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Parameter estimation for fractional

Ornstein-Uhlenbeck processes with discrete

observations

Yaozhong Hu∗ and Jian Song

Abstract

Consider an Ornstein-Uhlenbeck process, dXt = −θXtdt+σdB
H
t , driv-

en by fractional Brownian motion BH with known Hurst parameterH ≥ 1
2

and known variance σ. But the parameter θ > 0 is unknown. Assume
that the process is observed at discrete time instants t = h, 2h, · · · , nh.
We construct an estimator θ̂n of θ which is strongly consistent, namely,
θ̂n converges to θ almost surely as n → ∞. We also obtain a central
limit type theorem and a Berry-Esseen type theorem for this estimator θ̂n
when 1/2 ≤ H < 3/4. The tool we use is some recent results on central
limit theorems for multiple Wiener integrals through Malliavin calculus.
It should be pointed out that no condition on the step size h is required,
contrary to the existing conventional assumptions.

1 Introduction

The Ornstein-Uhlenbeck process Xt driven by a certain type of noise Zt is
described by the following Langevin equation

dXt = −θXtdt+ σdZt. (1.1)

If the parameter θ is unknown and if the process (Xt, 0 ≤ t ≤ T ) can be observed
continuously, then an important problem is to estimate the parameter θ based
on the (single path) observation (Xt, 0 ≤ t ≤ T ). See [7] and the references
therein for a short account of the research works relevant to this problem. In
this paper, we consider the case Zt is a fractional Brownian motion with Hurst
parameter H. Namely, we consider the following stochastic Langevin equation

dXt = −θXtdt+ σdBHt , X0 = x , (1.2)

where θ is an unknown parameter. We assume θ > 0 through out the paper so
that the process is ergodic (when θ < 0 the solution to (1.2) will diverge). If
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the process (Xt, 0 ≤ t ≤ T ) can be observed continuously, then the least square
estimator θ̃T , defined by

θ̃T = −
∫ T
0
XtdXt∫ T

0
X2
t dt

(1.3)

was studied in [9], where it is proved that θ̃T → θ almost surely as T →∞ and

that
√
T
(
θ̃T − θ

)
converges in law to a mean zero normal random variable. The

variance of this normal is also calculated. As a consequence it is also proved in
[9] that the following estimator

θ̄T :=

(
1

σ2HΓ(2H)T

∫ T

0

X2
t dt

)− 1
2H

(1.4)

is also strongly consistent and
√
T
(
θ̄T − θ

)
converges in law to a mean zero

normal with explicit variance given by
θσ2
H

(2H)2 .

In applications usually the process cannot be observed continuously. On-
ly discrete time observations are available. To simplify presentation of the
paper, we assume that the process Xt is observed at discrete time instants
tk = kh, k = 1, 2, · · · , n, for some fixed h > 0. We seek to estimate θ based on
Xh, X2h, · · · , Xnh.

Motivated by the estimator (1.4), we propose to use a function of 1
n

∑n
k=1 |Xkh|p

as a statistic to estimate θ. More precisely, we define

θ̂n =

(
1

nσ2HΓ(2H)

n∑
k=1

X2
kh

)− 1
2H

.

We shall show that θ̂n converges to θ almost surely as n tends to ∞. We

shall also show that
√
n
(
θ̂n − θ

)
converges in law to mean zero normal random

variable with variance θ2

2H2 as n→∞. The following Berry-Esseen type theorem
will also be shown

sup
z∈R

∣∣∣∣∣P
(√

2H2n

θ2

(
θ̂n − θ

)
≤ z

)
−Ψ(z)

∣∣∣∣∣ ≤ Cn4H−3 ,
where Ψ(z) = 1√

2π

∫ z
−∞ e−

u2

2 du is the error function.

Usually, to obtain consistency result for discrete time observations, one has
to assume that the length h of the time interval between two consecutive obser-
vations depends on n (namely h = hn) and hn converges to 0 as n→∞ and hn
and n must satisfy some other conditions (see [3], [15], [7], [8], and references
therein). Surprisingly enough, for our simple model (1.2) and for our estima-
tor defined above we don’t need to assume h depends on n. In fact, we don’t
have any condition on h! Let us also point out that throughout the paper, we

2



assume that the observation times are uniform: tk = kh, k = 1, · · · , n. General
deterministic observation times tk can be also considered in a similar way.

