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We show that far-field diffraction images of spontaneously scattered Raman photons can be used for detection
of spin entanglement and for metrology of field gradients in cold atomic ensembles. For many-body states with
small or maximum uncertainty in the spin-excitation number, entanglement is simply witnessed by the presence
of a sharp diffraction peak or dip. The gradient vector of external fields is measured by the displacement of a
diffraction peak due to inhomogeneous spin precession, which suggests a possibility for precision measurements
beyond the standard quantum limit without entanglement. Monitoring of the temporal decay of the diffraction
peak can also realize a nondemolition probe of the temperature and collisional interactions in trapped cold atomic
gases. The approach can be readily generalized to cold molecules, trapped ions, and solid-state spin ensembles.
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I. INTRODUCTION

Cold atomic ensembles offer an ideal platform for the study
of quantum many-body physics and for the implementation
of quantum information processing [1]. With entanglement
speculated to be a key phenomenon on these occasions, an
efficient approach to the detection of entanglement is crucial
for understanding its profound roles [2]. The spin of cold atoms
is also widely used for precision measurements of external
fields. A topic of current interest is quantum metrology, which
utilizes quantum properties and particularly entanglement in
the probe system to reach measurement sensitivity beyond the
standard quantum limit (SQL) [3].

To address these outstanding demands in the exploration of
quantum physics and quantum technology using cold atomic
ensembles, the key is efficient access to the right piece of
information in the spin subspace. An ideal interface between
spin and photon is offered by the process of spontaneous
Stokes scattering [4–13]: with a laser driving an ensemble
of atoms in the � configuration, a collective spin excitation
can be spontaneously converted into a Stokes photon with
phase and wave vector preserved. One may thus anticipate
that the photon-diffraction pattern can provide information
on collective spin properties. Earlier studies on the diffrac-
tion of collectively emitted photons have focused on the
super-radiance phenomenon (i.e., induced directional coherent
radiation) in very dense atomic ensembles [14–16], or in
ensembles prepared with a single excitation [17–21].

In this paper, we show that the far-field diffraction image of
spontaneously emitted Raman photons can be used for detec-
tion of spin entanglement and for precision measurements of
the gradient vector of external fields in cold atomic ensembles.
We find that the strength of a sharp diffraction peak or dip
measures the sum of the spin pair correlations and detects
entanglement through pair-correlation sum rules that we derive
from optimal spin-squeezing inequalities [22–25]. For many-
body states with small or maximum uncertainty in the spin-
excitation number, entanglement is simply witnessed by the
presence of the peak or dip. Inhomogeneous spin precessions
in a field gradient lead to displacement of the diffraction peak
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(dip), which can serve as a principle for vector metrology
of fields gradients and for calibration of inhomogeneity in
optical lattices. The gradiometer sensitivity can reach 1/N

by using a spin-coherent-state of N unentangled atoms as the
probe, which suggests a possibility for going beyond the SQL
of 1/

√
N without entanglement [26–29]. Motional dynamics

leads to temporal decay of the diffraction peak which can
be used for a nondemolition probe of the temperature and
collisional interactions in trapped atomic gases.

Two remarkable features make this approach particularly
suitable for ensembles with large numbers of atoms. First,
regardless of the ensemble size, the spin-dephasing noise
as a major error source results only in decay of the peak
(dip) strength on a time scale equal to the dephasing time
of a single spin. Second, the number of useful photons from
a single copy of a many-body state can be as large as its
spin-excitation number for cold atomic ensembles, which are
typically dilute (i.e., with interatomic distance comparable
to or larger than the optical wavelength). This approach
complements existing optical methods for probing many-body
quantum states [30–36], and is readily applicable in other
systems including molecular ensembles, trapped ions, and
solid-state spin ensembles.

The rest of the paper is organized as follows. In Sec. II, we
analyze the the far-field diffraction pattern of Raman photons
and show how to extract the pair-correlation sum of the atomic
spins. In Sec. III, we derive pair-correlation sum rules for de-
tecting entanglement. In Sec. IV, we analyze the time evolution
of the diffraction pattern from dilute ensembles. In Sec. V,
we discuss the use of the diffraction pattern for precision
measurements of the field gradient and for a nondemolition
probe of the atomic motion and temperature. Section VI is a
brief summary of the paper. Additional supplementary details
on the derivations are grouped in the Appendices.

II. DIFFRACTION PATTERN OF STOKES PHOTONS

Consider an optically thin cold atomic ensemble with a �

level configuration where two atomic ground states |g〉 and
|s〉 can be optically coupled to a common excited state |e〉
(Fig. 1, inset). The ensemble is driven by a laser with Rabi
frequency �L, detuning �, and wave vector k0 = k0ẑ. We
assume that the atomic motion can be taken as frozen for the
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FIG. 1. (Color online) Far-field diffraction image of Stokes photons from permutation-symmetric dilute ensembles. The pair-correlation
sum P in the many-atom state of interest manifests as a sharp diffraction peak (for P > 0) or dip (for P < 0) along the forward direction, with
strength proportional to |P | and width inversely proportional to the ensemble size.

duration of photon emission. With the laser coupling the |s〉 to
|e〉 transition, an atom can go from state |s〉 to |g〉 by emitting
a Stokes photon into the vacuum. When � is much larger
than �L and the excited state’s homogeneous linewidth �0,
|e〉 can be adiabatically eliminated, leading to the effective
light-atom coupling in the electric-dipole and rotating-wave
approximations:

Ĥ =
∑

k

h̄ωkâ
†
kâk +

∑
j

Ezσ̂
z
j

+
∑

k

gk

∑
j

e−i(k−k0)·rj σ̂−
j â

†
k + H.c. (1)

Here gk = �L

2�

√
2πωk

V
êk · μ, êk and μ being respectively the

unit polarization vector and the single-atom dipole. σ̂−
j ≡

|g〉j 〈s| and σ̂ z
j ≡ |s〉j 〈s| − |g〉j 〈g|. We assume that anti-

Stokes scattering is either forbidden by the polarization
selection rule or suppressed by the much larger detuning when
Ez � h̄�.

Emission of a Stokes photon into mode k = (k,θ,ϕ)
is accompanied by the annihilation of a spin excitation
by Ĵ−(�k) ≡ ∑N

j=1 e−i�k·rj σ̂−
j , �k = k − k0. The angu-

lar distribution of the photon emission rate is given by
I (θ,ϕ,t) = Is(θ )Ic(θ,ϕ,t). Is is the single-atom dipole emis-
sion pattern, a slowly varying function of θ . Ic(θ,ϕ,t) ≡
Tr[Ĵ+(�k)Ĵ−(�k)ρ(t)] is a collective factor where ρ(t) is the
atomic density matrix. At the initial time of photon emission,

Ic(θ,ϕ,0) = 〈N̂s〉 +
∑
j �=j ′

e−i�k·(rj −rj ′ )〈σ̂+
j ′ σ̂

−
j 〉

= 〈N̂s〉 − P

N − 1
+ P

∣∣〈 ∑
j e−i�k·rj

〉∣∣2

N2 − N
, (2)

where N̂s ≡ ∑
j (σ̂ z

j + 1)/2 is the spin-excitation number
operator. Here and hereafter 〈· · · 〉 denotes the expectation
value over ρ(0), the initial many-body state of interest.
P ≡ 〈∑j �=j ′ σ̂

