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ABSTRACT 

 Many real nonlinear evolution equations exhibiting soliton properties 

display a special superposition principle, where an infinite array of equally 

spaced, identical solitons constitutes an exact periodic solution. This arrangement 

is studied for the modified Korteweg-de Vries equation with positive cubic 

nonlinearity, which possesses algebraic solitons with nonvanishing far field 

conditions. An infinite sum of equally spaced, identical algebraic pulses is 

evaluated in closed form, and leads to a complex valued solution of the nonlinear 

evolution equation. 
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1. Introduction 

 A remarkable property displayed by many classical real nonlinear 

evolution equations possessing soliton modes is a nonlinear superposition 

principle. More precisely, an infinite array of solitons placed at equal interval 

constitutes an exact periodic solution of the evolution equation. The speed of the 

periodic wave, however, is different from the component solitons due to 

nonlinear interaction. This phenomenon has been demonstrated for nonlinear 

lattices [1], the Korteweg-de Vries (KdV) [2, 3], the modified KdV (mKdV) [2, 

3], the Benjamin-Ono [4], and the intermediate depth [5, 6] equations. For wave 

profiles with a discontinuity in the derivative, e.g. ‘peakons’ in the Camassa-

Holm equation, a version of superposition principle is relevant too [7, 8] A 

variety of ingenious theoretical techniques has been employed in establishing 

these principles, ranging from direct algebraic rearrangement [2], summation by 

the Poisson formula [9], to elaborate identities in the theories of elliptic and theta 

functions [10]. Indeed such nonlinear superposition principles, together with 

particle-like properties and connections with algebraic geometry, constitute 

important hallmarks of solitons [11]. 

For partially integrable or even nonintegrable equations, some forms of 

superposition principle still exist, e.g. the regularized long wave [12], sixth order 

generalized Boussinesq [13] and convective fluid [14, 15] equations. For wave 



4 
 

patterns in two or more spatial dimensions, this superposition of solitary pulses 

still applies, but the dynamics is more complicated [16, 17]. Other than the 

setting of evolution equation, this summation process for solitons is also relevant 

in geometry and other branches of mathematics and physics [18]. 

In general, the localized modes employed in the nonlinear superposition of all 

these previous studies are ones which decay to zero in the far field. It would be 

challenging to examine if a nonlinear superposition principle can be established 

starting with modes which do not decay in the far field. This question will be 

addressed for the modified Korteweg-de Vries equation with positive cubic 

nonlinearity (mKdV+). mKdV+ is chosen as it can be applied directly to many 

configurations of physical and engineering interests, e.g. two-layer fluids [19, 

20]. Shallow water waves are important in oceanography, and various models, 

e.g. the Boussinesq, Bona-Chen and Rosenau-Kawahara equations, have been 

proposed [21, 22].  

The structure of the paper can now be explained. The bilinear form of 

mKdV+ with nonzero boundary condition will first be reviewed. Exponentially 

decaying solitary pulses are obtained and algebraically decaying solitons are 

derived by taking a ‘long wave’ limit [23, 24] (Section 2). An infinite array of 

equally spaced solitons moving at a yet to be determined speed is formed, and 

summed mathematically to produce a rational expression of trigonometric 
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functions. This solution, however, satisfies mKdV+ only for complex values for 

the far field condition (Section 3). A general superposition principle involving 

complex valued functions is established using contour integral techniques 

(Section 4). Conclusions and analogy with other evolution equations are 

discussed (Section 5).  

 

2. Background 

The mKdV+ equation 

ut + 6u2ux + uxxx = 0                                                                                               (1)      

admits solitons of the form (β real) 

u = β sech[β(x – β2t)], 

and a periodic solution in terms of the Jacobi elliptic function dn as (r real) 

u = r dn[r(x – r2(2 – k2)t)]        (k = modulus of the Jacobi dn function). 

The speed of the solitary pulse is different from that of the periodic pattern 

except, of course, for the long limit (k tending to unity), where dn degenerates to 

sech. 

This nonlinear superposition principle, namely, the periodic solution as an 

infinite array of solitary pulses with a velocity different from each individual 

soliton can be established via the Fourier series of dn [3] 
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where the summation in these expressions extends over m, n from –∞ to +∞. The 

second equality is accomplished by the Poisson summation formula: 

dtetfmf
m n
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The focus of the present work is on using solitary pulses with nonzero 

boundary conditions in the far field as the building blocks. In that case, the 

appropriate bilinear transformation is [23, 24] (D is the Hirota operator) 

xF
Guu 





+= log0 , 

0)6( 32
0 =⋅+− FGDDuD xxt , 

0)2( 0
2 =⋅+ FGDuD xx .  