The paper is organized as follows. In Section 2, some known results that we
will use are recalled. The strong consistency of a slight more general estimator
is proved in Section 3. Section 4 deals with the central limit type theorem and
Section 5 concerns with the Berry-Esseen type theorem.

Along the paper, we denote by C a generic constant possibly depending on
θ and/or h which may be different from line to line.

2 Preliminaries

In this section we first introduce some basic facts on the Malliavin calculus
for the fractional Brownian motion and recall the main results in [12] and [14]
concerning the central limit theorem and Berry-Essen type results for multiple
stochastic integrals.

We are working on some complete probability space (Ω,F , P ). The expecta-
tion on this probability space is denoted by E . The fractional Brownian motion
with Hurst parameter H ∈ (0, 1), (BHt , t ∈ R) is a zero mean Gaussian process
with the following covariance structure:

E(BHt B
H
s ) = RH(t, s) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (2.1)

Fix a time interval [0, T ]. Denote by E the set of real valued step functions on
[0, T ] and let H be the Hilbert space defined as the closure of E with respect to
the inner product

〈1[0,t],1[0,s]〉H = RH(t, s),

where RH is the covariance function of the fBm, given in (2.1). The mapping
1[0,t] 7−→ BHt can be extended to a linear isometry between H and the Gaussian
space H1 spanned by BH (see also [11]). We denote this isometry by ϕ 7−→
BH(ϕ), which can be also considered as the stochastic integral of ϕ with respect

to BH (denoted by BH(ϕ) =
∫ T
0
ϕ(t)dBHt ). For H = 1

2 we have H = L2([0, T ]),

whereas for H > 1
2 we have L

1
H ([0, T ]) ⊂ H and for ϕ,ψ ∈ L 1

H ([0, T ]) we have

E (BH(ϕ)BH(ψ)) = E

(∫ T

0

ϕ(t)dBHt

∫ T

0

ψ(t)dBHt

)

= 〈ϕ,ψ〉H =

∫ T

0

∫ T

0

ϕsψtφ(t− s)dsdt, (2.2)

where
φ(u) = H(2H − 1)|u|2H−2 . (2.3)

Let S be the space of smooth and cylindrical random variables of the form

F = f(BH(ϕ1), . . . , BH(ϕn)) , ϕ1, · · · , ϕn ∈ L
1
H ([0, T ]) ⊆ H , (2.4)
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where f ∈ C∞b (Rn) (f and all its partial derivatives are bounded). For a random
variable F of the form (2.4) we define its Malliavin derivative as the H-valued
random element

DF =

n∑
i=1

∂f

∂xi
(BH(ϕ1), . . . , BH(ϕn))ϕi.

By iteration, one can define the m-th derivative DmF , which is an element of
L2(Ω;H⊗m), for every m ≥ 2. For m ≥ 1, Dm,2 denotes the closure of S with
respect to the norm ‖ · ‖m,2, defined by the relation

‖F‖2m,2 = E
[
|F |2

]
+

m∑
i=1

E
(
‖DiF‖2H⊗i

)
.

Let δ be the adjoint of the operator D, also called the divergence operator. A
random element u ∈ L2(Ω,H) belongs to the domain of δ, denoted by Dom(δ),
if and only if it verifies

|E 〈DF, u〉H| ≤ cu ‖F‖L2 ,

for any F ∈ D1,2, where cu is a constant depending only on u. If u ∈ Dom(δ),
then the random variable δ(u) is defined by the duality relationship

E (Fδ(u)) = E 〈DF, u〉H, (2.5)

which holds for every F ∈ D1,2. The divergence operator δ is also called the
Skorohod integral because in the case of the Brownian motion it coincides with
the anticipating stochastic integral introduced by Skorohod in [16]. We will

make use of the notation δ(u) =
∫ T
0
utdB

H
t .