+
j ′ σ̂

−
j 〉 is the sum of spin pair correlations. The

last equals sign in Eq. (2) holds when ρ(0) is invariant under
permutation of atoms, which is the typical situation for atom
gases. |〈∑j e−i�k·rj 〉|2 is a sharp feature which equals N2

along the forward direction (θ = 0) and drops to zero for

θ � θb ≡ min{
√

π
k0H

, 2π
k0A

} where A and H are respectively

the transverse and longitudinal sizes of the ensemble (Fig. 1).
Thus, a positive (negative) pair-correlation sum manifests as a
sharp diffraction peak (dip), and its magnitude can be read out
from the ratio of the peak (dip) to the background:

I (θ = 0) − I (θb)

I (θb)
= P

〈N̂s〉 − P/N
. (3)

For general states in optical lattices without permutation
symmetry, P can be measured after sudden release of atoms
into a spin-independent trap [1]. The density matrix averaged
over many ensemble copies will become permutation symmet-
ric after atoms lose memory of their initial positions, while
P is preserved by the atomic motions. Moreover, we find
that the pair-correlation sum of a dilute hot atomic vapor can
be measured in the same way if Stokes photon emission is
controlled to be much slower than the atomic motions (see the
last part of Appendix A).

III. ENTANGLEMENT DETECTION

The pair-correlation sum measured from the peak- (dip-)
to-background ratio [Eq. (3)] can detect entanglement via spin-
squeezing inequalities [22–25]. The longitudinal component

042303-2



ENTANGLEMENT DETECTION AND QUANTUM METROLOGY . . . PHYSICAL REVIEW A 87, 042303 (2013)

(a) (b)

(d)

M

J 
0

0

N

2

N

2

N

2

N /2 N /40

Ns Ns

N,
N

2
,

N

4

N,
N

2
,

N

2

N

2
, 0,

N

4

N

2
, 0,

N

2

P

Ns

P

(c)

N 2 /4

N /2

N /2

N /2

N

2

Ns = N

2
, P = N(N 1)

4

Ns = N

2
, P = N

4

0

4.999

4.998

0.7002

0.7000

0

2

4

0

1

2

a.
u.

 
a.

u.
 

ra
ti

o 
ra

ti
o 

c

0 1 2 3 4 5

0, 0, 0( )

violating (4a)

violating (4c)

violating (4b)

peak

background

background

dip

FIG. 2. (Color online) (a) Phase diagram in the parameter space (〈N̂s〉,�Ns,P ). States in the surrounded region are all entangled ones.
(b) A slice of (a) taken for 〈N̂s〉 = N/2. The red, blue, and green regions are entangled states violating inequalities (4a), (4b), and (4c),
respectively. The gray surfaces in (a) and the black curves in (b) are boundaries between physical and unphysical regions. Positive and
negative sections of the P axis use different linear scales. (c) Strength of the diffraction peak (red) or dip (blue) for eigenstates of total
spin Ĵ 2 and Ĵz. Inequalities (4a) and (4b) are violated in the peak and dip regions, respectively. States violating inequality (4c) form a
subset of the dip region, to the left of the dashed curve. (d) Upper (lower): Peak- (dip-) to-background ratio as a function of the collection
interval τc for a half-spin-excitation state with P = 2.5N (P = −0.35N ), shown as the black curve. The calculation is for N = 4000
atoms of a two-dimensional (2D) Gaussian distribution with FWHM A = 100 μm. Peak or dip (background) strength is evaluated at θ = 0
(θ = 2π/k0A), shown by the red (blue) solid curve. Dashed curves are calculations with the multiple light scattering and dipole-dipole interaction
neglected.

of the total spin is equivalent to the spin-excitation number,
N̂s ≡ Ĵz + N/2, and the second moment of the transverse
component is equivalent to the pair-correlation sum, 〈Ĵ 2

x 〉 +
〈Ĵ 2

y 〉 = P + N/2. Many spin-squeezing inequalities derived
for first and second moments of the total spin can thus be
formulated as pair-correlation sum rules. For example, the
optimal spin-squeezing inequalities discovered in Ref. [24]
become

P � (N − 1)�N2
s , (4a)

P � −�N2
s , (4b)

(N − 1)P �
〈
N̂2

s

〉 − N〈N̂s〉, (4c)

where �Ns ≡ (〈N̂2
s 〉 − 〈N̂s〉2)1/2. Violation of any one of the

inequalities (4a)–(4c) implies entanglement. With the spin-
excitation number N̂s conserved in most physical processes of
interest, its expectation value is usually known a priori.

�Ns can also be measured from the peak- (dip-) to-
background ratio in the diffraction image taken after a global
rotation of the ensemble. With a π/2 rotation about an in-plane
axis transforming Ĵ x → Ĵ z or Ĵ y → Ĵ z, 〈Ĵ 2

y 〉 + 〈Ĵ 2
z 〉 − N/2

or 〈Ĵ 2
x 〉 + 〈Ĵ 2

z 〉 − N/2 can be obtained from the peak- (dip-)
to-background ratio in the diffraction image, from which we
can solve for �Ns .

Entanglement detection based on the above pair-correlation
sum rules is described by the phase diagrams shown in
Figs. 2(a)–2(c). Qualitative criteria become possible for
entanglement witnesses in two limits. With vanishing �Ns

the presence of either a diffraction peak or dip verifies
entanglement, while with maximum �Ns the presence of a dip
verifies entanglement [Figs. 2(a) and 2(b)]. On the other hand,
a peak (dip) strength exceeding some threshold value always
implies entanglement. Taking half-spin-excitation states for
example, observation of a dip-to-background ratio |r| � 1

2 or
a peak-to-background ratio r � N(N−1)

N+1 verifies entanglement
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for any possible �Ns . P and �Ns can also quantify the
entanglement depth in the vicinity of Dicke states [25].

Furthermore, the diffraction image can be used to measure
delocalized entanglement as defined in Ref. [37] for atoms
in optical lattices. A measure of the bipartite delocalized
entanglement at a specified distance x is given by the en-
tanglement of formation for the delocalized bipartite reduced
density operator

ρAB(x) ≡ 1

Cx

∑
j

ρj,j+x. (5)

Here Cx is the normalization coefficient which corresponds
to the number of pairs {j,j + x}. ρj,j+x denotes the two-qubit
reduced density matrix deduced from the initial ensemble state
ρ(0), where only the sites j and j + x of the lattice are kept
while all others are traced out.

As shown in Ref. [37], the lower bound of entanglement
of formation for ρAB(x) can be evaluated from the fidelity
fφ(x) ≡ 〈φ|ρAB(x)|φ〉, with φ being one of the four Bell states
�± and �±. The fidelity is found to be

f�± (x) = 1 − Tr
[ ∑

j σ̂
z
j σ̂ z

j+xρ(0)
]

4
± Px + P−x

2
, (6)

where the correlation Px ≡ Tr[
∑

j σ̂
+
j σ̂−

j+xρ(0)]. f�± (x) can be
obtained from f�± (x) by applying a global unitary transfor-
mation.

Equation (2) can be rewritten as Ic(θ,ϕ,0) = 〈N̂s〉 +∑
x e−i�k·xCxPx. The correlation Px for arbitrary x can there-

fore be obtained through a Fourier transform of the diffraction
image. Note that Px + P−x = Tr[

∑
j(σ̂

x
j σ̂ x

j+x + σ̂
y

j σ̂
y

j+x)ρ(0)].
Thus, Tr[

∑
j σ̂

z
j σ̂ z

j+xρ(0)] can also be obtained by applying a
global rotation to all spins to transform σ̂ x → σ̂ z or σ̂ y → σ̂ z.