The 1-soliton is obtained by using 

])6(exp[1 0
)0(22

0 ψηααα ++−++= tuxG , 

])6(exp[1 0
)0(22

0 φηααα ++−++= tuxF . 

The phase constants are defined by 
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The phase parameter η(0) originally arises from the freedom in choosing the 

origin for the spatial coordinate or time, but will now be exploited to assume 

arbitrary values, even complex ones. In particular, for exp(η(0)) = –1, α → 0 (long 

wave limit), one obtains the algebraic soliton going to u0 in the far field: 

1)6(4
4

22
0

2
0

0
0 +−
−=

tuxu
uuu .                                                                                   (2) 

As (2) is similar to the soliton of the Benjamin-Ono equation in terms of 

structure, one might be tempted to conclude that a nonlinear superposition should 

exist. We shall show in the next section that, however, such a summation process 

leads to a complex valued solution of mKdV+. 

 

3. A complex valued solution of mKdV+ 

 We now seek a solution of mKdV+ by a superposition of these algebraic 

solitons: 
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where λ is the spacing between successive peaks of the sequence of solitary 

pulses. c is the phase speed of the pattern and will be different from that of the 

individual pulse due to nonlinear interactions. 

 To evaluate the infinite sum, we use the partial fraction decomposition of 

the hyperbolic cotangent, 

∑
∞

−∞= +
=

n nz
zz 222coth
π

, 

to deduce that 
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Further algebra shows that the sum (3) can actually be expressed explicitly as 

0 0 0
0

0 0 0

sinh[ / (2 )]
cosh[ / (2 )] cos[ ( )]

uu u
u x ct

α α
α α

= −
− −

.                                                           (5)         

To determine the proper speed c in terms of u0, one substitutes the sum 

expression back into the original mKdV+. The surprise is that only complex 

valued u0 will be feasible: 

iAu −=0 ,
2

sin L L
A A L

 
= 

+ 
, 

2
03

4 2
c uL = − + , 0 2 Lα = .                                (6) 

In other words, the function u = p + iq of (5) would be a complex valued solution 

of mKdV+, where real p, q will satisfy 

pt + 6[(p2 – q2)px – 2pqqx] + pxxx = 0, 
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qt +6[(p2 – q2)qx + 2qppx] + qxxx = 0. 

  

4. Complex Analysis 

 This whole mechanism can also be verified by proving the formula  
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by contour integrals, where the complex valued parameter T C∈  is the period,  
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By the residue theorem and the fact that 

0
1 1( ) 0 as ,| | (0, ), for all 

2
I O R R n n

R
ε= → →+∞ − > ∈ ∈Z , 



10 
 

we have 
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where 0 0[2 ( / 2 )] / , [2 ( / 2 )] /A i i u T B i i u Tπ ξ π ξ= + = − , which reduces to (7) on 

simplification. 

 

5. Conclusions 

 Many real integrable nonlinear evolution equations exhibit an elegant 

superposition principle, where an infinite array of equally spaced, identical 

solitons constitutes an exact periodic solution. The critical point is that the 

velocity of the periodic pattern is different from each individual soliton, due to 

nonlinear interactions. The present analysis, however, shows that this property 

may not hold, or at least not in a straightforward way, for modes which do not 

vanish in the far field.  

More precisely, an infinite array of equally spaced algebraic solitons of 

mKdV+, with each component solitary pulse satisfying a nonzero far field 

condition, will only yield a complex valued solution of the partial differential 

equation. This phenomenon arises from summing a sequence of such algebraic 
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pulses moving at a yet to be determined speed. The closed form for the sum is 

obtained either by contour integration or partial fraction decomposition of elliptic 

functions, and can only satisfy the nonlinear evolution equation if complex 

values of the far field conditions are allowed. The challenge now is to investigate 

whether such a phenomenon can be generalized to other evolution equations 

possessing solitons which do not vanish in the far field. From a more general 

perspective, elegant properties of solitons, e.g. these nonlinear superposition 

principles, might be destroyed by small structural changes of the evolution 

equation, and it would be valuable to study how perturbation and variational 

methods can be applied under these circumstances [25, 26].  
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