For every n ≥ 1, letHn be the nth Wiener chaos ofBH , that is, the closed lin-
ear subspace of L2 (Ω,F , P ) generated by the random variables: {Hn

(
BH (h)

)
, h ∈

H, ‖h‖H = 1}, where Hn is the nth Hermite polynomial. The mapping h⊗n ∈
H�n → In(h⊗n) ∈ Hn , defined by In(h⊗n) = Hn

(
BH (h)

)
provides a linear

isometry between the symmetric tensor product H�n and Hn. For H = 1
2 , In

coincides with the multiple Itô stochastic integral. On the other hand, In(h⊗n)
coincides with the iterated divergence δn(h⊗n) and coincides with the multiple
Itô type stochastic integral introduced in [4].

We will make use of the following central limit theorem for multiple stochas-
tic integrals (see [14]).

Proposition 2.1 Let {Fn , n ≥ 1} be a sequence of random variables in the
p-th Wiener chaos, p ≥ 2, such that limn→∞ E(F 2

n) = σ2. Then, the following
conditions are equivalent:

(i) Fn converges in law to N(0, σ2) as n tends to infinity.

(ii) ‖DFn‖2H converges in L2 to a constant as n tends to infinity.
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Remark 2.2 In [14] it is proved that (i) is equivalent to the fact that ‖DFn‖2H
converges in L2 to pσ2 as n tends to infinity. If we assume (ii), the limit of
‖DFn‖2H must be equal to pσ2 because

E(‖DFn‖2H) = pE(F 2
n).

To obtain Berry-Esseen type estimate, we shall use a result from [12], which
we shall state in our fractional Brownian motion framework. The validity is
straightforward.

Assume that F =
∫ T
0

∫ T
0
f(s, t)dBHs dB

H
t is an element in the second chaos,

where f is symmetric functions of two variables. Then with this kernel f we
can define a Hilbert-Schmidt operator Hf from H to H by

Hfg(t) = 〈f(t, ·) , g(·)〉H .

If g is a continuous function on [0, T ], then

Hfg(t) =

∫ T

0

∫ T

0

f(t, u)g(v)φ(u− v)dudv ,

where φ is defined by (2.3). For p ≥ 2, the p-th cumulant of F is well known
(see, e.g. [5] for a proof).

κp(F ) = 2p−1(p− 1)!Tr(Hp
f )

= 2p−1(p− 1)!

∫
[0,T ]2p

f(s1, s2)f(s3, s4) · · · f(s2p−1, s2p)φ(s2, s3) · · ·

φ(s2p−2, s2p−1)φ(s2p, s1)ds1 · · · ds2p .

Let

Fn = I2(fn) =

∫ T

0

∫ T

0

fn(s, t)dBHs dB
H
t

be a sequence of random variables in the second chaos. We shall use the following
result from [12], Proposition 3.8.

Proposition 2.3 If κ2(Fn) = E (F 2
n)→ 1 and κ4(Fn)→ 0, then

sup
z∈R
|P (Fn ≤ z)−Ψ(z)| ≤

√
κ4(Fn)

6
+ (κ2(Fn)− 1)2 ,

where Ψ(z) = 1√
2π

∫ z
−∞ e−

u2

2 du is the error function.

3 Construction and strong consistency of the es-
timator

As in [9], we can assume that X0 = 0, and

Xt = σ

∫ t

0

e−θ(t−s)dBHs .
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[We can express Xt = Yt − e−θtξ, where Yt = σ
∫ t
−∞ e−θ(t−s)dBHs is stationary

and ξ = σ
∫ 0

−∞ eθsdBHs has the limiting (normal) distribution of Xt.]
Let p > 0 be a positive number and denote

ηp,n =
1

n

n∑
k=1

|Xkh|p . (3.1)

It is easy to argue that

lim
n→∞

ηp,n = lim
n→∞

1

n

n∑
k=1

|Ykh|p .

