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ABSTRACT 

 Propagating modes in a class of ‘nonic’ derivative nonlinear Schrödinger 

equations incorporating ninth order nonlinearity are investigated by application of 

two key invariants of motion. A nonlinear equation for the squared wave amplitude 

is derived thereby which allows the exact representation of periodic patterns as 

well as localized bright and dark pulses in terms of elliptic and their classical 

hyperbolic limits. These modes represent a balance among cubic, quintic and nonic 

nonlinearities.  
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1. Introduction 

Nonlinear Schrödinger (NLS) equations with cubic and quintic 

nonlinearities have been investigated extensively both in a theoretical context and 

in many applied disciplines, notably in hydrodynamics, nonlinear optics and the 

study of Bose-Einstein condensates (see e.g. [1 – 8]). Here, a class of propagating 

wave patterns is investigated for families of derivative NLS equations which 

incorporate seventh (septic) and ninth order (nonic) nonlinearities in addition to 

those of the standard cubic and quintic kinds. In the setting of optical waveguides, 

such power law nonlinearities can be interpreted as higher order corrections to the 

conventional Kerr nonlinearity.  

Solitary pulses for a NLS equation with just one nonlinearity of an arbitrary 

odd power have been analyzed in [9]. For NLS models with nonlinear damping 

and saturable amplification, the effects of perturbations on the variation of the 

soliton parameters to leading order have been calculated in [10]. Such 

considerations can be extended to a ‘dual-power’ case where two odd order 

nonlinear terms are present [11].  

 Importantly, disintegration or blow-up phenomena can occur in NLS 

equations which incorporate a single nonlinear term representing septic, nonic or 

higher order effects [12]. Dark solitons can arise in models incorporating self-
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steepening and third order dispersion [13]. Phase plane analysis of solitons, kinks 

and periodic patterns has been conducted in [14].  

Self-steepening and self-frequency shift effects occur commonly in the 

physics of optical waveguides, and are predicted theoretically by derivative 

nonlinear Schrödinger (DNLS) equations [15, 16]. DNLS models with quintic 

terms have been adopted in the analysis of ultrashort solitons in metamaterials [17]. 

 Here, our concern is with a broad class of DNLS equations which admits 

both seventh and ninth order nonlinearities as special cases. A procedure recently 

employed in [18−20] based on the application of a pair of invariants of motion is 

applied to this DNLS class. A nonlinear structural equation for a squared wave 

amplitude is derived which can be linked to classical elliptic integrals. This allows 

the construction of a variety of exact propagating wave patterns for the class of 

DNLS equations under investigation. In particular, a ‘bright’ localized solitary 

pulse with intensity varying as the square root of hyperbolic secant is derived in a 

long wave limit. In addition, a family of periodic patterns is expressed in terms of a 

rational expression of the Jacobi elliptic function dn. In the long wave limit, a 

‘dark’ pulse is recovered. Modulation instability aspects of the background plane 

wave are commented upon. Finally, the consideration is extended to general 

classes of DNLS equations with polynomial nonlinearities, and in particular to 

nonic DNLS equations.  
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2. The nonic derivative nonlinear Schrödinger equation: Application of a pair 

of invariants in an integrable subsystem 

 Here, we consider the evolution of a slowly varying envelope A as modeled 

by a derivative nonlinear Schrödinger equation 

086422 =σ+δ+ν+α+µ+λ+ AAAAAAAAiAAAiA xxxt , (1a) 

incorporating, at the highest order, a nonic nonlinearity. In the setting of optical 

fiber waveguides, terms involving λ, µ and α are associated with group velocity 

dispersion, Kerr (cubic) nonlinearity, and self-steepening (or more precisely, an 

effect which may be converted to self-steepening form following a gauge 

transformation). The higher order amplitude terms are needed for sufficiently short 

pulses. The coordinates t and x denote propagation distance and retarded time in 

temporal waveguides, but represent transverse distance and diffraction in spatial 

waveguides.  

The procedure presented here in fact applies to integrable subsystems of 

more general NLS equations of the type [20]    

,0))(()()( =−∑+∑′+∑′++ A
A
As

iAgiAjAhAiA xx
xxxxt                               (1b) 

where Σ = |A|2 and h, j, g are arbitrary analytic functions of Σ. A prime indicates a 

derivative with respect to this squared amplitude Σ.  