IV. PERTURBATIVE SOLUTION OF
THE ATOMIC EVOLUTION

Hereafter, we focus on dilute ensembles where the inter-
atomic distance is comparable to or larger than the optical
wavelength. Remarkably, under this condition, one can collect
all Stokes photons, not only those initial ones, for measuring
the pair-correlation sum and detecting entanglement in ρ(0).

The diffraction pattern at an arbitrary time is determined
by the instantaneous atomic density matrix ρ(t) which differs
from ρ(0). As well established in the literature of superradiance
[16], the evolution of ρ(t) is described by the Lindblad master
equation in the Born-Markov approximation,

ρ̇(t) = L0ρ(t) + L1ρ(t),

L0ρ ≡ �

2

∑
j

(2σ̂−
j ρσ̂+

j − σ̂+
j σ̂−

j ρ − ρσ̂+
j σ̂−

j ),

(7)
L1ρ ≡

∑
j �=j ′

�jj ′

2
(2σ̂−

j ρσ̂+
j ′ − σ̂+

j ′ σ̂
−
j ρ − ρσ̂+

j ′ σ̂
−
j )

+ i
∑
j �=j ′

Gjj ′

2
[σ̂+

j ′ σ̂
−
j ,ρ],

where �jj ′ = �
sin(k0|rj −rj ′ |)

k0|rj −rj ′ | and Gjj ′ = �
cos(k0|rj −rj ′ |)

k0|rj −rj ′ | describe
respectively multiple light scattering and the dipole-dipole

interaction [16,20]. In the study of super-radiance phenomena
in very dense atomic ensembles, these effects must be taken
into account nonperturbatively [14]. �jj ′ and Gjj ′ drop fast
with distance. In dilute atomic ensembles where the atom-atom
distance is comparable to or larger than the photon wavelength,
the atomic evolution can be solved perturbatively. Using the
Laplace transform w(z) = ∫ ∞

0 dte−ztρ(t), we have

w(z) = 1

z − L0 − L1
ρ(0).

For k0|rj − rj ′ | � 2π , L1 is small compared to L0,
and we make a perturbative expansion 1

z−L0−L1
= 1

z−L0
+

1
z−L0

L1
1

z−L0
+ · · · . By inverse Laplace transform we can get

the solution of the atomic density matrix ρ(n) keeping up to
nth-order effects of L1.

For the zeroth-order solution ρ(0)(t) = eL0t ρ(0), we find
Tr[Ĵ+(�k)Ĵ−(�k)ρ(0)(t)] = e−�tTr[Ĵ+(�k)Ĵ−(�k)ρ(0)],
i.e., the initial diffraction pattern is preserved for all time.
Comparisons with the exact solution of the master equation
for a chain of 12 atoms show that the perturbation expansion
converges fast for k0|rj − rj ′ | � 2π , and the effects of
multiple light scattering and the dipole-dipole interaction are
well accounted for by keeping only the first-order effects of
the L1 term:

ρ(1)(t) = ρ(0)(t) +
∫ t

0
dτeL0τ [L1ρ

(0)(t − τ )].

The L1 term leads to a slowly varying modulation of the
diffraction pattern, which barely changes the ratio of the
sharp peak (dip) to its neighboring background. Details of this
modulation and the convergence check for the perturbative
solutions can be found in Appendix A.

Based on this perturbative solution, we analyze the diffrac-
tion pattern of Stokes photons as a function of the collection
time τc. We find that the weak processes of L1 result in only
a slowly varying modulation of the diffraction pattern, barely
changing the ratio of the sharp peak or dip to its neighboring
background. Namely,

r(τc) ≡ n(θ = 0,τc) − n(θb,τc)

n(θb,τc)
∼= P

〈N̂s〉 − P/N
, (8)

where n(θ,ϕ,τc) ≡ δ�
∫ τc

0 dtI (θ,ϕ,t) is the number of pho-
tons emitted into an infinitesimal solid angle in the col-
lection interval 0 � t � τc. For a dilute ensemble Eq. (8)
holds for arbitrarily large τc [cf. Fig. 2(d)]. Thus the pair-
correlation sum can be faithfully read out from the diffraction
pattern of all photons and is not limited to those initial
ones.

We estimate the range of applicability of our treatment.
The dilute condition is satisfied by typical cold atom gases of
a density 1010–1012 cm−3 or by atoms in an optical lattice.
The duration of Stokes photon emission is on the time scale
�−1 = (�L

2�
)−2�−1

0 . The excited-state decay rate �0 � 30 μs−1

for typical alkali-metal atoms [6–13]. Taking (�L

2�
)−2 ∼ 40, all

Stokes photons are emitted on a time scale �−1 � μs. For
cold atom gases with a temperature of 1–100 μK, the average
velocity is 0.01–0.1 m/s. Atoms can travel only 10–100 nm in
the duration of �−1 which is indeed negligible as compared to
the light wavelength.
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FIG. 3. (Color online) Diffraction images (bottom panels) from atomic ensembles in different spin configurations (top panels). (a) Spin-
coherent state with in-plane polarization. (b) Evolution in a Zeeman field gradient; a phase gradient of spins is imprinted, resulting in a
displacement of the diffraction peak, which can form the principle of a gradiometer. (c) Atomic motions diminish the spin polarization,
resulting in decay of the displaced peak. This can be the principle for nondemolition measurement of the atomic temperature and collisional
interactions.

V. FIELD GRADIOMETER AND NONDEMOLITION
PROBE OF ATOMIC MOTIONS AND TEMPERATURE

Under free evolution, the pair-correlation changes as
Tr[σ̂+

i ′ σ̂−
i ρ(τ )] = ei(ηiτ−ηi′ τ )−2γ τ Tr[σ̂+

i ′ σ̂−
i ρ(0)], where ηi is

the Zeeman frequency and γ the homogeneous dephasing rate
of an individual spin. The pair-correlation sum thus decays
only at the single-spin dephasing rate. Therefore entanglement
in ρ(0) can be reliably detected from the dephased state
ρ(τ ) as long as τ � γ −1, even when the fidelity becomes
exponentially small with N [25].

The spatial inhomogeneity of external fields leads to a
position-dependent Zeeman frequency η(r) and hence inho-
mogeneous precession of spins. If the size of the ensemble
is small compared to the variation length scale of the field,
the dominating term is the gradient: η(r) ∼= r · ∇η. For an
ensemble initially in a permutation-symmetric state, after
an interval τ0 with frozen motion in the Zeeman field
gradient, the diffraction pattern becomes Ic = 〈N̂s〉 − P

N−1 +
P

N2−N
|〈∑j e−i(�k−τ0∇η)·rj 〉|2. We focus on situations where

∂zη is either zero or not picked up by atomic ensembles of
a quasi-2D geometry in the x-y plane. The in-plane gradient
simply results in a displacement of the sharp diffraction peak or
dip, preserving its strength and shape (Fig. 3). This has several
significant consequences. First, by evolution in an external
field of known gradient, entanglement can be detected by
measuring the peak or dip along a chosen direction with finite
θ , such that the detectors do not pick up laser photons. Second,
the displacement measures the vector value of the gradient. It
can thus be used as the principle of a vector gradiometer of
a magnetic field, a static electric field via the dc Stark effect,
and a light field via the ac Stark effect [12].