Thus by the ergodic theorem we see that ηp,n converges almost surely to

lim
n→∞

ηp,n = E (|Yh|p) = lim
n→∞

E (|Xnh|p)

= cp lim
n→∞

(Var(Xnh))p/2

= cpσ
pθ−Hp(HΓ(2H))p/2 ,

where

cp =
1√
2πσ

∫ ∞
−∞
|x|pe−

x2

2σ2 dx = π−1/2Γ

(
p+ 1

2

)
.

Thus we obtain

Proposition 3.1 Let p > 0, and h > 0. Define

θ̂p,n =

(
1

cpσp(HΓ(2H))p/2
ηp,n

)− 1
pH

=

(
1

nπ−1/2Γ
(
p+1
2

)
σp(HΓ(2H))p/2

n∑
k=1

|Xkh|p
)− 1

pH

. (3.2)

Then θ̂p,n → θ almost surely as n→∞.

4 Central limit theorem

In this section we shall show that
√
n
(
θ̂p,n − θ

)
converges in law to a mean zero

normal and we shall also compute the limiting variance. But we shall study the
case p = 2. More general case may be discussed with the same approach, but it
will be much more sophisticated. When p = 2, we denote θ̂n = θ̂2,n. Namely,

θ̂n =

(
1

nσ2HΓ(2H)

n∑
k=1

X2
kh

)− 1
2H

. (4.1)
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Denote

ξn =
1

n

n∑
k=1

X2
kh (4.2)

and ρ = σ2HΓ(2H). Then θ̂n =

(
ξn
ρ

)− 1
2H

. From the last section, we see

lim
n→∞

ξn = lim
n→∞

E (ξn) = σ2θ−2HHΓ(2H) = ρθ−2H .

First we want to show that

Fn :=
√
n (ξn − E (ξn)) (4.3)

converges in law. We shall use Proposition 2.1.

Lemma 4.1 When H ∈ [ 12 ,
3
4 ), we have,

lim
n→∞

E (F 2
n) = 2ρ2θ−4H (4.4)

and ∣∣E (F 2
n)− 2ρ2θ−4H

∣∣ ≤ Cn4H−3 ,
where and in what follows C > 0 denotes a generic constant independent of n
(but it may depend on θ, H).

Proof From the definition of Fn we see

E (F 2
n) =

1

n

 n∑
k,k′=1

E (X2
khX

2
k′h)−

n∑
k,k′=1

E (X2
kh)E (X2

k′h)


=

2

n

n∑
k,k′=1

[E (XkhXk′h)]
2

=
2

n

n∑
k 6=k′;k,k′=1

[E (XkhXk′h)]
2

+
2

n

n∑
k=1

[
E (X2

kh)
]2

=An +Bn .

We shall prove that lim
n→∞

An = 0 and lim
n→∞

Bn = 2ρ2θ−4H . By Lemma 5.4 in

[9], we have

An ≤C
1

n

n∑
k 6=k′,k,k′=1

|k − k′|4H−4

≤C 1

n

n∑
i=1

n∑
j=i+1

(j − i)4H−4

≤C 1

n

n∑
i=1

(n− i)4H−3

≤Cn4H−3
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which implies that lim
n→∞

An = 0 when H < 3
4 . On the other hand,

lim
n→∞

Bn = 2 lim
n→∞

(E X2
nh)2 = 2H2Γ2(2H)σ4θ−4H = 2ρ2θ−4H .

To prove the second inequality, it suffices to show that∣∣∣∣∣ 1n
n∑
k=1

[
E (X2

kh)
]2 − ρ2θ−4H ∣∣∣∣∣ ≤ Cn4H−3.

In fact, ∣∣∣∣∣ 1n
n∑
k=1

[
E (X2

kh)
]2 − ρ2θ−4H ∣∣∣∣∣

≤ 1

n

n∑
k=1

∣∣E (X2
kh)− ρθ−2H

∣∣ (E (X2
kh) + ρθ−2H

)
≤C 1

n

n∑
k=1

∣∣E (X2
kh)− ρθ−2H

∣∣ .
However, we have∣∣E (X2

kh)− ρθ−2H
∣∣

= C

(∫ ∞
0

∫ s

0

e−θ(u+s)|s− u|2H−2duds−
∫ kh

0

∫ s

0

e−θ(u+s)|s− u|2H−2duds

)

= C

∫ ∞
kh

∫ s

0

e−θ(u+s)|s− u|2H−2duds

= C

∫ ∞
kh

∫ s

0

eθ(x−2s)x2H−2dxds

≤ C

∫ ∞
kh

eθ(−s)s2H−1ds

≤ C

∫ ∞
kh

eθ(−s/2)ds

≤ Ce−kh/2 .

