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Quantum speed limit with forbidden speed intervals
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Quantum mechanics imposes fundamental constraints known as quantum speed limits (QSLs) on the
information processing speed of all quantum systems. Every QSL known to date comes from the restriction
imposed on the evolution time between two quantum states through the value of a single system observable such
as the mean energy relative to its ground state. So far these restrictions only place upper bounds on the information
processing speed of a quantum system. Here I report QSLs each with permissible information processing speeds
separated by forbidden speed intervals. They are found by a systematic and efficient procedure that takes the
values of several compatible system observables into account simultaneously. This procedure generalizes almost
all existing QSL proofs; the QSLs show a novel first-order phase transition in the minimum evolution time.

DOI: 10.1103/PhysRevA.87.052142 PACS number(s): 03.65.Ta, 03.67.−a

I. INTRODUCTION

Time is a valuable and often an irreplaceable resource.
Minimizing runtime is one of the most important driving forces
behind hardware, software, and computational complexity
researches. Quantum mechanics, as a fundamental law of
nature, gives ultimate constraints known as quantum speed
limits (QSLs) on the runtime and hence information processing
speed of a computer, classical and quantum alike [1–3].
QSLs can be defined by considering the distance between
a normalized initial state |ψ〉 and the normalized state |ϕ〉
that evolves from it after a time τ , as given by their
mutual fidelity F = |〈ψ |ϕ〉|2. Since the speed of evolution
is determined by the energy of the system, there exist QSLs
in the form τ � gÔ(F,v), where v is the expectation value of
an observable Ô associated with the energy of the system
[2–13]. The significance of such QSLs is that they can
relate the evolution time needed to achieve a given distance
between initial and final states to only a single observable
property of the system, allowing an efficient evaluation of the
physical resources necessary to achieve maximum quantum
information processing speed. For example, using the energy
standard deviation �E as the observable, the corresponding
QSL, namely, τ � h̄ cos−1(

√
F )/�E, is the famous time-

energy uncertainty relation [5–9].
The more information about the quantum system is given,

the more stringent the QSL one should be able to obtain. At one
of the extreme ends that nothing is known about the system,
the only thing one can say is the trivial bound τ � 0. At the
other extreme end that the Hamiltonian and initial state are
completely known, the values of all the τ ’s are fixed and can
be computed at least in principle. Thus, it is instructive to
investigate what kind of QSLs one can deduce when partial
information in the form of more than one observable of the
system are given. In addition to quantum mechanics and quan-
tum information, this problem is also of interest in statistical
physics. For example, the constraints and information on τ

and their related phase diagrams as a function of the kind
and amount of information given are important questions that
have never been studied. In fact, very limited progress has
been made along these lines. All relevant works to date simply
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consider the constraints that logically follow from the QSLs
for each of the observables [4,14] instead of analyzing the
restrictions due to these compatible observables holistically.

Here I report a powerful method to study QSLs by extending
earlier proof techniques [4,12,13]. Besides finding QSLs when
several compatible observables of the system are given, this
method also provides a unified way to show all known QSLs.
Through these new QSLs, I find that the minimum possible
evolution time can exhibit a new first-order phase transition
with fidelity F being the order parameter. Finally, I will define
and briefly discuss the reverse problem of QSL construction.

II. CONSTRUCTION OF THE QSL

A. An auxiliary inequality

I write the time-independent Hamiltonian H in the diagonal
form

∑
j Ej |Ej 〉〈Ej |. Surely, any normalized quantum state

|ψ〉 can be expressed in the form
∑

j αj |Ej 〉 with
∑

j |αj |2 =
1. Suppose |ϕ〉 = e−iHτ/h̄|ψ〉 is the state obtained by evolving
|ψ〉 by H for a time τ � 0. Then, the fidelity F between |ψ〉
and |ϕ〉 obeys

√
F =

∣∣∣∣∣∣
∑

j

|αj |2e−iEj τ/h̄

∣∣∣∣∣∣ = |eiθ |
∣∣∣∣∣∣
∑

j

|αj |2e−iEj τ/h̄

∣∣∣∣∣∣
�

∑
j

|αj |2 cos

(
Ejτ

h̄
− θ

)
, (1)

for any real-valued θ . Here I have used the fact that the
magnitude of a complex number is greater than or equal to its
real part to arrive at the above inequality. Actually, inequality
(1) is an extension of those used in Refs. [12,13].