An ideal probe state is the spin-coherent state of N

unentangled atoms with in-plane polarization, which can be
realized by optical pumping followed by a spin rotation to the

in-plane direction. The gradient is then probed simultaneously
by the ∼N2 classical pair correlations, and its vector value is
encoded as the displacement of a diffraction peak with strength
∼N2.

Now we analyze the sensitivity of our diffraction-based
Zeeman field gradiometer. Consider the atoms in the 1D
geometry illustrated in Fig. 4(a) with a Gaussian spatial
distribution of full width at half maximum (FWHM) A. Atoms
are initialized in the spin-coherent state and evolved in the
Zeeman field gradient for an interval of τ0. The diffraction
pattern is then N2

4 f (θ ) + N
4 , where f (θ ) ≡ e−[(k0A)2/4](θ−θ0)2

is a sharp peak centered in a tilted direction: θ0 = k−1
0 τ0∂xη.

Our goal is to extract this direction from the photon statistics.
The field gradient can then be inferred based on the above
relation. The spatial resolution of the gradiometer is just given
by the size of the atomic ensemble A. The precision of this
measurement is determined by the width of the peak ( 1

k0A
), the

shot noise of the photon counts, and the angular resolution (δθ )
of the CCD detector array. While the CCD angular resolution
can always be improved by increasing the distance from the
atomic ensemble, the former two factors will determine the
quantum limit for the sensitivity of this gradiometer. We will
examine the increase of the sensitivity with the number of
atoms N used in the probe. Our discussion is limited to the
dilute regime (i.e., k0A/N � 2π ).

In a single probe using N atoms, the photon counts at each
CCD pixel can be written as ni + �ni , where ni and �ni are
respectively the expectation value and the fluctuation of the
photon counts. We have

ni =
∫ θi+δθ/2

θi−δθ/2
dθ

(
N2

4
f (θ ) + N

4

)
= δθ

N2

4
f̄ (θi) + δθ

N

4
,

(9)
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FIG. 4. (Color online) Zeeman field gradiometer using a 1D atomic ensemble. (a),(b) Schematic of the setup. The ensemble and a 1D CCD
array are placed respectively on the two common focus lines of a group of elliptical cylinder mirrors. The mirrors ensure that the majority of
photons is collected by the detector. The smallest ensemble can be an atom pair, giving a direct analog of double-slit interferometry. (c) Signal
of N/2 probes using atom pairs (upper panel) and single probe using N atoms collectively (lower panel), with each atom placed randomly
on the focus line according to a Gaussian distribution with FWHM A. The peak strength in the lower panel is enhanced by a factor of N .
(d) Gradiometer sensitivity at a spatial resolution A = 1 mm with a resource of N unentangled atoms. The diffraction-based gradiometer using
N atoms collectively (N/2 atom pairs independently) has a sensitivity of 1/N (1/

√
N ) scaling, shown by the solid (dashed) black line. The

sensitivity of flying-atom Mach-Zehnder interferometry (MZI) gradiometer is shown for Ref. [38]. The probe time τ0 = A/�v = 0.1 s for the
blue line, limited by a finite velocity uncertainty �v = 1 cm/s, while τ0 = 1 s for all other lines, limited only by the single-spin dephasing
time.

where f̄ (θi) ≡ 1
δθ

∫ θi+δθ/2
θi−δθ/2 dθf (θ ). Here we assume that the

ith pixel of the detector collects all photons emitted within the
angle range [θi − δθ

2 ,θi + δθ
2 ], where θi ≡ iδθ . As shown in

Appendix B, the photon statistics is found to be Poissonian
when the probe state is a spin-coherent state, and we have〈

�n2
i

〉 ∼ ni. (10)

From the photon statistics {ni + �ni}, we can extract the
peak central position θc defined as

θc =
∑

i θi(ni + �ni)∑
i(ni + �ni)

. (11)

θc unavoidably has some deviation from θ0, and the peak-
position precision is then defined as

√
(θc − θ0)2. Our analysis

shows (see Appendix C) that, when θc from a single probe
is used to extract the Zeeman field gradient ∂xη, the overall

precision is

�(∂xη) ∼ k0

τ0

√
4π−1/2

N2k0A
+ (k0A)4δθ6. (12)

For small δθ , the sensitivity is �(∂xη) ∼ k0
τ0

1
N

√
k0A

which scales
inversely with N .

The smallest ensemble for the gradiometer can just be
an atom pair prepared in a spin-coherent state which emits
one photon on average in each probe. We can make N/2
independent probes using such atom pairs and extract the field
gradient from the integrated signal. For one atom at position
x1 and the other atom at x2, the photon has an emission
distribution of ∼1 + 1

2 cos [k · (x1 − x2)] see Fig. 4(b). This
is a direct analog of double-slit interferometry. We assume
that each atom has a fixed position during a single probe but
it can randomly appear on a 1D line according to a Gaussian
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distribution proportional to e−2x2/A2
with full width at half

maximum A for multiple probes. Summing over N/2 probes,
the total photon distribution pattern is N

2 + N
4 e−(kxA)2/4. The

peak strength is thus ∼N . Following the previous derivations,
we find that the sensitivity for measuring the Zeeman field
gradient is k0

τ0

1√
Nk0A

with 1/
√

N scaling.
Thus, a single collective probe using N atoms has sensitivity

∼ 1
N

k0

τ0
√

k0A
, which goes beyond the SQL of ∼ 1√

N

k0

τ0
√

k0A
for

N/2 independent probes using atom pairs, as shown in
Fig. 4(d). The enhancement comes from the N2 scaling of
the peak strength, which is the result of using a large group
of atoms collectively. In Fig. 4(d), we also compare with a
gradiometer based on a Mach-Zehnder interferometer of flying
atoms in an atomic fountain which has the SQL sensitivity of
∼ 1√

N

1
τ0A

, while the inevitable velocity uncertainty further sets
a tighter upper bound for τ0 dependent on the spatial resolution
A (see Appendix D).

The collectively enhanced sensitivity with 1/N scaling
is valid in the dilute regime N � k0A. Beyond this regime,
multiple light scattering cannot be treated perturbatively and
its effect will eventually renormalize the peak strength to the N

scaling. When atoms are trapped in optical lattices, the probe
time τ0 can be as long as the single-spin homogeneous dephas-
ing time, on the order of 1 s or longer [12]. This diffraction-
based gradiometer using stationary atoms is immune to collec-
tive noises and uncertainty in atomic positions, and can have
a fine spatial resolution (given by the size of the ensemble).
Remarkably, for the scheme to work, the probe state does not
need to have a high degree of spin polarization as an imperfect
polarization p just scales down the sensitivity by 1/p.

