in

Γi ∩ [ψ′(ti), ti0), and (b) for the n2 peers in [ti0 , ti), each of

them is in D̂i with probability qi independent of others. Given

A in Lemma 3, we must have, for any ε ∈ (0, 1),
n1 ≤ N

(∫
Γi∩[ψ′(ti),ti0] γ(τ)dτ + ε

)
(1 + ε) � n+1 ,

n2 ≤ N
(∫

[ti0 ,ti]
γ(τ)dτ + ε

)
(1 + ε) � n+2 .

Now, consider an alternative system by adding (n+1 − n1) +
(n+2 −n2) dummy peers. Construct a new set D̂+i that contains

all peers in D̂i. In addition, the first group of (n+1 −n1) dummy

peers are always added to D̂+i . For the second group of (n+2 −
n2) dummy peers, each of them is in D̂+i with probability qi,
independently of others. The advantage of making use of D̂+i
is that D̂+

i only depends on Ii, ti0 and Γi. Further, Γi and ti0
are independent across i. Hence, D̂+

i ’s are independent across

i conditioned on A. Further, D̂i ≤ D̂+
i by our construction.

Next, consider Di ⊂ D̂i, i.e., the set of effective downstream

neighbors of i. For each peer in D̂i, it randomly choose M
upstream neighbors, one of which may be i. Further, for each

dummy peers in D̂+i , we also let it choose peer i as an upstream

neighbor with prob M
NQ . Let D+

i be the number of effective

downstream neighbors of i in this alternative system. Note that

D+
i may still be correlated across i (even though D̂+

i ’s are

independent). This is because the sets D̂+i may overlap, and

if an overlapped peer s has picked i as an upstream neighbor,

it will be less likely to pick another upstream neighbor i′ ∈
{1, 2, ..,M}. Fortunately, we can show a negative dependency

between D+
i ’s. Specifically, if D+

i is large, then it is likely that

less peers will pick i′, and hence D+
i′ will likely be small. This

negative dependency is made precise in the following lemma

(see [21] for proof).

Lemma 4. For any r1, r2, ..., rM ≥ 0, D+
i ’s satisfy

EA

[
exp

(
−

M∑
i=1

ri

D+
i

)∣∣∣∣∣ I
]
≤

M∏
i=1

EA

[
exp

(
− ri

D+
i

)∣∣∣∣ I
]
.

Note that Di ≥ D+
i by our construction. Hence, condition

(c) of Lemma 2 holds with D̃i = Di and D̃+
i = D+

i . To verify

condition (b), We can show the following lemma based on the

content availability condition. The proof is in [21].

Lemma 5. Suppose γmin ≤ γ(t) ≤ γmax for all t ∈ [0, T (0))
for some 0 < γmin ≤ γmax. For any ε ∈ (0, 1), there exists
K0, such that for K > K0, we have

EA
[
D+
i

∣∣ I, Ii = 1
] ≤ (1 + ε) qiM.

Thus, condition (b) of Lemma 2 holds. Finally, note that Vi’s
are i.i.d. and independent of all other random variables. Hence,

Theorem 1 follows from Lemma 2 for the “random sequential-

range” choice set selection strategy. One can then show that

Theorem 1 also holds for our original policy [21].

2013 Proceedings IEEE INFOCOM

2702

III. A MULTI-CHANNEL P2P VOD SYSTEM

In the last section, we have focused on a single-channel P2P

system. In this section, we study a multi-channel P2P system.

Peers in each channel are interested in viewing a common

video, which is however different across channels. Based on

our single-channel algorithm, we will propose a simple and

robust cache placement policy that could achieve a close-to-

optimal streaming capacity for all channels.

A. System Model

We consider a P2P VoD system containing J channels. Let

J = {1, 2, ..., J} denote the set of all channels, and T
(0)
j

denote the video length of channel j. Let Nj denote the set

of peers that are watching channel j, and Nj = |Nj |. Let N
denote the set of all peers in the system, i.e., N =

⋃
j∈J Nj

and N = |N |. We assume that Nj = pj · N , where pj is

the fraction of peers viewing channel j, which represents the

popularity of channel j. Later on we will consider a system

with large N , in which case we assume that pj’s are fixed

and do not change with N . Note that Nj is fixed for a given

N , which is consistent with our single-channel model. Within

each channel, we use the same model as Section II-A, except

that a subscript or superscript j is added to each notation to

denote the channel. For example, Q̄j , V
j
t and Djt represents

the probability that a channel j peer’s downloading position is

at T
(0)
j , the upload capacity of a peer in channel j and the set

of downstream neighbors of peer t in channel j, respectively.