Let p(x) be a function satisfying p(x) � cos(x − θ ) when-
ever x � 0. Then,

√
F �

∑
j

|αj |2p(Ejτ/h̄), (2)

provided that Ej � 0 for all j . The following subsection
shows that this p(x) can be chosen to be a polynomial-like
function in the form

∑n
k=0 ckx

sk with s > 0 efficiently.
[This is a more general choice for p(x) than in all previous
studies [2–4,10,12,13].]
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B. Proof of the existence of efficiently computable p(x)

It suffices to show the existence of a polynomial q(x) �
cos(x1/s − θ ) ≡ f (x) whenever x � 0. In fact, q(x) exists
even if I further demand that it meets f (x) at finitely
many distinct non-negative points, say, x�’s. I do this by
considering the Hermite interpolating polynomial q̃(x) that
satisfies q̃(k)(x�) = f (k)(x) for k = 0,1, . . . ,2j� − 1 for some
j� ∈ Z+. This polynomial can be constructed efficiently
[15]. Surely, f (x) − q̃(x) = a�(x − x�)2j� + O((x − x�)2j�+1)
locally around each x�. For randomly chosen x�’s and j�’s,
all the a�’s are nonzero almost surely. And in the singular
case in which some of the a� equals 0, I simply randomly
choose an extra distinct point xa and demand further that q̃(x)
obeys q̃(k)(xa) = f (k)(xa) for k = 0,1, . . . ,2ja − 1 for some
randomly chosen positive integer ja . Then, the modified q̃(x)
locally agrees with f (x) up to an even power of x − x� at each
of the interpolating point x� almost surely.

Recall that there are efficient and stable algorithms to
find all the real roots of a polynomial [16]. Apply one such
algorithm to find the largest real root xu of the equation
q̃(x) = −1, I can bound the non-negative roots of q̃(x) = f (x)
to the interval [0,xu]. Since f (x) = cos(x1/s − θ ) is a smooth
function of bounded variation in [0,xu], I may use interval
arithmetic to efficiently find all the subintervals of [0,xu], if
any, in which f (x) − q̃(x) is negative [17]. Actually, there are
at most a finite number of these subintervals; they are present
if and only if

(1) f (x) − q̃(x) = a�(x − x�)2j� + O((x − x�)2j�+1) in
the neighborhood of x� with a� < 0; or

(2) for two consecutive distinct roots x1 and x2 of f (x) −
q̃(x), there are x1 < y1 < y2 < x2 such that f (x) − q̃(x) < 0
for all x ∈ (y1,y2).
In the first case, I may bring f (x) − q̃(x) up above zero
by adding a term b�(x − x�)2j� with b� > a�. Whereas in
the second case, this can be done by adding a term in the
form b′ ∏

�(x − x�)2(j�+κ�) with κ� = 1 if a� > 0 and κ� = 0
if a� < 0. Note that this additional term does not affect the
local behavior of f (x) − q̃(x) around those x�’s with a� > 0.
Since there are only a finite number of such subintervals, I can
efficiently find b > 0 such that f (x) − q(x) � 0 for all x � 0
where q(x) = q̃(x) − b

∏
�(x − x�)2(j�+κ�).

Last but not least, I remark that since what one really
needs is q̃(x) � f (x) for x � 0. So, whenever x� = 0,
namely, the boundary point, there is no need to demand
f (x) − q̃(x) = a�x

2j� + O(x2j�+1) for x sufficiently close to 0.
Suppose f (x) − q̃(x) = axj + O(xj+1) in the neighborhood
of x = 0 for some positive integer j and a �= 0. Then, the
transformation q(x) = q̃(x) − bxj+κ

∏′
�(x − x�)2(j�+κ�) for a

sufficiently large b > 0 will do. Here κ = 1 if a > 0 and
κ = 0 otherwise. Besides, the primed product is over all
x� �= 0.

