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DENSITY ESTIMATES ON COMPOSITE

POLYNOMIALS

WAI SHUN CHEUNG, TUEN WAI NG and CHIU YIN TSANG

(January 9, 2013)

Abstract

J.F. Ritt introduced the concepts of prime and composite polynomials and proved three

fundamental theorems on factorizations (in the sense of compositions) of polynomials in

1922. In this paper, we shall give a density estimate on the set of composite polynomials.

2010 Mathematics subject classification: primary 30C10; secondary 15A60.

Keywords and phrases: prime and composite polynomials, density estimates.

1. Introduction and Preliminaries

Let p be a non-linear polynomial in one complex variable. We say that

p is prime if and only if there do not exist two complex polynomials q1 and

q2 both with degree greater than one such that p(z) = q1(q2(z)). Otherwise,

p is called composite or decomposable.

Clearly, for a given polynomial p, one can always factorize it as a compo-

sition of prime polynomials only and this factorization will be called a prime

factorization. In 1922, J.F. Ritt [13] proved three fundamental results on
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the factorizations of complex polynomials. Since then many people have

tried to give different proofs or generalizations of Ritt’s theorems to certain

classes of rational functions (see for example, [6], [8], [5], [16], [9],[2],[11] and

[10]).

It is worth pointing out that the factorizations of entire or meromorphic

functions have also been considered by many people. For a detailed discus-

sion of this topic, we refer the reader to [7], [4] and [3]. One can also find a

discussion on factorizations of infinite Blaschke products in [15].

The set of critical values of a polynomial plays an important role in

determining if the polynomial is prime or not (see for example Theorem A

below). By considering the number of distinct critical values of a polynomial,

Beardon [1] showed that for each fixed positive integer n, the set of degree

n composite polynomials lies in some hypersurface in Cn+1 which implies

that the set of composite polynomials is of measure zero and hence almost

all polynomials are prime. In this paper, we shall give a density estimate

on how small the set of degree n composite polynomials is. This kind of

density estimation was first used by Smale in his work on the efficiency of

Newton’s method [14] . In fact, Smale found a density estimate on a set

Vρ,n of ‘bad’ polynomials of degree n which fail to arrive at an approximate

zero when applying the Newton’s method a certain fixed number of times.

(A point z0 is called an approximate zero of p if z0 → z∗, p(z∗) = 0 and

|p(zn)/p(zn−1)| < 1
2 for all n ∈ N, where zn+1 = zn − p(zn)

p′(zn)
.)

Smale’s Density Estimate ([14, Theorem 5.(1)]). For any R > 1
3 ,

Vol(Vρ,n ∩ P (R))

Vol(P (R))
≤ 150(n+ 2)4/3ρ2/3, (1.1)

where P (R) denote the polycylinder of radius R. We call
Vol(Vρ,n) ∩ P (R)

Vol(P (R))
the density of Vρ,n.
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2. The main result

Without loss of generality, we may assume that p is a normalized poly-

nomial of degree n ≥ 2, that is, p(z) = zn + an−1z
n−1 + · · ·+ a1z. Now w is

a critical value of p if and only if p′(z) = 0 and p(z)−w = 0 have a common

root if and only if the resultant Res(p−w, p′) = 0. Denote Res(p−w, p′) by

Φ(w). Clearly, Φ(w) is a polynomial in w of degree n − 1 and p has n − 1

critical values (may not be distinct). Now we state the theorem proved by

Beardon [1].

Theorem A ([1, Theorem 3.2]). If a polynomial p of degree n ≥ 2 has more

than
⌊
n
2

⌋
distinct critical values (here bxc is the integer part of a real number

x), then it is prime. In particular, if p has n − 1 distinct critical values,

then it is prime.

If p is composite, then p has at most n − 2 distinct critical values by

Theorem A, and this is equivalent to saying that Φ(w) = 0 has a repeated

root or equivalently,

Ψ(a1, · · · , an−1) := Res(Φ,Φ′) = 0.

Let Wn = {(a1, · · · , an−1) ∈ Cn−1 : Ψ(a1, · · · , an−1) = 0}. Then the set

Cn := {(a1, · · · , an−1) ∈ Cn−1 : zn + an−1z
n−1 + · · · + a1z is composite} is

contained in Wn.

Now we are going to obtain a density estimate on Cn. Let Pn be the

set of normalized polynomials of degree n, that is, Pn = {p : p(z) = zn +

an−1z
n−1 + · · · + a1z, ai ∈ C}. Thus Pn can be identified with Cn−1 =

{(a1, · · · , an−1) : ai ∈ C}. Let P (R) be the polycylinder defined by {a =

(a1, · · · , an−1) ∈ Pn : |ai| < R, i = 1, · · · , n − 1}. To obtain the volume

of P (R), we consider the standard volume on Cn−1 = R2n−2 for Pn. Let
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aj = xj + iyj and Dj(R) = {(xj , yj) ∈ R2 : x2j + y2j < R2}. Then we have

Vol(P (R)) =

∫
P (R)

da =

∫
|an−1|<R

· · ·
∫
|a1|<R

da1 · · · dan−1

=

(∫
|a1|<R

da1

)
· · ·

(∫
|an−1|<R

dan−1

)

=

(∫
D1(R)

dx1dy1

)
· · ·

(∫
Dn−1(R)

dxn−1dyn−1

)
= (πR2)n−1.