We assume that E[V jt] = μ for all j, i.e., the upload capacity

in each channel has the same distribution.

Using the results from Section II, we know that each channel

j can sustain a maximum streaming rate around (1 − ε)μ.

However, in a multi-channel system, it is typical that different

channels have different streaming rate requirements. Let Rj
denote the targeted streaming rate for the video of channel j.
Let R = [R1, R2, ..., RJ]

T . Naturally, the streaming rate in

some channel j may satisfy Rj ≤ (1− ε)μ, which implies that

the upload capacity of peers viewing the channel is sufficient

to support the targeted streaming rate. Such channels are

referred to as sufficient channels. On the other hand, some

other channel may have Rj ≥ (1− ε)μ. We call such channels

insufficient channels. We denote the set of insufficient channels

as I = {j ∈ J |Rj > (1 − ε)μ}, and the set of sufficient

channels as S = {j ∈ J |Rj ≤ (1− ε)μ}. Seemingly, peers in

an insufficient channel will not have enough upload capacity

to stream the desired video.

A natural idea to improve the overall system performance

is to use the extra capacity from sufficient channels to help

the peers in insufficient channels. This kind of helping will

obviously support a larger set of vectors R of streaming rate

requirements. We define the streaming capacity region Λ of

the multi-channel system as the set of streaming rate vectors,

such that for each R ∈ Λ, under some centralized peer-

selection and rate-allocation strategy, every peer in the system

can receive a sufficient downloading rate Rj to view its desired

channel. Assuming that the contribution of server capacity is

minimal, the largest possible streaming capacity region is given

by Λ′m =
{
R
∣∣∣∑J

j=1(1− Q̄j)NjRj ≤
∑
i∈N E[Vi]

}
. In other

words, since the upload capacity of peers is the only in the

system, the best we can do is to support those rate vectors

R such that the summation of all demand is no greater than

the summation of the overall upload capacity. Again, Q̄j’s are

usually not very large in practice, and hence we will omit the

contribution of Q̄j in the rest of this section. Let

Λm =

⎧⎨
⎩R

∣∣∣∣∣∣
J∑
j=1

NjRj ≤
∑
i∈N

E[Vi]

⎫⎬
⎭ .

We say that a multi-channel control algorithm achieves a close-

to-optimal capacity region, if for any R ∈ (1−ε)Λm with some

ε > 0, all peers in each channel j can sustain the streaming

rate Rj .
In order for peers from a sufficient channel k to help peers in

an insufficient channel j, the peers in channel k must already

have the content for channel j, in addition to the content for

channel k that they are interested in viewing. For this purpose,

we assume that, in addition to the video from its own channel,

each peer also caches an additional video from one other

channel, and hence can serve this cached video to peers in

that channel. (Note that although we assume that the entire

video from another channel is cached in this case, a similar

line of analysis can be carried out if the video from another

channel is divided into a small number of parts, and each

peer only cached one part of the video.) Further, we assume

that the cached content has already been pre-loaded, and we

ignore the bandwidth resources to place these cached contents.

We will then study the optimal placement probabilities for

each video and how to best use the cached content. We note

that a similar assumption of pre-loading cached content has

been made in other prior works [13], [14], [18] that study the

optimal cache placement probability. In practice, this kind of

proactive deployment can be implemented in several ways. One

possibility is to let the peers download the cached videos from

the server during non-busy hours. Such a method is especially

useful when the peers are always online, e.g., when using

set-top boxes. Another possibility is to perform active push

or passive replacement using a randomized algorithm [18].

The key assumption here and in [13], [14], [18] is that the

cache content will change at a much slower time-scale than

the content that each peer is interested in viewing. Hence,

the cache replenishment process can be performed much more

slowly, and thus the amount of bandwidth consumed for cache

placement will be significantly smaller than the amount of

bandwidth consumed for streaming.

B. Algorithm and Performance

We start with our cache-placement algorithm, which has

some similarity to the “proportional-to-deficient-bandwidth”

policy in [18]. (However, note that its optimality is not rig-

orously shown in [18].)

(i) Cache Placement: As we discussed earlier, each peer

will cache one other video in addition to its currently-watching

2013 Proceedings IEEE INFOCOM

2703

video. The tracker maintains which peers cache which videos.