C. Construction of the QSL from p(x)

Substituting this polynomial-like p(x) into inequality (2), I
conclude that

√
F �

n∑
k=0

ck〈Esk〉
(

τ

h̄

)sk

, (3a)

whenever Ej � 0 for all j , where 〈Er〉 ≡ ∑
j |αj |2Er

j denotes
the expectation value of the rth moment of the energy of
the system. Furthermore, in the case of θ = 0, I may rewrite
inequality (1) as

√
F �

∑
j |αj |2 cos(|Ej |τ/h̄). So the above

arguments lead to

√
F �

n∑
k=0

ck〈|E|sk〉
(

τ

h̄

)sk

, (3b)

irrespective of the signs of Ej ’s, where 〈|E|r〉 ≡∑
j |αj |2|Ej |r . I remark that inequality (3) becomes an

equality if and only if e−iθ 〈ψ |ϕ〉 is real and non-negative
together with cos(Ejτ/h̄ − θ ) = p(Ejτ/h̄) for all j with
αj �= 0.

Consequently, suppose the values of the compatible (time-
independent) observables of the system 〈Ek〉 (or 〈|E|k〉)
are known for k = 1,2, . . . ,n. Then, given a fixed fidelity
F ∈ [0,1], the required evolution time must satisfy inequality
(3). Since there are efficient numerical algorithms to find
real roots of a polynomial equation [18], I can find the
permissible intervals for τ readily. As the reference energy
level has no physical meaning, I may tighten the permissible
region for τ by taking the intersection over all the permissible
intervals obtained by replacing 〈Ek〉 by 〈(E + a)k〉 (or 〈|E|k〉
by 〈|E + a|k〉) for all a and k—a trick first used in Ref. [12].
Finally, I may further strengthen the bound by taking the
intersection over the permissible regions for τ obtained by
all degree � n polynomials p(x) � cos(x − θ ) for x � 0.
There is no known efficient way to perform this very last
task, however.

D. Recovering all existing QSLs

The above procedure, even without the final step, is already
powerful enough to prove all the known QSLs. I choose p(x)
to be the function 1 − axb which meets the curve cos(x − θ ) at
two distinct points for x �= 0, namely, at x = 0 and xc such that
p(x) actually touches the curve cos(x − θ ) tangentially at the
latter point. Then, in the event that θ �= 0, inequality (3a) gives
the Margolus-Levitin bound [2–4] and its generalization [10];
whereas in the event that θ = 0, inequality (3b) becomes the
Chau bound [12] and its generalization [13].

To recover the time-energy uncertainty relation, I use the
inequality cos x � 1 − x2/2. From inequality (3b), I get the
bound

√
F � 1 − 〈|E|2〉(τ/h̄)2/2 = 1 − 〈E2〉(τ/h̄)2/2. This

bound can be optimized by choosing the reference energy level
to be the average energy of the system. The result is

√
F �

1 − (τ�E/h̄)2/2 provided that the system evolves under
a time-independent Hamiltonian. Now I consider evolving
the system for an infinitesimal time �τ . The constraint set
by the above inequality becomes

√
F � cos(�τ�E/h̄) +

O[(�τ )4] = cos(�τ�E/h̄ + O[(�τ )3]). Hence, the corre-
sponding infinitesimal change in Bures angle must obey �ϑ ≡
cos−1(

√
F ) � �τ�E/h̄ + O[(�τ )3]. Since Bures angle is a

metric [19], by integrating over a finite time, I conclude that
for a time-dependent Hamiltonian, the evolution time τ obeys∫ τ

0 �E dτ � h̄ϑ = h̄ cos−1(
√

F ), which is the time-energy
uncertainty relation for the time-dependent Hamiltonian. If

052142-2



QUANTUM SPEED LIMIT WITH FORBIDDEN SPEED . . . PHYSICAL REVIEW A 87, 052142 (2013)

the Hamiltonian is time independent, the above expression
becomes the famous inequality τ � h̄ cos−1(

√
F )/�E.