 6 

 If the wave packet ansatz  

( )[ ]tpxictxictxA Ω−−+−= exp)]()([ ψφ ,                                                         (2) 

is introduced into (1a), then a coupled nonlinear system results, namely 

       

2 2 2 2 2

2 2 2 2 2 3 2 2 4

2 2 2 2 2

2 2 2 2 2 3 2 2 4

[ 2 ( )] [ ( )( )
( ) ( ) ( ) ] 0,

[ 2 ( )] [ ( )( )
( ) ( ) ( ) ] 0

c p p p

c p p p

λφ λ α φ ψ ψ λ µ α φ ψ

ν φ ψ δ φ ψ σ φ ψ φ

λψ λ α φ ψ φ λ µ α φ ψ

ν φ ψ δ φ ψ σ φ ψ ψ

+ − − + + Ω− + − +

+ + + + + + =

− − − + + Ω− + − +

+ + + + + + =

 



                (3) 

where the dot indicates a derivative with respect to the argument x ct− . It will be 

demonstrated that the system (3) admits two independent integrals of motion and, 

accordingly, is integrable. Thus, it is readily seen that the nonlinear coupled system 

admits the constant of motion J given by 

 2

2 4
cJ p αψφ φψ
λ λ

 = − + − ∑− ∑ 
 

  . (4a) 

For the generalized system (1b), the corresponding constant of motion is given by 

∑Π−−= )(ψφφψ J , 

where  

                    ∫ ∑−+∑∑∑′+∑=∑Π ,)2/()(2/)()( cpdgj                               (4b) 

where again 2 2φ ψ∑ = +  is the squared wave packet amplitude. The identification 

of constants of motion has been proven as key to the subsequent integration of 
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other physically important nonlinear dynamical systems, such as the Ermakov-

Ray-Reid systems [21 - 25]. Such systems admit an invariant of the form   

)/()( 2 ψφψφφψ ε−−= I , 

where ε denotes an arbitrary analytic function. These Ermakov-Ray-Reid systems 

have extensive applications in physics, notably in nonlinear optics (see [26, 27] 

and work cited therein). In recent work, overarching nonlinear integrable systems 

admitting pairs of invariants which include (1b) and the standard Ermakov-Ray-

Reid system have been constructed [28]. 

 Here, the present system (3) admits a second constant of motion 

 
3 4 5

2 2 2 21
2 2 3 4 5

pH p µ α ν δ σφ ψ
λ λ λ λ λ

 Ω − Σ Σ Σ   = + + − ∑+ ∑ + + +        
   (5a) 

where H is a Hamiltonian. The corresponding Hamiltonian for the generalized 

system (1b) is 









∑
∑

−∑+∑Π∑′−∑−Ω+∑−∑++= ∫
2

222

4
])()[(2)()()(

2
1 

 sdJgppjhH ψφ .    (5b)      

The identity 

222222 )()())(( φψψφψψφφψφψφ  −≡+−++  

combined with the two integrals of motion (4a), (5a) shows that the squared 

modulus Σ of the envelope is determined by the nonlinear equation 
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∑ ∑ ∑∑∑∑∑
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•
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5432
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42
4













λ

α
+








λ
−+− ∑

∑cpJ . (6) 

A corresponding expression for a special version of the generalized system (1b) 

will be given in Section 5.  

For system (1a), to recover the corresponding complex envelope A from Σ, 

auxiliary variables Θ and ∆ are introduced given by 









=∆=Θ −−

ψ
φ11 tantan  ,       

ψ
φ

=∆  (7)   

whence        

∫
−

∑

∑





+∑






 −+

=Θ
t cx d  

cpJ
ξλ

α
λ

2

42 , (8) 

where ξ is a dummy variable of integration. The resulting exact solution of the 

envelope equation (1a) is then given by 

A = iΣ1/2exp[– iΘ + i(px –Ωt)] .                                                                                (9) 

It should be remarked that the constants I, J in the reduction procedure 

above typically arise out of translation of time / space, and gauge invariance for the 

governing NLS equations. 
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The above procedure will now be employed to formulate an algorithm to 

obtain exact propagating modes in terms of elliptic functions. Two approaches will 

be adopted. Firstly, elementary transformations are employed to generate 

expressions related to elliptic functions which solve higher order (including nonic) 

DNLS equations. Secondly, we identify higher order ‘self-steepening’ 

nonlinearities which can be solved by elliptic functions, i.e. integrals involving the 

reciprocal of fourth order polynomials. 

 

3. A bright solitary pulse 

 The solution procedure now involves the alignment of the equation for the 

squared modulus (6) with canonical nonlinear equations associated with the 

classical elliptic functions such as the Jacobi sn, cn, dn functions. As an initial 

illustration, a localized pulse on a zero background (termed ‘bright’ in the optical 

context) is presented. Here, we select alignment with the nonlinear equation 

0)2(1 4222
2

=+−+−+





 yykk

dx
dy ,                                                                 (10)                                                      

where k is the modulus of the Jacobi elliptic function. This admits a particular 

solution xy dn= . The substitution 2 4
0/y u A=  in the long wave limit 1k →  takes 

(10) to 
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+−





 22

4
u

dx
du 0

4 8
0

6

=
A

u                                                                                            (11) 

with a solution  

u  = 2
0A  [sech(x)] 2/1 . 