Given R ∈ (1 − ε)Λm, the tracker determines the required

number of additional helpers for each channel j, hrj , according

to hrj =
NjRj

μ
√
1−ε −

√
1− εNj . Here, hrj can be interpreted

as the deficit of upload bandwidth in channel j. Note that

using hrj , the tracker can classify sufficient and insufficient

channels: for a sufficient channel j, hrj is negative or zero;

for an insufficient channel j, hrj gives a positive value. Every

peer in each sufficient channel k caches a video randomly

chosen from those of insufficient channels with the following

distribution: the probability ηkj that a peer in channel k caches

the video of channel j satisfies

ηkj = ηj �
hrj∑
l∈I h

r
l

, for all k ∈ S, j ∈ I. (3)

Note that this probability only depends on Rj (video rate),

μ (average upload capacity), pj (video popularity), but is

independent of N . Due to such a randomized cache placement

policy, a random number of peers in each sufficient channel k
cache a copy of channel j’s video. Let us denote this number

by H̃kj . The total number of peers in sufficient channels that

cache the video for channel j is then H̃j =
∑
k∈S H̃kj . In

our algorithm, the tracker randomly chooses Hkj peers among

the H̃kj peers in channel k (which cache video j) to help

channel j ∈ I, where Hkj is given by Hkj =
⌈ |hr

kh
r
j |∑

l∈S |hr
l |
⌉

.

We call these Hkj peers “helpers” for channel j, and we use

Hj to denote the set of all helpers assigned to help channel

j. Note that if Hkj > H̃kj , our algorithm would fail because

there is not a sufficient number of peers who cache the video.

However, we show in [21] that this failure probability goes to

0 as N → ∞. Hence, the actual number of helpers for each

channel j is Hj � |Hj | =
∑
k∈J Hkj .

(ii) Peer Selection and Rate Allocation: Each peer t
in an insufficient channel j uniformly randomly selects MN

upstream neighbors from its choice set Ū jt and uniformly

randomly picks MH upstream neighbors from its helper set

Hj , where MN + MH = M . Each peer in a sufficient

channel only needs to select MN = M upstream neighbors

from its choice set (i.e., MH = 0 for peers in sufficient

channels). Note that if a peer in a sufficient channel k is

selected into the helper set Hj of an insufficient channel j, its

upload capacity will be completely reserved for serving peers

in channel j, and will not be used to serve peers in its own

viewing channel. Each upstream peer still applies the uniform

rate-allocation strategy. All other parts of the peer selection

and rate allocation algorithms remain the same as in the single-

channel case. We can show that with our simple multi-channel

control algorithms, the targeted streaming rate of each channel

can be attained with high probability. Specifically, let Ckt be

the achieve streaming of peer t in channel k ∈ J . We have

the following main result for multi-channel systems. Detailed

analysis and proofs are omitted due to space constraints and

are available in our online technical report [21].

Theorem 6. Given any ε ∈ (0, 1), d > 1 and R ∈ (1− ε)Λm.
Let ε′ = 1 − √1− ε. There exists N0 such that if N ≥ N0,

M = α logN and α ≥ 16d
min{ρmin,p,2σminp}qminε′2

,then we can
find MH and MN such that

P
(
Ckt ≤ Rk, for some k ∈ J and t ∈ N−k

) ≤ O

(
1

Nd

)
.

IV. SIMULATION RESULTS

In this section, we provide simulation results of both single-

channel and multi-channel systems to verify our analytical

results. We first simulate a single-channel system and study

the probability that peers achieve close-to-optimal streaming

capacity as the number of each peer’s upstream neighbor

number increases. We will also compare performance as we

vary different system parameters, such as the distribution

of peers’ upload capacity (represented by p = μ
Vmax

) and

the content availability at peers (represented by q = qmin).

Throughout, the single channel system has N = 20000 peers.

The upload capacity of each peer is assumed to be ON-OFF,

i.e., P(Vi = Vmax) = p and P(Vi = 0) = 1− p for each peer

i. We assume that Vmax = 10. The average upload capacity

of peers is μ = pVmax. The video length of the channel is

T (0) = 3 (hours), and we assume that the downloading posi-

tions of all the peers satisfy an exponential distribution, with

the density function γ(t) = e−t for t ∈ [0, 3). The parameter

Q̄, which is the probability that a peer’s downloading position

is T (0), is given by Q̄ = e−3 ≈ 0.05. We vary the number

of upstream neighbors per peer from M = 10 logN = 99 to

M = 90 logN = 891, which correspond to 0.5% to 4.45%
of the total number of peers N . Then, for each choice of

the system parameters (p, q, ε) and the number of upstream

neighbors per peer, we generate a single-channel P2P VoD

streaming system according to our single-channel P2P control

algorithms for 1000 times. In each run of the simulation, we

record the smallest downloading rate among all peers and

compare it with (1− ε)μ. We count the number of times that

this smallest downloading rate is larger than (1− ε)μ and plot

the probability for that to happen. The result is shown in Fig. 1.