Let S be any subset of Wn and let ρ be any positive real number, define

Uρ(S) =
⋃
f0∈S

Uρ(f0),

where Uρ(f0) = {f ∈ Pn : |f ′(0) − f ′0(0)| < ρ, f ′′(z) = f ′′0 (z) for all z}.

Clearly, Uρ(Cn) ⊂ Uρ(Wn). Now we can state our main result.

Theorem 1. For any R > ρ > 0,

Vol(Uρ(Cn) ∩ P (R))

Vol(P (R))
≤ Vol(Uρ(Wn) ∩ P (R))

Vol(P (R))
≤ n(n− 2)ρ2

R2
. (2.1)

Remark 1. By comparing the exponents of ρ in (1.1) and (2.1), for a fixed

positive integer n, the upper bound in the estimate in Theorem 1 is much

smaller than the one in Smale’s estimate for sufficiently small ρ > 0.

Remark 2. We shall see in Section 3 that the constant n(n−2)
R2 in the esti-

mate

Vol(Uρ(Cn) ∩ P (R))

Vol(P (R))
≤ n(n− 2)ρ2

R2

is far from being sharp because Cn is in general a small subset of Wn.

To prove Theorem 1, we need the following lemma.

Lemma 1. The subset Wn ⊂ Pn is a complex algebraic hypersurface defined

by the polynomial equation Ψ(a1, · · · , an−1) = 0, where Ψ is a polynomial of

degree n(n− 2) in a1.
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Proof of Lemma 1. Let us recall the definition of the resultant. For any two

polynomials u(z) = umz
m+um−1z

m−1 + · · ·+u0 and v(z) = vnz
n+ · · ·+v0,

the resultant Res(u(z), v(z)) of u and v is defined to be the determinant of

the following (m+ n)× (m+ n) matrix



um um−1 · · · u1 u0 0 · · · 0

0 um
. . . u2 u1 u0 · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 · · · um um−1 um−2 · · · u0

vn vn−1 · · · · · · v0 0 · · · 0

0 vn
. . . · · · v1 v0 · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 · · · vn vn−1 vn−2 · · · v0



.

As

p(z)− w = zn + an−1z
n−1 + · · ·+ a1z − w

and

p′(z) = nzn−1 + (n− 1)an−1z
n−2 + · · ·+ 2a2z + a1,

we can see that Φ(w) := Res(p − w, p′) is the determinant of the following

(2n− 1)× (2n− 1) matrix

1 an−1 · · · a2 a1 −w 0 · · · 0

0 1
. . . a3 a2 a1 −w · · · 0

...
...

. . .
. . .

...
...

...
. . .

...

0 0 · · · 1 an−1 an−2 an−3 · · · −w

n (n− 1)an−1 · · · 2a2 a1 0 · · · · · · 0

0 n
. . . 3a3 2a2 a1 0 · · · 0

...
...

. . .
. . .

...
...

. . .
. . .

...

0 0 · · · n (n− 1)an−1 · · · · · · a1 0

0 0 · · · 0 n (n− 1)an−1 · · · · · · a1



. (2.2)

Clearly, Φ(w) is a polynomial in w of degree n− 1 whose leading coefficient
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is (−1)n−1nn, i.e.,

Φ(w) =
n−1∑
i=0

Fi(a1, · · · , an−1)wi,

where Fn−1(a1, · · · , an−1) = (−1)n−1nn.

To find the coefficient of an1 in F0, we consider the determinant of the

matrix in (2.2). By subtracting the (n − 1 + i)th row from the ith row for

the determinant of the matrix in (2.2) (i = 1, · · · , n − 1), we can see that

Φ(w) is the determinant of the following (2n− 1)× (2n− 1) matrix



1 − n (2 − n)an−1 · · · −a2 0 −w 0 · · · 0

0 1 − n
. . . −2a3 −a2 0 −w · · · 0

...
...

. . .
. . .

...
...

...
. . .

...

0 0 · · · 1 − n (2 − n)an−1 (3 − n)an−2 (4 − n)an−3 · · · −w

n (n− 1)an−1 · · · 2a2 a1 0 · · · · · · 0

0 n
. . . 3a3 2a2 a1 0 · · · 0

...
...

. . .
. . .

...
...

. . .
. . .

...

0 0 · · · n (n− 1)an−1 · · · · · · a1 0

0 0 · · · 0 n (n− 1)an−1 · · · · · · a1



.