The diffraction image can also be used for a nondemolition
probe of atomic motions and temperature in trapped cold
atom gases, by introducing a waiting time τ1 between the
imprinting of the phase gradient ∇φ on the spin-coherent
state and the measurement of the Stokes photon diffraction
(Fig. 3). Atomic motions in the interval τ1 will diminish
the spin polarization, resulting in decay of the displaced
diffraction peak [11]. For |∇φ|2〈�r2〉 � 1, the peak strength
is N2

4 e−|∇φ|2〈�r2〉/3, 〈�r2〉 being the mean square displacement
of the atoms. For short τ1 when �r is small compared to the
interatomic distance d, 〈�r2〉 = 2 kBT

m
τ 2

1 . Thus, by preparing
a large phase gradient |∇φ| ∼ 1/d, the short-time motion can
be probed and the atomic temperature can be read out from
the decay of the peak. A smaller |∇φ| allows the probe of
long-time motion which will eventually cross over to the dif-
fusive regime by atomic collisions. τ1 is upper limited by the
spin-dephasing time, which is long enough for observing the
entire crossover behavior from ballistic to diffusive motion,
providing information about the collisional interactions in
trapped gases. The collectively enhanced peak strength of ∼N2

provides sufficient signal-to-noise ratio for determining 〈�r2〉
at a given τ1 by a single-shot measurement.

VI. SUMMARY

In conclusion, we have shown that the far-field diffraction
image of spontaneously emitted Raman photons can be used
for detection of spin entanglement in cold atomic ensembles
as well as for quantum metrology applications. For many-

body states with small or maximum uncertainty in the spin-
excitation number, entanglement is witnessed by the presence
of either a sharp diffraction peak or a dip. For general states,
the relative strength of the peak or dip over its background
detects entanglement through the pair-correlation sum rules
derived from spin-squeezing inequalities. Spin precessions in
a Zeeman field gradient lead to displacement of the diffraction
peak or dip while atomic motions lead to decay of its strength.
These can serve as principles for a vector gradiometer of fields
and for nondemolition measurements of the atomic tempera-
ture and collisional dynamics. The gradiometer sensitivity can
reach 1/N by use of a spin-coherent state of N unentangled
atoms as the probe, which suggests a possibility for going
beyond the SQL without entanglement. Motional dynamics
leads to temporal decay of the diffraction peak which can
be used for a nondemolition probe of the temperature and
collisional interactions in trapped atomic gases.
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APPENDIX A: PERTURBATIVE SOLUTION
TO THE MASTER EQUATION

We assume that the wave vector k0 of the driving laser is
perpendicular to the ensemble (i.e., k0 · ri = 0). For simplicity
of expression, below we replace �k ≡ k − k0 by k when it
appears in Ĵ−(�k).

The number of photons collected in a time τc along
direction k within the infinitesimal solid angle δ� is written
as np(k,τc) = � δ�

4π

∫ τc

0 dtTr[Ĵ+(k)Ĵ−(k)ρ(t)]. Here we have
ignored the slowly varying single-atom dipole emission
pattern. ρ(t) can be obtained from the master equation [Eq. (7)]
by viewing the L1 term as a perturbation.

We use the notation ρ(n)(t) and 〈· · · 〉(n)
t ≡ Tr[· · · ρ(n)(t)]

to describe the result keeping up to the nth-order effect of
L1. For the zeroth-order result ρ(0)(t) = eL0t ρ(0), we have
〈σ̂+

m σ̂−
n 〉(0)

t = e−�t 〈σ̂+
m σ̂−

n 〉0. Then

n(0)
p (k,τc) = δ�

4π
(1 − e−�τc )〈Ĵ+(k)Ĵ−(k)〉0. (A1)

Below we solve for ρ(1)(t) which captures the leading-order
effect of L1, and show that it is sufficient to account for the
effect of L1 in the dilute limit. We consider an N -atom 1D
lattice. In the first-order approximation, the equation of motion
for the pair correlation is

d〈σ̂+
m σ̂−

n 〉(1)
t

d(�t)

= −〈σ̂+
m σ̂−

n 〉(1)
t +

∑
j �=n

(
�jn

2�
− i

Gjn

2�

) 〈
σ̂+

m σ̂−
j σ̂ z

n

〉(0)
t

+
∑
j �=m

(
�jm

2�
+ i

Gjm

2�

) 〈
σ̂ z

mσ̂+
j σ̂−

n

〉(0)
t

. (A2)
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We denote �j ≡ �n±j,n = �
sin |jkd|
|jkd| , Gj ≡ Gn±j,n =

�
cos |jkd|

|jkd| , a
(0)
t ≡ 〈σ̂+

m σ̂−
m 〉(0)

t , and p
(0)
t ≡ 〈σ̂+

m σ̂−
n 〉(0)

t,m�=n. Then

d〈σ̂+
n σ̂−

n 〉(1)
t

d(�t)
= −〈σ̂+

n σ̂−
n 〉(1)

t − p
(0)
t

⎛
⎝N−n∑

j=1

+
n−1∑
j=1

⎞
⎠ �j

�
,

d〈σ̂+
m σ̂−

n 〉(1)
t,m�=n

d(�t)
= −〈σ̂+

m σ̂−
n 〉(1)

t,m�=n + 2B
(0)
t

�m−n

�

+α
(0)
t

⎛
⎝N−n∑

j=1

+
n−1∑
j=1

⎞
⎠ (

�j

�
− i

Gj

�

)

+α
(0)
t

⎛
⎝N−m∑

j=1

+
m−1∑
j=1

⎞
⎠ (

�j

�
+ i

Gj

�

)
,

(A3)

where α
(0)
t ≡ 1

2 〈σ̂+
j σ̂−

m σ̂ z
n 〉(0)

t,j �=m�=n is the three-body correla-

tion, and B
(0)
t ≡ 1

2 〈σ̂+
m σ̂−

m σ̂ z
n 〉(0)

t,m�=n − α
(0)
t .

Using 〈Ĵ+(k)Ĵ−(k)〉(1)
t = ∑

n〈σ̂+
n σ̂−

n 〉(1)
t + ∑

m�=n

eik·(rm−rn)〈σ̂+
m σ̂−

n 〉(1)
t and switching the summation index as

N∑
n=1

⎛
⎝N−n∑

j=1

+
n−1∑
j=1

⎞
⎠ =

N−1∑
j=1

⎛
⎝N−j∑

n=1

+
N∑

n=j+1

⎞
⎠ , (A4)

we write

d〈Ĵ+(k)Ĵ−(k)〉(1)
t

d(�t)

= −〈Ĵ+(k)Ĵ−(k)〉(1)
t + 4(N − j )

×
N−1∑
j=1

�j

�

[
B

(0)
t cos(jk · d) − 1

2
p

(0)
t − α

(0)
t

]

+α
(0)
t

⎡
⎣N−1∑

j=1

(
�j

�
− i

Gj

�

)
fj (k) + c.c.

⎤
⎦ , (A5)

where d is the vector connecting neighboring atoms, and

fj (k) ≡
(

N∑
m=1

eik·rm

) ⎛
⎝N−j∑

n=1

+
N∑

n=j+1

⎞
⎠ e−ik·rn

= 2 cos2

(
jk · d

2

)
sin2

(
Nk·d

2

)
sin2

( k·d
2

)
− sin(Nk · d) sin(jk · d)

2 sin2
( k·d

2

) . (A6)

As �j ,Gj ∼ 1
jkd

, only those j terms with j � N make

significant contributions. Thus sin(Nk·d) sin(jk·d)
2 sin2( k·d

2 )
can be ignored

compared to cos2( jk·d
2 )

sin2( Nk·d
2 )

sin2( k·d
2 )

. Then

d〈Ĵ+(k)Ĵ−(k)〉(1)
t

d(�t)

≈ −〈Ĵ+(k)Ĵ−(k)〉(1)
t + 2α

(0)
t

p
(0)
t

∑
j>0

�j

�
[cos(jk · d) + 1]

×〈Ĵ+(k)Ĵ−(k)〉(0)
t + N

∑
j>0

�j

�
[C2 cos(jk · d) + C3],

(A7)

with C2 ≡ 4B
(0)
t − 2α

(0)
t ( a

(0)
t

p
(0)
t

− 1) and C3 ≡ −2p
(0)
t −

2α
(0)
t ( a

(0)
t

p
(0)
t

+ 1). In the above equation we have used the

relation 〈Ĵ+(k)Ĵ−(k)〉(0)
t = N (a(0)

t − p
(0)
t ) + p

(0)
t

sin2( Nk·d
2 )

sin2( k·d
2 )

.