On alignment of (6) and (11) it is seen that the envelope equation (6) admits a 

special solution 

Σ = 2
0A  sech1/2(x – ct) (12) 

where the constants of motion J and H both vanish while the amplitude parameter 

A0, angular frequency Ω, and phase speed c are given, in turn, by 

,2,
16
1

2
2

2
,

16
5 8

1

0 α
λµ

λλλσ
λ

=−





 −=

Ω






= ccpcA                                          (13) 

while 

230,
16
αδ ν
λ

= = − . (14) 

The phase variable of the slowly varying envelope is given by 

Θ= 







λ
−

2
cp ( )ctx −  + 

λ
α
4

2
0A

∫
− ctx (sechξ ) 2/1 dξ  ,                                             (15) 

where the latter integral can be rewritten via the substitution η = exp(ξ/2) as 

( )1/2sech
x ct

dξ ξ
−

∫ = 2 2
exp (( )/2)

41

x ct dη
η

−

+
∫ . (16a) 
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This can then be expressed in terms of a standard elliptic integral using the 

representation 

∫
∞

η+

η
z

d
41

 = 1cn
2
1 −









+
−

1
1

2

2

z
z .                                                                          (16b) 

The relations (9), (12), (15), (16) determine an exact, localized, propagating pulse 

of the DNLS equation (1) subject to constraints (13), (14) on the physical 

parameters. This propagating envelope is illustrated in Figure 1. 

 In physical terms, this bright solitary pulse solution exists for the governing 

DNLS model with arbitrary dispersion, self-steepening, cubic and nonic 

nonlinearities, but in the absence of the seventh order nonlinearity and with the 

fifth order nonlinearity subject to the constraint expressed by the second equation 

of (14). Moreover, the nonic parameter σ and the dispersion parameter λ need to be 

of the same sign as indicated by the first equation of (13). However, by contrast, 

the relation (14) dictates that quintic parameter ν and dispersion parameter λ must 

be of opposite signs. Thus, this particular localized pulse essentially exists as a 

result of a competition between quintic and nonic effects. 

 

4. A one-parameter class of dark solitary pulses                                                                 

The calculations of the previous section exploit the fact that the constants of 

motion H, J vanish in the long wave limit. Here, we construct an exact periodic 
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solution of the nonic DNLS equation (1) for which these invariants are non-

vanishing. The transformation 

0 2

1 ,u A
y b+

=  

is introduced into (10) whence it is seen that the structural equation  

2
0

4
222222

0

2

]1)2(23[)23(
A
ukbkbukbA

dx
du

−+−+−−+−−=





  

              4
0

6
2223 ])1()2([

A
ubkbkb −+−+− ,                                                         (17) 

admits a solution 

bx
Au

+
=

2
0

dn
.                                                                                                    (18) 

Alignment of (6) and (17) now produces an exact solution of the nonic DNLS 

equation (1) with the constants of motion J, H, phase speed c, and angular 

frequency Ω given by 







 −==

α
µpAHAJ

2
,

2
00 ,   

α
λµ

=
2c ,                                                                (19) 

4
23

4
2

2
0 −+
+−






 −=

Ω kbAp
λ

α
α
µ

α
µ

λ
.                                                                 (20) 

The two parameters A0, b are associated with the peak and trough of the wave train, 

and, in the long wave limit, with the amplitude of the far field plane wave and the 
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minimum intensity of the dark solitary pulse. The parameter modulus k of the 

elliptic function determines the period of the wave pattern. The three parameters, k, 

A0 and b are related by the two constraints,  

0

2
2 2 2 2

2

43 2( 2) 1 ,
3 4

b k b k Aν α
λ λ

 
+ − + − = + 

 
                                                         (21) 

and 

λ
σ

=−+−+
5

4)1()2(
4
02223 Abkbkb ,                                                                    (22) 

Thus, this class of periodic wave patterns admits one free parameter. The modulus 

of the envelope is given by  

∑
+−

=
bctx

A
)(dn2

0 .                                                                                         (23) 

Solitary wave limit 

In the solitary wave limit (k →1), the long wave envelope is given by 

∑=
Q
A0 ,   Q  = [sech2(x – ct) + b]1/2 

where the phase Θ is recovered from (8) through elliptic integrals of the second 

and third kinds, as in the bright solitary pulse case of the previous section. 