III. EXISTENCE OF QSLs WITH FORBIDDEN
SPEED INTERVALS

A. General discussions

Note that a degree greater than one polynomial is in general
not monotonic. Thus, the domain for such a polynomial to
be greater than or equal to a certain fixed given value is in
general consists of finite number of intervals. Thus, by picking
the polynomial-like function p(x) with n > 1, I have the
surprising situation that the permissible evolution time τ given
by inequality (3) is in general separated by forbidden time
intervals. This is not completely unexpected because unlike
all previous QSLs, here the quantum system is constrained by
more than one compatible observable.

One may question the genuineness of these forbidden time
intervals as some of the apparently permissible time intervals
are illusory because they could be the result of poorly chosen
θ and p(x). In other words, perhaps these so-called forbidden
time intervals will disappear once a QSL is obtained from a
carefully picked θ and p(x). Nevertheless, the example below
shows the contrary.

Consider the initial state |ϕe(0)〉 = [
√

7|0〉 +√
2(|−h̄〉 + |h̄〉 + |−11h̄/5〉 + |11h̄/5〉)]/√15 evolving

under the time-independent Hamiltonian He =∑
j=0,±1,±11/5h̄Ej |h̄Ej 〉〈h̄Ej |. Figure 1(a) depicts the time

evolution curve for the root fidelity
√

F = |〈ϕe(0)|ϕe(τ )〉|,
showing that the first time for

√
F to reach

√
Fc1 = 0 and√

Fc2 ≈ 0.0682 are at τ = τc1 ≈ 9.693 and τc2 ≈ 4.110,
respectively. I choose p(x) = pe(x) to be the Hermite
interpolating polynomial satisfying the following
constraints: p(j )

e (0) ≡ djpe(0)/dxj = cos(j )(0) for j = 0,1,2,

FIG. 1. (Color online) (a) The time evolution of root fidelity
√

F for |ϕe(0)〉 under the Hamiltonian He. (b) The polynomial pe(x) is a
very good approximation of cos x for 0 � x � 22. (c) The curves cos(x) and p(32)

e (x) intersect at four distinct points only. (d) A plot of the
right-hand side of inequality (3b) with p(x) = pe(x) and 〈|E|2k〉 = 4h̄2k[1 + (11/5)2k]/15 for k = 1,2, . . . ,17.

052142-3



H. F. CHAU PHYSICAL REVIEW A 87, 052142 (2013)

p
(j )
e (±τc1) = cos(j )(±τc1) for j = 0,1,2,3, p

(j )
e (±τc2) =

cos(j )(±τc2) for j = 0,1, p
(j )
e (±11τc1/5) = cos(j )(±11τc1/5)

for j = 0,1,2,3,4,5, and p
(j )
e (±11τc2/5) = cos(j )(±11τc2/5)

for j = 0,1,2,3. By construction, pe(x) = cos x at
x ∈ Se = {0, ± τc1, ± τc2, ± 11τc1/5, ± 11τc2/5}. By
construction, pe(x) is even and of degree 34. Figure 1(b)
shows that pe(x) is a very good approximation to cos x for
0 � x � 22. More importantly, I show in the next subsection
that pe(x) � cos x for all real x.

B. Proof of pe(x) � cos x

It is straightforward to check that pe(x) � cos x in the
neighborhood of x ∈ Se. To show that this is also true for
all x ∈ R, I need the following lemma.

Lemma 1. Let f (x) : R → R be a real-valued differentiable
function with exactly n real roots counted by multiplicity.
Then, f ′(x) has at least n − 1 real roots counted by
multiplicity.