The time dependences of a
(0)
t , p

(0)
t , α

(0)
t , and B

(0)
t are easily

obtained from ρ(0)(t):

a
(0)
t = e−�ta

(0)
0 , p

(0)
t = e−�tp

(0)
0 ,

α
(0)
t = e−2�tα

(0)
0 − 1

2e−�t (1 − e−�t )p(0)
0 , (A8)

B
(0)
t = 1

4e−2�t
〈(
σ̂ z

m + 1
)(

σ̂ z
n + 1

)〉
0 − 1

2e−�ta
(0)
0 − α

(0)
t .

Solving the differential equation (A7), we obtain the photon-
diffraction pattern under the first-order approximation:

n(1)
p (k,τc)

= �
δ�

4π

∫ τc

0
dt〈Ĵ+(k)Ĵ−(k)〉t

≈ δ�

4π
N

∑
j>0

�j

�
[f2(τc) cos(jk · d) + f3(τc)]

+ δ�

4π

⎡
⎣1 − e−�τc + f1(τc)

∑
j>0

�j

�
[cos(jk · d) + 1]

⎤
⎦

×〈Ĵ+(k)Ĵ−(k)〉0, (A9)

where

f1(τc) = (1 − e−�τc )2 α
(0)
0

p
(0)
0

+ �τce
−�τc + 1

2
e−2�τc − 1

2
,

f2(τc) = 1

2
(1 − e−�τc )2〈(σ̂ z

m + 1
)(

σ̂ z
n + 1

)〉
0

+ (1 − �τce
−�τc − e−�τc )

(
p

(0)
0 − a

(0)
0

)
(A10)

− (1 − e−�τc )2

(
α

(0)
0

p
(0)
0

+ 1

2

)(
a

(0)
0 + p

(0)
0

)
,

f3(τc) = −(1 − e−�τc )2

(
α

(0)
0

p
(0)
0

+ 1

2

)(
a

(0)
0 + p

(0)
0

)
+ (1 − �τce

−�τc − e−�τc )
(
a

(0)
0 − p

(0)
0

)
.

f1(τc),f2(τc),f3(τc) ∼ O((�τc)2) for �τc � 1.
Comparing Eqs. (A1) and (A9), we can see that the mod-

ulation of the diffraction pattern by multiple light scattering
is described by cos(jk · d). The dipole-dipole interaction with
coefficients Gj has a vanishing first-order effect, and thus
it does not appear in our derivation above. Obviously for
j � N the modulation is slowly varying in k space. We
are interested only in the diffraction pattern in the neighbor-
hood of the forward direction where cos(jk · d) ≈ 1; then
n(1)

p (τc → ∞) = β1n
(0)
p (τc → ∞) + δ�

4π
Nβ2, with β1 = 1 +

2f1(τc → ∞)
∑

j>0
�j

�
and β2 = [f2(τc → ∞) + f3(τc →

∞)]
∑

j>0
�j

�
. The peak- or dip-to-background ratio of the

initial diffraction pattern (i.e., as τc → 0) is r (0) = N2p
(0)
0

N[a(0)
0 −p

(0)
0 ]

,
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FIG. 5. (Color online) Diffraction pattern of Stokes photons
emitted by a chain of ten atoms initially in the spin-coherent state with
in-plane polarization ⊗10

j=1
|↑〉j +|↓〉j√

2
. With the collection interval T =

5/�, 99.3% of all spin excitations are converted into Stokes photons,
and with T = 0.1/�, 10% of all spin excitations are converted into
Stokes photons. Red dashed lines: exact numerical solution of the
master equation Eq. (7). Blue solid lines in (a)–(c): perturbative
solution keeping the first-order effect of L1 [i.e., Eq. (A9)]. Blue solid
lines in (d)–(f): the zeroth-order solution without L1 [i.e., Eq. (A1)].

which measures the pair-correlation sum of the initial atomic
state of interest. In the diffraction pattern of all emitted photons
(i.e., as τc → ∞), it becomes

r (1) = β1N
2p

(0)
0 + Nβ2

β1N
[
a

(0)
0 − p

(0)
0

] + Nβ2

= (1 + δ)r (0),

(A11)
δ ∼= β2

β1
[
a

(0)
0 − p

(0)
0

] + β2

.

Since
∑

j>0
�j

�
≈ 1

kd

∫ ∞
0

sin x
x

dx ∼ 1
kd

� 1, we expect β1 ≈ 1
and β2 � 1. Thus δ � 1. When the initial atomic state is an
eigenstate of Ĵz or a separable state, we have

δ ∼=
−2a

(0)
0 p

(0)
0

∑
j>0

�j

�

a
(0)
0 − p

(0)
0

. (A12)

We note that p
(0)
0 = P/(N2 − N ), which has the maximum

value of 1/4 in the neighborhood of a Dicke state with half-spin

FIG. 6. (Color online) Diffraction pattern of Stokes photons
emitted by a chain of 12 atoms initially in a many-body singlet state
(i.e., J = 0, M = 0). Red dashed lines: exact numerical solution
of the master equation (7). Blue solid lines in (a)–(c): perturbative
solution keeping the first-order effect of L1 [i.e., Eq. (A9)]. Blue solid
lines in (d)–(f): the zeroth-order solution without L1 [i.e., Eq. (A1)].

FIG. 7. (Color online) Diffraction pattern of Stokes photons
emitted by a chain of 12 atoms initially in the many-body singlet state
(i.e., J = 0, M = 0) with various lengths of the collection time T .
Red dashed lines: exact numerical solution of the master equation (7).
Blue solid lines: perturbative solution keeping the first-order effect of
L1 [i.e., Eq. (A9)].

excitation. For typical states, p
(0)
0 ∼ 1/N and then δ scales

inversely with N .
To examine the convergence of the perturbation solution,

we compare it with the exact numerical solution of the master
equation for a small ensemble in a 1D lattice with various
lattice constants d. The magnitude of the multiple-light-
scattering terms in L1 decays fast with the distance; thus only
the nearest-neighbor terms are important. Because of the limits
of our computation capability, in the calculation presented
in Figs. 5–7 when referring to multiple light scattering, we
keep only the nearest-neighbor terms in L1 (i.e., those with
coefficients �1) and artificially set �j = 0 for j � 2. But for
the dipole-dipole interaction all Gj terms are considered in
the exact numerical solution. For this reduced master equation,
we compare the perturbative and the exact numerical solutions.
We can see that the perturbative solution keeping the first-order
effect of L1 [i.e., Eq. (A9)] has excellent convergence to the
exact numerical solution for both the dip and peak patterns. In
particular, the multiple light scattering has negligible effects
if we set the collection time T � 0.1/�. Note that in the
initial interval of T = 0.1/�, 10% of all spin zexcitations
are already converted into Stokes photons. In Fig. 8, we