Hence, we have∣∣∣∣∣ 1n
n∑
k=1

[
E (X2

kh)
]2 − ρ2θ−4H ∣∣∣∣∣ ≤ Cn−1 ≤ Cn4H−3

which completes the proof.
Now we have

DFn =
2√
n

n∑
k=1

XkhDXkh .
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Thus

Gn := 〈DFn, DFn〉H =
4

n

n∑
k,k′=1

XkhXk′h〈DXkh, DXk′h〉H .

Since Xkh is normal random variable, it is easy to see that

〈DXkh, DXk′h〉H = E (XkhXk′h) .

Thus

Gn =
4

n

n∑
k,k′=1

XkhXk′hE (XkhXk′h) .

It is easy to check
E (Gn) = 2E (F 2

n)

which converges to 4ρ2θ−4H as n → ∞ by Lemma 4.1. Thus to verify (ii) of
Proposition 2.1, it suffices to show that

lim
n→∞

E [Gn − E (Gn)]
2

= 0 . (4.5)

However,

E [Gn − E (Gn)]
2

= E
(
G2
n

)
− [E (Gn)]

2

=
1

n2

n∑
k,k′;j,j′=1

{
E [XkhXk′hXjhXj′h]E [XkhXk′h]E [XjhXj′h]

− (E [XkhXk′h]E [XjhXj′h])
2
}
.

The expectation E (X1X2 · · ·Xp) can be computed by the well-known Feynman
diagram. In the case p = 4, we have

E (X1X2X3X4) = E (X1X2)E (X3X4)+E (X1X3)E (X2X4)+E (X1X4)E (X2X3) .

Thus

E [Gn − E (Gn)]
2

=
32

n2

n∑
k,k′,j,j′=1

E [XkhXjh]E [Xk′hXj′h]E [XkhXk′h]E [XjhXj′h] .

From Lemma 5.4 (Equation (5.7)) of [9], we have

|E [XkhXk′h]| ≤ σ2Cθ,h,H |k − k′|2H−2 .
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Therefore,

E [Gn − E (Gn)]
2

≤ C

n2

n∑
k,k′,j,j′=1

|k − j|2H−2|k′ − j′|2H−2|k − k′|2H−2|j − j′|2H−2

≤ C

n2

∫
[0,n]4

|u− v|2H−2|u′ − v′|2H−2|u− v′|2H−2|v − v′|2H−2dudvdu′dv′

= Cn4(2H−2)+4−2
∫
[0,1]4

|u− v|2H−2|u′ − v′|2H−2|u− v′|2H−2|v − v′|2H−2dudvdu′dv′

≤ Cn8H−6 . (4.6)

which converges to 0 as n→∞ if H < 3/4.
Summarizing the above, we can state

Theorem 4.2 Let Xt be the Ornstein-Uhlenbeck process defined by (1.2) and
let ξn be defined by (4.2). If 1/2 ≤ H < 3/4, then

√
n (ξn − E (ξn))→ N(0,Σ) , (4.7)

where
Σ = lim

n→∞
E (F 2

n) = 2ρ2θ−4H . (4.8)

To study the weak convergence of
√
n
(
θ̂n − θ

)
, we need the following lemma.

Lemma 4.3 Let H ≥ 1/2. Then
√
n
∣∣E (ξn)− ρθ−2H

∣∣ ≤ Cn− 1
2 ,

and hence
lim
n→∞

√
n(E (ξn)− ρθ−2H) = 0.