Proof. The lemma is a simple consequence of the following
two facts. First, if x1,x2 are two distinct consecutive roots
of f , then Rolle’s theorem implies that there is a root x̃ ∈
[x1,x2] for f ′. Second, suppose x1 is a multiple root of f of

multiplicity k > 1, then clearly x1 is a root of f ′ of multiplicity
k − 1. �

By construction, x = 0 is a root of multiplicity 3 for the
even function g(x) = pe(x) − cos x. Similarly, by counting
the multiplicity of roots of g(x) at x ∈ Se \ {0}, I conclude
that g(x) has at least 35 real roots. Suppose it had more than
35 such roots, then the even function g(x) should have at least
two more real roots—one positive, one negative. By Lemma 1,
g(32)(x) = p(32)

e (x) − cos x would have at least 35 + 2 − 32 =
5 real roots. However, a plot of cos x and the quadratic function
p(32)

e (x) in Fig. 1(c) shows that g(32)(x) only has four roots
counting by multiplicity in the range x ∈ [−8,8]; g(32)(x) does
not have any real root outside this range as p(32)

e (x) < −1 for
|x| > 8. Thus, Se is the set of all real roots of g(x). Since
g(x) � 0 in the neighborhood of these roots, the continuity of
g implies that g(x) � 0 for all x ∈ R.

Actually, this method can be adapted to show p(x) �
cos(x − θ ) for all x � 0 for a variety of polynomial p(x)
constructed out of Hermite interpolation.

C. QSL and a first-order phase transition

Since pe(x) � cos x for all x � 0, it induces the following
QSL:

√
F � 1 − 5.0000 × 10−1〈|E|2〉

(τ

h̄

)2
+ 4.1667 × 10−2〈|E|4〉

(τ

h̄

)4
− 1.3889 × 10−3〈|E|6〉

(τ

h̄

)6

+ 2.4802 × 10−5〈|E|8〉
(τ

h̄

)8
− 2.7557 × 10−7〈|E|10〉

(τ

h̄

)10
+ 2.0876 × 10−9〈|E|12〉

(τ

h̄

)12

− 1.1469 × 10−11〈|E|14〉
(τ

h̄

)14
+ 4.7766 × 10−14〈|E|16〉

(τ

h̄

)16
− 1.5585 × 10−16〈|E|18〉

(τ

h̄

)18

+ 4.0798 × 10−19〈|E|20〉
(τ

h̄

)20
− 8.6954 × 10−22〈|E|22〉

(τ

h̄

)22
+ 1.5125 × 10−24〈|E|24〉

(τ

h̄

)24

− 2.1160 × 10−27〈|E|26〉
(τ

h̄

)26
+ 2.2929 × 10−30〈|E|28〉

(τ

h̄

)28
− 1.7955 × 10−33〈|E|30〉

(τ

h̄

)30

+ 8.9531 × 10−37〈|E|32〉
(τ

h̄

)32
− 2.1140 × 10−40〈|E|34〉

(τ

h̄

)34
. (4)

In particular, by putting 〈|E|2k〉 = 〈E2k〉 = 4h̄2k[1 +
(11/5)2k]/15 for k = 1,2, . . . ,17, this construction leads to a
QSL which gives a tight lower bound for the evolution time
in the cases of

√
F = √

Fc1 and
√

Fc2. Figure 1(d) depicts
that for root fidelity

√
F = √

Fc1 = 0, the corresponding
QSL is τ ∈ [τc1,10.138] ∪ [10.248, + ∞). Combined with
the example of the evolution of |ϕe(0)〉, I conclude that
whenever a quantum state with 〈|E|2k〉 is equal to the value
given in the previous paragraph for k = 1,2, . . . ,17, the
minimum evolution time τmin for it to evolve to another
state of root fidelity 0 is τc1. By gradually increasing

√
F ,

the allowable region for τ increases and τmin � τc1. Most
importantly, by increasing

√
F to

√
Fc2 ≈ 0.0682, the

allowable τ becomes {τc2} ∪ [9.519, + ∞) with τmin = τc2,
that is, a new permissible time interval appears and a genuine
forbidden evolution interval (τc2,9.519) is formed. Besides,

τmin shows first-order phase transition at
√

F = √
Fc2.