We can observe from the simulation results that, when p = 0.9,

q = 0.9, ε = 0.3, and when each peer selects no fewer than

10 logN = 100 (which corresponds to 0.5% of N) upstream

neighbors, a downloading rate higher than 1 − ε = 70%
of the average peer upload-capacity can be achieved in the

entire network with probability close to 1. (We note that while

qmin = 0.9 appears to be large, it only means that each peer

has 90% of the content for the range of its client set, which is

of a small size NQ = 0.05N .) When p is reduced to 0.5 or q is

reduced to 0.5, more upstream neighbors are needed to achieve

the same performance. Further, under the same values of p
and q, when we reduce ε to 0.2, more upstream neighbors are

needed to achieve the same performance. These observations

verify our insights following Theorem 1.

Next, we simulate a multi-channel P2P VoD system with

4 channels. We use the same settings as in the single-channel

simulations on the distribution of peer upload capacities and the

distribution of peers’ downloading positions. We set Vmax = 10
and p = 0.5. The content availability is given by q = qmin =
0.9. We set N1 = 4000, N2 = 6000, N3 = 3000, N4 = 7000.

2013 Proceedings IEEE INFOCOM

2704

0% 1% 2% 3% 4% 5%
0

0.2

0.4

0.6

0.8

1

Number of upstream neighbors M as a fraction of N

P
(m

in
t
C
t
>

(1
−

)μ
)

N =20000

p = 0 .5, q = 0 .5 = 0 .3

p = 0 .9, q = 0 .5 = 0 .3

p = 0 .5, q = 0 .9 = 0 .3

p = 0 .9, q = 0 .9 = 0 .3

p = 0 .9, q = 0 .9 = 0 .2

Fig. 1. Single-channel system: the probability of success as the number of
upstream neighbors increases.

0% 1% 2% 3% 4% 5%
0

0.2

0.4

0.6

0.8

1

Number of upstream neighbors M as a fraction of N

P
(m

in
t
C
t
>
R

j
)

N = 20000, Vmax = 1 0, p = 0 .5, q = 0 .9, Pr ecise Ca che

R 1 = 6 , I nsufficient C hannel

R 2 = 3 , Sufficient C hannel

R 3 = 7 , I nsufficient C hannel

R 4 = 1 , Sufficient C hannel

Al l Ch annels

Fig. 2. Multi-channel system: the probability of success as the number of
upstream neighbors increases.

We choose a target streaming rate vector R = [6, 3, 7, 1]T ,

which is in 0.7Λm (i.e., ε = 0.3). Channels 1 and 3 are insuf-

ficient channels, and channels 2 and 4 are sufficient channels.

In Fig. 2, we plot the probability that the downloading rate of

a peer in channel j is greater than its target streaming rates

Rj , for each of the four channels as the number of upstream

neighbors per peer varies. Further, the curve with “Δ” plots

the probability that all peers in all channels simultaneously

sustain downloading rates greater than their corresponding

target streaming rates. As we can see from Fig. 2, all channels

attain with high probability their required streaming rates even

with a small number of upstream neighbors.

V. CONCLUSION

In this paper we provide a rigorous analytical study on

the performance of large-scale P2P VoD systems with sparse

connectivity and simple, robust, and decentralized control. For

both single-channel and multi-channel systems, we provide

easy-to-implement P2P control algorithms and show that the

system can achieve close-to-optimal streaming capacity with

probability approaching 1, as the total number of peers N
increases. Under our control algorithms, each peer is only as-

signed Θ(logN) upstream neighbors, with which it exchanges

content availability information. Most parts of the control al-

gorithms are decentralized. These algorithms incur low control

overhead and are easy-to-implement in practice. Our analytical

studies provide easy-to-verify conditions for such close-to-

optimal streaming to hold, which shed important insights to

guide the design of improved P2P streaming protocols. For

future work, it would be interesting to study whether the

required number of per-peer neighbors can be further reduced,

possibly by using more sophisticated peer-selection and rate-

allocation algorithms than those studied in this paper. The

challenge would be how to improve the system performance

while retaining the simplicity and decentralized properties.

Acknowledgments: This work is partially supported by

the National Science Foundation through grant CNS-0643145,

CNS-0721484 and CNS-0831999, and a grant from Hong Kong

RGC under the contract HKU 718710E.