Proof From the definition of ξn, we have
√
n
∣∣E (ξn)− ρθ−2H

∣∣
=

C√
n

n∑
k=1

∣∣∣∣∣
∫ kh

0

∫ kh

0

e−θ(u+s)|u− s|2H−2dsdu−
∫ ∞
0

∫ ∞
0

e−θ(u+s)|u− s|2H−2dsdu

∣∣∣∣∣
=

C√
n

n∑
k=1

∣∣∣∣∣
∫ kh

0

∫ u

0

e−(u+s)|u− s|2H−2dsdu−
∫ ∞
0

∫ u

0

e−(u+s)|u− s|2H−2dsdu

∣∣∣∣∣
=

C√
n

n∑
k=1

∫ ∞
θkh

∫ u

0

e−(u+s)|u− s|2H−2dsdu

=
C√
n

n∑
k=1

∫ ∞
θkh

∫ u

0

e−2u+xx2H−2dxdu ≤ C√
n

n∑
k=1

∫ ∞
θkh

e−2ueuu2H−1du

≤ C√
n

n∑
k=1

∫ ∞
θkh

e−
1
2udu ≤ C√

n

n∑
k=1

e−
θkh
2 ≤ C√

n
.
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This proves the lemma.
Let us recall that

θ̂n =

(
ξn
ρ

)−1/(2H)

.

Therefore

√
n
(
θ̂n − θ

)
= − 1

2H
ξ̃−1/(2H)−1
n

√
n

(
ξn
ρ
− θ−2H

)
,

where ξ̃n is between θ−2H and ξn
ρ . Since ξ̃n → θ−2H almost surely and since

√
n
(
ξn − ρθ−2H

)
converges to N(0,Σ) in law by Theorem 4.2 and Lemma 4.3,

we see that
√
n
(
θ̂n − θ

)
converges in law to

N

(
0,
θ4H+2

4H2ρ2
Σ

)
= N

(
0,

θ2

2H2

)
.

Thus we arrive at our main theorem of this section.

Theorem 4.4 Let 1/2 ≤ H < 3/4. Then

√
n
(
θ̂n − θ

)
→ N

(
0,

θ2

2H2

)
in law as n→∞ . (4.9)

5 Berry-Esseen asymptotics

Theorem 4.4 shows that when n → ∞, Qn :=
√

2H2n
θ2

(
θ̂n − θ

)
converges to

N(0, 1) in law. In this section we shall obtain a rate of this convergence. We
shall use Proposition 2.3. To this end we need to compute the 4-th cumulant
κ4(Fn).

Let us develop a general approach to estimate κ4(Qn) which is particularly
useful for our situation. To simplify notation we omit the explicit dependence

on n. It is clear that if Zk =
∫ T
0
fk(s)dBHs for some (deterministic) fk ∈ H,

then

V =

N∑
k=1

(
Z2
k − E (Z2

k)
)

=

N∑
k=1

I2(f⊗2k ) . (5.1)

Thus

f =

N∑
k=1

fk ⊗ fk

and

H4
f =

N∑
k1,k2,k3,k4=1

fk1 ⊗ fk4〈fk1 , fk2〉H〈fk2 , fk3〉H〈fk3 , fk4〉H ,

11



which is a map from H to H such that for g ∈ H,

H4
f (g)(t) =

N∑
k1,k2,k3,k4=1

〈fk1 , fk2〉H〈fk2 , fk3〉H〈fk3 , fk4〉H〈fk4 , g〉Hfk1(t).

If V is given by (5.1), then the 4-th cumulant of V is

κ4(V ) = Tr(H4
f ) (5.2)

=

N∑
k1,k2,k3,k4=1

〈fk1 , fk2〉H〈fk2 , fk3〉H〈fk3 , fk4〉H〈fk4 , fk1〉H

=

N∑
k1,k2,k3,k4=1

E (Zk1Zk2)E (Zk2Zk3)E (Zk3Zk4)E (Zk4Zk1) .