FIG. 8. (Color online) The results including not only the nearest-
neighbor �1 term, but also (a) the next-nearest-neighbor �2 and (b) the
�2 and �3 terms for a 12-qubit J = 0, M = 0 permutation-invariant
state. Values of d and T are given in the figure. Red dashed lines:
the numerical simulated results. Blue solid lines: the fitting using
Eq. (A9). The dipole-dipole interaction Gj is not considered here.
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show that the effects of next-nearest-neighbor terms in L1

(i.e., with coefficients �2 and �3) are also well accounted
for by the perturbative solutions in Eq. (A9). This calculation
also confirms that the modulation of the diffraction pattern is
dominated by the near-neighbor cross terms, and the effect of
the �3 term is already small as compared to the �1 and �2

terms.
We have also considered a 2D atomic ensemble in the

xy plane in a large trap, where the atomic number density
is Gaussian n(r) = n(0)e−2r2/A2

at position r with A the
full width at half maximum. The total atom number is
given by N = ∫

drn(r) = π
2 n(0)A2 with the dilute condition

k0A
√

N � 2π satisfied. The result is similar to the case of a
1D lattice in that the peak- or dip-to-background ratio is only
slightly changed.

For a dilute hot atomic vapor where atomic motion is
much faster than the Stokes photon emission, we find that
the diffraction pattern is similar to that of cold atoms in
the neighborhood of the forward direction, i.e., with a sharp
diffraction peak or dip from which the pair-correlation sum of
atoms can be read out. Since atoms move around on a time scale
faster than the photon emission, the coefficients of the cross
terms in L1 should be replaced by �jj ′ = �〈 sin(k0|rj −rj ′ |)

k0|rj −rj ′ | 〉mot =
�

2(k0A)2 and Gjj ′ = G
(k0A)2 , which are independent of j and

j ′ [20]. Here A is the size of the atomic vapor. The original
master equation (7) becomes

ρ̇ = �

2

∑
j

(2σ̂−
j ρσ̂+

j − σ̂+
j σ̂−

j ρ − ρσ̂+
j σ̂−

j )

+ �

4(k0A)2
(2Ĵ−ρĴ+ − Ĵ+Ĵ−ρ − ρĴ+Ĵ−)

+ i
G

2(k0A)2

[
Ĵ 2

x + Ĵ 2
y ,ρ

]
. (A13)

In the right-hand side (RHS) of the above master equation,
the first term corresponds to atoms independently emitting
photons, the second term comes from multiple light scattering,
and the third term is the dipole-dipole interaction. Then

d〈Ĵz〉t
dt

= −�

(
N

2
+ 〈Ĵz〉t

)
− �

2(k0A)2
〈Ĵ+Ĵ−〉t ,

(A14)
d〈Ĵ+Ĵ−〉t

dt
= −�〈Ĵ+Ĵ−〉t + �

(k0A)2
〈Ĵ+ĴzĴ

−〉t .

The angular distribution of the emission rate is given by

〈Ĵ+(k)Ĵ−(k)〉t = N

2
+ 〈Ĵz〉t +

(
〈Ĵ+Ĵ−〉t − 〈Ĵz〉t − N

2

)
× |〈ei�k·rj 〉mot|2. (A15)

Just as in the case of a dilute cold atom ensemble, the
initial diffraction pattern has a sharp diffraction peak or
dip in the forward direction with a width given by 1

k0A

and a strength determined by the pair-correlation sum P =
〈Ĵ+Ĵ−〉0 − 〈Ĵz〉0 − N

2 . The value of the pair-correlation sum
can be read out from the ratio of the peak or dip to the
neighboring background. From Eq. (A14), we can see that
the background part N

2 + 〈Ĵz〉t in the emission rate decays
with time, and the existence of the �

2(k0A)2 〈Ĵ+Ĵ−〉t term makes

the decay faster. On the other hand, the peak or dip strength
〈Ĵ+Ĵ−〉t − 〈Ĵz〉t − N

2 may increase with time as long as
〈Ĵ+ĴzĴ

−〉t
(k0A)2 + 〈Ĵ+Ĵ−〉t

2(k0A)2 > 〈Ĵ+Ĵ−〉t − 〈Ĵz〉t − N
2 . This is just the

case discussed in the study of super-radiance phenomena by
Rehler and Eberly [14], where the authors show that in a very
dense ensemble a directional super-radiance may develop at
a later time even when the initial state’s emission pattern is
almost isotropic in all directions and has no super-radiance
behavior.

Here we are interested in how the peak- or dip-to-
background ratio evolves as a function of the collection
interval. It is obvious that only the second terms in the
RHS of both equations in Eq. (A14) can change this ratio.
When the dilute condition (k0A)2/N � (2π )2 is satisfied,
〈Ĵ+Ĵ−〉t
2(k0A)2 � N

2 + 〈Ĵz〉t and 〈Ĵ+ĴzĴ
−〉t

(k0A)2 � 〈Ĵ+Ĵ−〉t , and the effect
is negligible as compared to the first terms. Thus, the peak-
or dip-to-background ratio is barely changed by multiple light
scattering and the dipole-dipole interaction when the dilute
condition is satisfied.

APPENDIX B: PHOTON-NUMBER FLUCTUATIONS

We analyze the shot noise of the photon counts at the detec-
tors. The total number of Stokes photons in a given direction
k at collection time τc is given by np(τc) = ∑

k〈â†
k(τc)âk(τc)〉;

here the summation is over a finite solid angle δ�. From
the effective light-atom coupling Hamiltonian [Eq. (1)], the
evolution of the photon operator is

âk(t) = âk(0)e−iωkt + igk

∫ t

0
dτ Ĵ−(k,τ )e−iωk(t−τ ). (B1)

The photon-number fluctuation can then be expressed in
terms of the atomic correlations:

�n2
p ≡

〈(∑
k

â
†
k(τc)âk(τc)

)2〉
−

〈∑
k

â
†
k(τc)âk(τc)

〉2

= np − n2
p +

∑
kk′

〈â†
k(τc)â†

k′(τc)âk(τc)âk′(τc)〉

= np − n2
p + 2

(4π )2

∫
d�kd�k′

∫ τc

0
dt1

∫ t1

0
dt2

×〈Ĵ+(k′,t2)Ĵ+(k,t1)Ĵ−(k,t1)Ĵ−(k′,t2)〉. (B2)

Here for simplicity we have ignored the slowly varying single-
atom dipole emission pattern.

In Appendix A, we have shown that the L1 term
in the master equation results in only a small modu-
lation on the diffraction pattern. Thus, in deriving �n2

p

the effect of the L1 term will not be considered since
we are interested only in the order of magnitude of
the fluctuation. From the quantum regression theorem
[39], we have 〈Ĵ+(k′,t)Ĵ+(k,t + τ )Ĵ−(k,t + τ )Ĵ−(k′,t)〉 =
e−�τ−2�tTr[Ĵ+(k′)Ĵ+(k)Ĵ−(k)Ĵ−(k′)ρ(0)], assuming that a
CCD pixel collects photons emitted in a small solid angle
δ� � 1

N
. During the time interval of 0 to ∞, we find the

expectation value and fluctuation in the number of photons
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collected by a pixel placed in the direction of k:

np ≈ δ�

4π
Tr[Ĵ+(k)Ĵ−(k)ρ(0)],

�n2
p ≈ δ�2

(4π )2
Tr[Ĵ+(k)Ĵ+(k)Ĵ−(k)Ĵ−(k)ρ(0)] + np − n2

p.