This is the first QSL that captures this type of phase
transition. Further significance of this result is reported in
Appendix A.

D. The reverse problem

Note that the above method to construct a QSL with genuine
forbidden speed intervals is generic. In fact, it brings us to
the following reverse problem, which has never been studied
before. Given an initial state, a Hamiltonian and a required
fidelity F , is it possible to find a QSL whose minimum
permissible evolution time equals the actual evolution time
needed? By modifying the proof of the existence of p(x),
I show in Appendix B that the answer is affirmative in
finite-dimensional Hilbert space.
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IV. DISCUSSIONS AND OUTLOOK

To summarize, I have reported an efficient method to
construct interesting QSLs. An important feature of this
method is that by specifying a finite number of compatible
observables in the form of various moments of energy of
the system, the resultant QSL is independent of the Hilbert
space dimension. Thus, the two most important consequences
of this construction, namely, the existence of forbidden speed
intervals and certain first-order phase transition are very strong
results since they cannot come from an overly restricted set of
constraints on a low-dimensional quantum system that almost
fixes the Hamiltonian and the initial state. More importantly,
this study opens up a more general research direction on the
tradeoff between the amount of partial information describing
a quantum system and the constraints on its information
processing capability in which a lot of works can be done.
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APPENDIX A: FURTHER SIGNIFICANCE OF THE QSL
ASSOCIATED WITH THE DEGREE 34 POLYNOMIAL pe(x)

REPORTED IN THE MAIN TEXT

Recall that for fidelity F = 0, the QSL reported in inequal-
ity (4) in the main text leads to a minimum evolution time of
τc1 for 〈|E|2k〉 = 4h̄2k[1 + (11/5)2k]/15 for k = 1,2, . . . ,17.
Furthermore, this bound is tight for it can be achieved by the
state |ϕe(0)〉 under the evolution of the Hamiltonian He. Note
that the highest and lowest energy eigenvector components
of |ϕe(0)〉 are | ± 11h̄/5〉. Hence, the phase angle difference
χ rotated during the time τc1 between these two components
equals 22τc1/5 > 2π , that is, the relative phase angle between
two components has to rotate more than one complete circle
in order to evolve |ϕe(0)〉 to its orthogonal complement. This
is a new situation for these relative phase angles rotated in
all known QSLs to date [2–4,10,12,13] are at most 2π . The
implication is that for states obeying the above constraints
on various moments of energy, they cannot evolve to their
orthogonal complement without some time of “time wastage”
as some of the relative phase angle change must be greater
than a complete circle.

I also remark that this is the first tight QSL with the property
that the “magic state” saturating this QSL in the case of F = 0
has to be at least four dimensional. The corresponding “magic
states” for all previous QSLs are at most three dimensional
[2–4,10,12,13]. The reason why the “magic state” saturating
this QSL is at least four dimensional is as follows. From
the discussion on the conditions for equality of inequality
(3b) in the main text and the construction of pe that leads
to the QSL, the magic state |ψ(0)〉, expressed in the energy
eigenbasis, must be in the form α0|0〉 + α1|E〉 + α2|−E〉 +
α3|11E/5〉 + α4|−11E/5〉 with E > 0. Furthermore, the evo-
lution time to an orthogonal state equals τc1h̄/E. For the
given constraints in 〈|E|2k〉’s, I arrive at |α0|2 = 7/15, |α1|2 +
|α2|2 = |α3|2 + |α4|2 = 4/15. Considering the imaginary part

of 〈ψ(0)|ψ(τc1h̄/E)〉, I have (|α2|2 − |α1|2) sin τc1 + (|α4|2 −
|α3|2) sin(11τc1/5) = 0. Hence, at most one of the αj ’s can be
zero. Thus, the “magic state” is at least four dimensional.