REFERENCES

[1] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-scale Operational
On-Demand Streaming with Random Network Coding,” in Proc. of IEEE
INFOCOM, Mar. 2010, pp. 1–9.

[2] C. Zhao, X. Lin, and C. Wu, “The Streaming Capacity of Sparsely-
Connected P2P Systems with Distributed Control,” in Proc. of IEEE
INFOCOM, Apr. 2011, pp. 1449–1457.

[3] R. Kumar, Y. Liu, and K. Ross, “Stochastic Fluid Theory for P2P
Streaming Systems,” in Proc. of IEEE INFOCOM, May 2007, pp. 919–
927.

[4] L. Massoulié, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized
Decentralized Broadcasting Algorithms,” in Proc. of IEEE INFOCOM,
2007, pp. 1073–1081.

[5] C. Feng and B. Li, “On Large-scale Peer-to-Peer Streaming Systems with
Network Coding,” in Proc. of ACM Multimedia, 2008, pp. 269–278.

[6] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg, “Epidemic
Live Streaming: Optimal Performance Trade-offs,” in Proc. of ACM
SIGMETRICS, 2008, pp. 325–336.

[7] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Per-
formance Bounds for Peer-Assisted Live Streaming,” in Proc. of ACM
SIGMETRICS, 2008, pp. 313–324.

[8] S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li, and P. A. Chou, “Peer-
to-Peer Streaming Capacity,” IEEE Transactions on Information Theory,
vol. 57, no. 8, pp. 5072–5087, Aug. 2011.

[9] S. Liu, M. Chen, S. Sengputa, M. Chiang, J. Li, and P. A. Chou,
“P2P Streaming Capacity under Node Degree Bound,” in Proc. of IEEE
ICDCS, Jun. 2010, pp. 587–598.

[10] D. Wu, C. Liang, Y. Liu, and K. Ross, “View-Upload Decoupling:
A Redesign of Multi-Channel P2P Video Systems,” in Proc. of IEEE
INFOCOM, Apr. 2009, pp. 2726–2730.

[11] Y. Huang, T. Z. J. Fu, D. M. Chiu, J. C. S. Lui, and C. Huang,
“Challenges, Design and Analysis of a Large-scale P2P-VoD System,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 375–388, Aug.
2008.

[12] K. Wang and C. Lin, “Insight into the P2P-VoD System: Performance
Modeling and Analysis,” in Proc. of IEEE ICCCN, Aug. 2009, pp. 1–6.

[13] B. Tan and L. Massoulié, “Optimal Content Placement for Peer-to-Peer
Video-on-Demand Systems,” in Proc. of IEEE INFOCOM, Apr. 2011,
pp. 694–702.

[14] Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “Statistical Modeling and
Analysis of P2P Replication to Support VoD Service,” in Proc. of IEEE
INFOCOM, Apr. 2011, pp. 945–953.

[15] J. Wu and B. Li, “Keep Cache Replacement Simple in Peer-Assisted VoD
Systems,” in Proc. of IEEE INFOCOM, Apr. 2009, pp. 2591–2595.

[16] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis
of Bittorrent-like Protocols for On-Demand Stored Media Streaming,”
SIGMETRICS Perform. Eval. Rev., vol. 36, pp. 301–312, Jun. 2008.

[17] N. Carlsson and D. L. Eager, “Peer-assisted On-Demand Streaming
of Stored Media Using BitTorrent-like Protocols,” in Proc. of the 6th
international IFIP-TC6 conference on Ad Hoc and sensor networks,
wireless networks, next generation internet, 2007, pp. 570–581.

[18] W. Wu and J. Lui, “Exploring the optimal replication strategy in P2P-VoD
systems: Characterization and evaluation,” in Proc. of IEEE INFOCOM,
Apr. 2011, pp. 1206–1214.

[19] J. Wang, C. Huang, and J. Li, “On ISP-Friendly Rate Allocation for
Peer-Assisted VoD,” in Proc. of ACM Multimedia, 2008, pp. 279–288.

[20] C. Liang, Y. Guo, and Y. Liu, “Is Random Scheduling Sufficient in P2P
Video Streaming?” in Proc. of IEEE ICDCS, Jun. 2008, pp. 53–60.

[21] C. Zhao, J. Zhao, X. Lin, and C. Wu, “Capacity of p2p on-
demand streaming with sparse connectivity and simple decentralized
control,” Purdue University, Tech. Rep., 2012, also available at http-
s://engineering.purdue.edu/~linx/papers.html.

2013 Proceedings IEEE INFOCOM

2705

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