Physically, this long wave limit represents a dark pulse moving on a background 

(Figure 2). 
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Modulation instability 

 One background plane wave field for the DNLS equation (1) is represented 

by: 

A = B 0 exp [i(μB 2
0 +νB 4

0+σB
8
0 )t] 

where B0 is a real constant. Standard stability analysis is then performed by 

linearization around a small perturbation and seeking modal dependence in the 

form exp[i(ρ x – s t)]. This results in the dispersion relation 

(s – αB 2
0 ρ)² = λρ 2 (λρ 2 – 2μB 2

0  – 4νB 4
0  – 8σB 8

0 )  

between ρ and s. In the language of optical fibers, for the anomalous dispersion 

regime (λ > 0) and positive cubic nonlinearity (μ > 0), if either fifth or ninth order 

nonlinearity is negative (ν < 0 or σ < 0), it is possible to have real s for sufficiently 

large B0. For the normal dispersion regime (λ < 0), there is further flexibility to 

adjust nonlinearity to obtain real s. Hence, importantly, modulation instability can 

be avoided in selected parameter regimes. 

 

5. Additional classes of nonic and higher order DNLS equations 

If alignment may be obtained with a nonlinear equation with a fourth order 

nonlinearity such as (10), then the traveling modes may be described by the 

classical elliptic functions. Here, a pair of illustrative classes of higher order DNLS 

equations is indicated where such reduction can be accomplished. 
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Attention is restricted to derivative nonlinear Schrödinger equations of the 

type: 

iAt + Axx + iW(Σ)Ax + V(Σ)A = 0,      Σ = |A|2,                                              (24)                     

in which case the nonlinear equation analogous to (6) is  

,
2

422Ω24
2

22





 +





 −+−







 −+






 −+= ∑∑ ∑∑

•

GcpJFpGpH
λλ

                 (25) 

.)(2)(),(2)( ∑′=∑∑′=∑ FVGW λλ  

The case with W linear reduces to (1a). Particular illustrative extensions to 

quadratic and cubic W are set down below:  

 

● W(Σ) = 6bΣ2, V(Σ) = –5b2Σ4/λ (b real) – In this case, the integration of the 

nonlinear equation may again be achieved in terms of elliptic functions. The 

corresponding nonic DNLS model is given by 

iAt + λAxx + 6ib|A|4Ax – 5b2|A|8A/λ  = 0.                                                                 (26) 

This equation admits traveling modes described by (9) which can be obtained 

analytically via (25) together with relations (7) and the analogue of (8) for the 

present generalized system, namely,  

ξλ d
GcpJ

ctx
∫ ∑

∑ ∑
−

+





 −+

=
)(

2Θ .                                                                 (27) 
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Indeed cubic and quintic nonlinearities can be incorporated in (26), and the squared 

wave packet amplitude Σ can again be expressed in terms of elliptic functions.  

  

● W(Σ) = 8aΣ3, V(Σ) =  – 7a2Σ6/λ + 4acΣ3/λ (a real) – The corresponding DNLS 

model with seventh and thirteenth order nonlinearities is  

iAt + λAxx + 8ia|A|6Ax + (4ac|A|6 – 7a2|A|12)A/λ  = 0.                                              (28) 

Cubic and quintic nonlinearities can be included in the governing equation (28) 

without any essential modification of the procedure leading to elliptic function 

solutions.      

 

6. Conclusions 

 In this note, a procedure recently introduced in [18 - 20] involving the 

application of two integrals of motion in physical NLS models has been used to 

isolate, via elliptic integral representations, localized bright and dark pulses and 

particular periodic waves in a nonic DNLS equation and other models with 

polynomial nonlinearities. The localized structures characteristically exist due to a 

balance among higher order nonlinearities. The stability aspects of such privileged 

exact solutions typically require detailed individual analysis based on such balance 

aspects. It is remarked that exact solutions such as those presented here, carry over, 

mutatis mutandis to harmonic oscillator models with octic potential [29 - 31]. 
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In general terms, the algorithmic procedure as employed here relies upon the 

existence in the nonlinear coupled systems of an integral of motion of the type 

      ∑Φ+−= )(φψψφ J ,                                                                        (29) 

together with a Hamiltonian 

    ∑Ψ++= )(][
2
1 22 ψφ H                                                                  (30) 

where 2 2φ ψ∑ = +  is a squared wave amplitude. It is natural to seek the existence 

of overarching integrable Hamiltonian systems which incorporate both nonlinear 

dynamical systems admitting invariants of the type (29) and (30) as well as the 

well-established Ermakov-Ray-Reid systems (see [21 - 27]). Such comprehensive 

extended Ermakov-Ray-Reid systems have recently been constructed in [28]. 
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Figures Captions 

(1) (Color online) Wave intensity |A|2 versus x and t for a bright pulse of Eq. (1), λ 

= 1, μ = 1, α = 1, ν = –3/16, c = 2, δ = 0, σ = 1, A0 = (5/16)1/8. 

(2) (Color online) Wave intensity |A|2 versus x and t for a dark pulse of Eq. (1), λ = 

1, μ = 1, α = 1, ν = 1, c = 2, δ = 0, σ = –1, b = 0.863, A0 = 0.599. 
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