APPENDIX B: EXISTENCE OF A QSL FOR THE REVERSE
PROBLEM FOR FINITE-DIMENSIONAL

HILBERT SPACE SYSTEMS

Denote the state at time τ under the evolution of the time-
independent Hamiltonian H in a d-dimensional Hilbert space
by |ϕ(τ )〉 with |ϕ(0)〉 = ∑d

j=1 αj |Ej 〉. Surely, the root fidelity
at time τ is given by the continuous function,

√
F (τ ) = |〈ϕ(0)|ϕ(τ )〉| =

d∑
j=1

|αj |2 cos

[
Ejτ

h̄
− θ (τ )

]
,

where θ (τ ) is the argument of the complex number
〈ϕ(0)|ϕ(τ )〉. Although θ can only be determined modulo 2π ,
I may uniquely fix it by the integral curve describing the time
evolution of the argument of 〈ϕ(0)|ϕ(τ )〉 with initial condition
θ (0) = 0 provided that τ is less than or equal to the first time
when

√
F = 0. And from now on, I assume θ (τ ) to be this

smooth integral curve.
I first write down several properties of the function

√
F (τ ).

Denote the first time when
√

F (τ ) reaches a certain fixed
value

√
F0 ∈ [0,1] by τmin. Suppose further that τmin is finite. I

define τturn and ε0 as follows. Suppose
√

F (τ ) is a decreasing
function in [0,τmin], then I set τturn = 0 and ε0 = 1. Otherwise,
since

√
F is continuous and differentiable provided that√

F > 0, there is a turning point in [0,τmin). Denote the
turning point in [0,τmin) closest to τmin by τturn. Then, I set
ε0 = minτ∈[0,τturn]

√
F (τ ) − √

F0. It is well defined because
the minimum exists owning to the continuity of

√
F ; it is

positive for otherwise τmin will not be the first time when
the root fidelity reaches

√
F0. Note that no matter whether

there is a turning point for
√

F in [0,τmin] or not,
√

F (τ ) is
decreasing in [τturn,τmin]. More importantly, for 0 � τ � τmin,√

F (τ ) <
√

F0 + ε0 only in [τturn,τmin]. That is to say, the
function

√
F (τ ) is one-one in the domain [τturn′ ,τmin] and range

[
√

F0,
√

F0 + ε0], where τturn′ is the closest point to τmin in
[0,τmin) with

√
F (τturn′) = √

F0 + ε0. Last but not least, for a
sufficiently small δ > 0,√

F (τ ) −
√

F0 = O[(τmin − τ )β],

for τ ∈ (τmin − δ,τmin) for some β > 0.
Next, I consider the QSL induced by a polynomial p(x).

Using the idea in the main text, suppose cos x � p(x) =∑n
k=0 ckx

k for all x � xmin ≡ minj minτ∈[0,τmin][Ejτ/h̄ −
θ (τ )]. Then, I have a QSL in the form of an inequality,

√
F (τ ) �

d∑
j=1

|αj |2p
(

Ejτ

h̄
− θ (τ )

)

=
d∑

j=1

n∑
k=0

ck|αj |2
[
Ejτ

h̄
− θ (τ )

]k

=
n∑

k=0

k∑
�=0

ck

(
k

�

)
〈E�〉θ (τ )k−�

(τ

h̄

)�

, (B1)

whenever 0 � τ � τmin.
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Now, I consider the set of polynomials Sn,γ with the
properties that p(x) ∈ Sn,γ if and only if

(1) deg p(x) � n;
(2) p(x) � cos x whenever x � xmin;
(3) p(xj ) = cos xj for all j , where xj = Ejτmin/h̄ −

θ (τmin); and
(4) cos x − p(x) = O((x − xj )γ ) in the neighborhood of

xj for all j .
Using the Hermite interpolating polynomial construction in
the main text, I know that for each fixed γ > 1, the set Sn,γ is
nonempty provided that n is sufficiently large. Clearly, Sn,γ is
a convex set. In addition, it is easy to see that the functional,

G[f1,f2] = max
x∈[xmin,xmax]

|f1(x) − f2(x)| ,

is convex where xmax = maxj [Ejτmin/h̄ − θ (τmin)].
Note that for a fixed γ > 1, there is a sequence of polyno-

mials pn(x) ∈ Sn,γ such that limn→+∞ G[pn(x), cos x] = 0.
In fact, each pn(x) can be chosen to be the optimal degree � n

polynomial in Sn,γ that minimizes the functional G[cos x,·]
via convex optimization [20].