(B3)

For an atomic ensemble initially in eigenstates of Ĵz or
spin-coherent states with in-plane polarization, a straightfor-
ward calculation shows that np ∼ N2δ� ∼ N and �n2

p ∼ np

for k in the neighborhood of the forward direction, and
np ∼ Nδ� ∼ 1 and �n2

p ∼ np for k away from the forward
direction, i.e., the photon statistics is Poissonian.

APPENDIX C: EXTRACTION OF THE PEAK POSITION
FROM THE PHOTON STATISTICS

The most intuitive way to define the central position from
the photon distribution {ni + �ni} collected at the CCD pixels
is

θc =
∑

i θi(ni + �ni)∑
i(ni + �ni)

= θ̄c +
∑

i(θi − θ̄c)�ni∑
i(ni + �ni)

, (C1)

where θc is the peak central position extracted from a single
probe, and θ̄c ≡

∑
i θini∑
i ni

is the expectation value of θc in
an ensemble measurement consisting of many probes. We
first show that θ̄c can infinitely approach θ0 with sufficient
resolution of the CCD.

For large N , we can neglect the homogeneous background
which is smaller than the peak feature by a factor of N , and
write

θ̄c =
∑

i θi f̄ (θi)∑
i f̄ (θi)

=
∫ θmax

θmin
dθθf (θ )∫ θmax

θmin
dθf (θ )

+ ε = θ0 + ε. (C2)

The deviation ε comes from transforming the summation into
an integral, which is written

ε =
∑

i

∫ θi+δθ/2
θi−δθ/2 dθ (θi − θ )f (θ )∫ θmax

θmin
dθf (θ )

=
∑

i

∫ δθ/2
0 dθθ [f (θi + θ ) − f (θi − θ )]∫ θmax

θmin
dθf (θ )

≈
2
∫ δθ/2

0 dθθ2 ∑
i

df (θ)
dθ

∣∣
θ=θi∫ θmax

θmin
dθf (θ )

. (C3)

Because the function f (θ ) satisfies df (θ0+θ)
dθ

= − df (θ0−θ)
dθ

, for
every pixel index i we can find j such that θi − θ0 = θ0 − θj +
O(δθ ), so df (θ)

dθ
|θ=θi

+ df (θ)
dθ

|θ=θj
∼ (k0A)2f (θi)δθ + O(δθ2).

Thus the deviation in Eq. (C3) becomes

ε ∼ (k0A)2
∫ δθ/2

0
dθθ2 ∼ (k0A)2δθ3, (C4)

which is O(δθ3). When δθ � 1
k0A

, the sensitivity is determined

by the CCD resolution. When δθ � 1
k0A

, θ̄c can infinitely
approach θ0.

In a single probe, the sensitivity is limited by the photon
shot noise, which leads to uncertainty of θc:

√
(θc − θ̄c)2 ≈

√∑
i(θi − θ̄c)2�n2

i∑
i ni

≈ 2

N
√

k0A

√∫
dxx2e−x2/4∫
dxe−x2/4

= 2π−1/4

N
√

k0A
. (C5)

Thus, in using Eq. (C1) to extract the Zeeman field gradient
∂xη from a single probe, the overall precision is

�(∂xη) ∼ k0

τ0

√
4π−1/2

N2k0A
+ (k0A)4δθ6. (C6)

For small δθ , the sensitivity is �(∂xη) ∼ k0
τ0

1
N

√
k0A

which scales
inversely with N .

We can also use a function g(θi,α) =
δθ N2

4 e−[(k0A)2/4](θi−α)2 + δθ N
4 to fit the obtained data

ni + �ni . The peak position θc is defined as the value of
α which minimizes

∑
i[g(θi,α) − ni − �ni]2. This method

gives the same sensitivity �(∂xη) ∼ k0
τ0

1
N

√
k0A

for small δθ .

APPENDIX D: GRADIOMETER USING FLYING-ATOM
MACH-ZEHNDER INTERFEROMETRY

The standard method for a field gradiometer is based on
phase estimation using a flying-atom Mach-Zehnder interfer-
ometer [38,40] (see Fig. 9). First, a π/2 pulse is applied to
prepare an atom in a superposition of spin-up and spin-down
states, which is then launched from x = 0 with a velocity v.
After free evolution for an interval τ0/2, a π pulse is applied to
flip the spin. Finally, another π/2 pulse is applied and the pop-
ulation on the spin-up state is measured to observe the interfer-
ence signal. In the first interval of τ0/2, the spin-up and -down
states acquire a relative phase shift φ1 = (η0 + vτ0∂xη

4 ) τ0
2 , where

η0 is the homogeneous part of the Zeeman field and ∂xη is the
gradient to be measured. vτ0/2 = A/2 is the distance traveled
by the atom with velocity v. In the second interval of τ0/2, the
Zeeman field induces a phase shift φ2 = −(η0 + 3vτ0∂xη

4 ) τ0
2 . By

measuring the population of the spin-up state, this MZI gives
an estimate of the total phase φ ≡ φ1 + φ2 = − 1

4vτ 2
0 ∂xη from

which the gradient is then inferred: ∂xη = − 4φ

vτ 2
0

.

The sensitivity of the gradiometer is limited by the shot
noise �φ for phase estimation, and the uncertainty in velocity

FIG. 9. (Color online) Gradiometer based on flying-atom Mach-
Zehnder interferometry.
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�v. In the ith probe using a single atom, the phase one readout
can be written as

φi = 1
4∂xητ 2

0 (v̄ + �vi) + �φi, (D1)

where �φi is the error in the phase estimation. v̄ and �vi are
respectively the expectation value and uncertainty in velocity.
The inferred value of the gradient is then

∂xη
(i) ≡ 4φi

τ 2
0 v̄

= ∂xη + ∂xη
�vi

v̄
+ 4�φi

τ 2
0 v̄

. (D2)

Using an ensemble of N atoms, the error in measuring the
gradient is

1

N

√∑
i

(∂xη(i) − ∂xη)2 = ∂xη

v̄

1√
N

√
1

N

∑
i

�v2
i

+ 4

τ 2
0 v̄

1√
N

√
1

N

∑
i

�φ2
i . (D3)

√
1
N

∑
i �φ2

i = 1 which is the shot noise for phase estimation
using the MZI [3]. Thus the precision of the MZI scheme
is

�(∂xη) = ∂xη
�v√
Nv̄

+ 4√
Nτ0A

, (D4)

where A = v̄τ0 represents the spatial resolution of

the gradiometer and �v =
√

1
N

∑
i �v2

i is the velocity
uncertainty.

For atoms launched by an atomic fountain, the uncertainty
in atom velocity is intrinsically limited by the temperature:
�v ∼ √

kBT /m. For example, with a temperature of T ∼
1 μK, �v ∼ 1 cm/s. To reduce the error caused by this
velocity uncertainty [the first term on the RHS of Eq. (D4)],
v̄ will be large as compared to �v. This then sets an upper
bound for the probe time at a desired spatial resolution since
τ0 = A/v̄.
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