(5.3)

If we apply this computation (5.3) to Fn defined in Section 4, then we see that
κ4(Fn) is the same as E (Gn − E (Gn))2 studied in Section 4. Thus we have
from (4.6)

κ4(Fn) ≤ Cn8H−6 .
By Lemma 4.1, we have

|κ2(Fn)− Σ| =
∣∣E(F 2

n)− Σ
∣∣ ≤ Cn4H−3 .

Therefore by Proposition 2.3, we have

Lemma 5.1

sup
z∈R

∣∣∣∣P (− Fn√
Σ
≤ z
)
−Ψ(z)

∣∣∣∣ ≤ Cn4H−3 ,
where Ψ(z) = 1√

2π

∫ z
−∞ e−

x2

2 dx is the error function.

We also have the following lemma.

Lemma 5.2 Let 1/2 ≤ H < 3/4. There is a constant C such that

sup
y∈R

∣∣∣∣P (√n

2
θ2H

(
θ−2H − θ̂−2Hn

)
≤ y
)
−Ψ(y)

∣∣∣∣ ≤ Cn(4H−3)∨(− 1
2 ) . (5.4)

Proof Recall that Fn =
√
n (ξn − E (ξn)).

Let F̃n =
√
n
(
ξn − ρθ−2H

)
, and an = F̃n − Fn =

√
n(E (ξn) − ρθ−2H), then

|an| ≤ Cn−
1
2 by Lemma 4.3.∣∣∣∣∣P
(
− F̃n√

Σ
≤ z

)
−Ψ(z)

∣∣∣∣∣
=

∣∣∣∣P (−Fn + an√
Σ

≤ z
)
−Ψ(z)

∣∣∣∣
≤
∣∣∣∣P (− Fn√

Σ
≤ z +

an√
Σ

)
−Ψ(z +

an√
Σ

)

∣∣∣∣+

∣∣∣∣Ψ(z +
an√

Σ
)−Ψ(z)

∣∣∣∣
≤C(n4H−3 + n−

1
2 ).

12



The inequality (5.4) is obtained since ξn = ρθ̂−2Hn and Σ = 2ρ2θ−4H .
Now we can prove our main theorem.

Theorem 5.3 Let 1/2 ≤ H < 3/4. For any K > 0, there exist a constant CK
depending on K and H, and a constant NK > 0 depending on K, such that
when n > NK ,

sup
|z|≤K

∣∣∣∣∣P
(√

2nH

θ

(
θ̂n − θ

)
≤ z

)
−Ψ(z)

∣∣∣∣∣ ≤ CKn(4H−3)∨(− 1
2 ) . (5.5)

Proof Now we have

P

(√
n

2
θ2H

(
θ−2H − θ̂−2Hn

)
≤ y
)

= P

θ̂n ≤ θ(1−
√

2

n
y

)− 1
2H


= P

√2nH

θ

(
θ̂n − θ

)
≤
√

2nH

(1−
√

2

n
y

)− 1
2H

− 1

 .

Choose yn,z so that

√
2nH

(1−
√

2

n
yn,z

)− 1
2H

− 1

 = z ,

namely,

yn,z =

√
n

2

[
1−

(
1 +

z√
2nH

)−2H]
.

Then ∣∣∣∣∣P
(√

2nH

θ

(
θ̂n − θ

)
≤ z

)
−Ψ(z)

∣∣∣∣∣
=

∣∣∣∣P (√n

2
θ2H

(
θ−2H − θ̂−2Hn

)
≤ yn,z

)
−Ψ(z)

∣∣∣∣
≤

∣∣∣∣P (√n

2
θ2H

(
θ−2H − θ̂−2Hn

)
≤ yn,z

)
−Ψ(yn,z)

∣∣∣∣+ |Ψ(yn,z)−Ψ(z)| .

The inequality (5.4) implies that the above first term is bounded by Cn(4H−3)∨(−
1
2 ).

It is easy to check that there exits a constant CK depending on K and H, and
a number NK depending on K, such that when n > NK , |Ψ(yn,z)−Ψ(z)| ≤
|yn,z − z| ≤ CKn−1/2 for all |z| ≤ K.

13



Remark 5.4 Throughout this paper we did not discuss the case H = 1/2 in
detail, which is easy.
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