With the above background preparation, I am ready to prove
the existence of a polynomial p(x) that solves the reverse
problem, that is, the QSL induced by p(x) in inequality (B1)
has the property that the smallest non-negative time at which
the right-hand side of this inequality is

√
F0 occurs when

τ = τmin provided that 〈Ek〉’s are set to the kth moment of the
energy of the state |ϕ(0)〉.

I choose a sufficiently small 0 < δ < τmin − τturn such that√
F (τ ) −

√
F0 � ζ (τmin − τ )β,

for all τ ∈ (τmin − δ,τmin], where ζ > 0. For this δ > 0, I can
find sufficiently large γ and n such that Sn,γ is nonempty and
the p(x) ∈ Sn,γ that minimizes the functional G[cos x,·] obeys
G[cos x,p(x)] < ε where

ε ≡
√

F (τmin − δ) −
√

F0 ∈ (0,ε0].

I claim that the QSL induced by this p(x) solves the reverse
problem. This is because by my construction, for τ = τmin,
the right-hand side of inequality (B1) equals

∑
j |αj |2p(xj ) =∑

j |αj |2 cos xj = √
F0 = √

F (τmin).
I proceed to consider the case of τ ∈ [0,τmin − δ]. As

cos x − p(x) � G[cos x,p(x)] < ε for all x > xmin, I con-
clude that

√
F (τ ) =

∑
j

|αj |2 cos

[
Ejτ

h̄
− θ (τ )

]

< ε +
∑

j

|αj |2p
(

Ejτ

h̄
− θ (τ )

)
.

Hence,

∑
j

|αj |2p
(

Ejτ

h̄
− θ (τ )

)
>

√
F (τ ) − ε

�
√

F (τmin − δ) − ε

=
√

F0.

In other words, the right-hand side of inequality (B1) greater

than
√

F0 in the time interval [0,τmin − δ].
Finally, I consider the case of τ ∈ (τmin − δ,τmin). I

have
√

F0 + ζ (τmin − τ )β �
√

F (τ )

=
∑

j

|αj |2p
(

Ejτ

h̄
− θ (τ )

)

+ O((�j (τ ))γ ),

where �j (τ ) = Ej (τmin − τ )/h̄ + θ (τ ) − θ (τmin). Since θ (τ )

is smooth in this time interval, �j (τ ) = O((τmin − τ )γ
′
) for

some γ ′ > 0. Therefore,

∑
j

|αj |2p
(

Ejτ

h̄
− θ (τ )

)

�
√

F0 + ζ (τmin − τ )β + O((τmin − τ )γ γ ′
).

Since ζ > 0, by picking a sufficiently small δ > 0 and a

sufficiently large γ so that γ γ ′ > β (and a sufficient large
n so that Sn,γ is nonempty), the right-hand side of inequality
(B1) is greater than

√
F0 in this time interval.

To summarize, the QSL induced by any p(x) in this Sn,β is
a solution of the reverse problem. This completes the proof of
my claim.

Lastly, let me make the following remark. Suppose 0 �
τ1 < τ2 < · · · < τ� are � distinct numbers with

√
F (τj ) =√

F0 for all j , where
√

F (τ ) is the root fidelity between |ϕ(τ )〉
and |ϕ(0)〉 under the action of a time-independent Hamiltonian
H . Then, it is not difficult to adapt the above procedure to
construct a polynomial whose induced QSL has the properties
that

(1) the induced QSL is an equality at times τ1, . . . ,τ�

provided that
√

F = √
F0 and 〈Ek〉 is the kth moment of the

average energy of the state |ϕ(0)〉;
(2) the induced QSL is a strict inequality at time τ ∈ [0,τ�]

provided that
√

F (τ ) > F0.
The proof is left to interested readers.
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