It is easily seen that

F0(a1, a2, · · · , an−1) = (−1)n−1(n−1)n−1an1 +

n−1∑
i=0

Gi(a2, · · · , an−1)ai1, (2.3)

where Gi is a polynomial in the variables a2, · · · , an−1.

Now we show that for i = 1, · · · , n − 2, each term of Fi must involve

some aj for j = 2, · · · , n− 1. To prove this, consider
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Φ|a2=···=an−1=0(w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− n 0 · · · 0 0 −w 0 · · · 0

0 1− n . . . 0 0 0 −w · · · 0
...

...
. . .

. . .
...

...
...

. . .
...

0 0 · · · 1− n 0 0 0 · · · −w

n 0 · · · 0 a1 0 · · · · · · 0

0 n
. . . 0 0 a1 0 · · · 0

...
...

. . .
. . .

...
...

. . .
. . .

...

0 0 · · · n 0 · · · · · · a1 0

0 0 · · · 0 n 0 · · · · · · a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

= a1

∣∣∣∣∣∣(1− n)In−1 −wJn−1

nIn−1 a1In−1

∣∣∣∣∣∣+ (−1)n−1n

∣∣∣∣∣∣(1− n)In−1 −wIn−1

nIn−1 a1J
T
n−1

∣∣∣∣∣∣ ,
where the last equality holds by expanding the last row of the above de-

terminant and here Im and Jm denote the m ×m identity matrix and the

m × m Jordan block with eigenvalues 0 respectively. Using the fact that

det

A B

C D

 = det(AD −ACA−1B) if A,B,C,D ∈ Cm×m and A is invert-

ible, we have

Φ|a2=···=an−1=0(w)

= a1 det[a1(1− n)In−1 + wnJn−1] + (−1)n−1n det[a1(1− n)JTn−1 + wnIn−1]

= (1− n)n−1an1 + (−1)n−1wn−1nn.

In particular,

Fj(a1, 0, · · · , 0) = 0, for j = 1, · · ·n− 2.

Therefore, for j = 1, · · · , n− 2,

Fj(a1, a2, · · · , an−1) =
∑

s2+···+sn−1≥1
Hj
s2,··· ,sn−1

(a1)a
s2
2 · · · a

sn−1

n−1 , (2.4)
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where Hj
s2,··· ,sn−1 is a polynomial in the variable a1.

As

Φ(w) = Fn−1w
n−1 + · · ·+ F0

and

Φ′(w) = (n− 1)Fn−1w
n−2 + (n− 2)Fn−2w

n−3 + · · ·+ F1,

it follows that Ψ(a1, · · · , an−1) is the determinant of the following (2n−3)×
(2n− 3) matrix

Fn−1 Fn−2 · · · F2 F1 F0 0 · · · 0

0 Fn−1

. . . F3 F2 F1 F0 · · · 0

...
...

. . .
. . .

...
...

...
. . .

...

0 0 · · · Fn−1 Fn−2 Fn−3 Fn−4 · · · F0

(n− 1)Fn−1 (n− 2)Fn−2 · · · 2F2 F1 0 · · · · · · 0

0 (n− 1)Fn−1

. . . 3F3 2F2 F1 0 · · · 0

...
...

. . .
. . .

...
...

. . .
. . .

...

0 0 · · · (n− 1)Fn−1 (n− 2)Fn−2 · · · · · · F1 0

0 0 · · · 0 (n− 1)Fn−1 (n− 2)Fn−2 · · · · · · F1



.

Therefore,

Ψ(a1, · · · , an−1)

= (n− 1)n−1Fn−1n−1F
n−2
0

+
∑

r1+···+rn−2≥1
Pr1,··· ,rn−2(F0, Fn−1)F

r1
1 · · ·F

rn−2

n−2 , (2.5)

where Pr1,··· ,rn−2 is a polynomial in the variables F0, Fn−1. By (2.3) and

(2.4), the first term in (2.5) is

(n− 1)n−1Fn−1n−1F
n−2
0

= (−1)n−1(n− 1)(n−1)
2

nn(n−1)a
n(n−2)
1 +

n(n−2)−1∑
i=0

Ti(a2, · · · , an−1)ai1

and the second term in (2.5) is∑
r1+···+rn−2≥1

Pr1,··· ,rn−2(F0, Fn−1)F
r1
1 · · ·F

rn−2

n−2

=
∑

t2+···+tn−1≥1
Qt2,··· ,tn−1(a1)a

t2
2 · · · a

tn−1

n−1 ,
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where Ti is a polynomial in the variables a2, · · · , an−1 and Qt2,··· ,tn−1 is a

polynomial in a1 only. Then

Ψ(a1, · · · , an−1)

= (−1)n−1(n− 1)(n−1)
2

nn(n−1)a
n(n−2)
1 +

n(n−2)−1∑
i=0

Ti(a2, · · · , an−1)ai1

+
∑

t2+···+tn−1≥1
Qt2,··· ,tn−1(a1)a

t2
2 · · · a

tn−1

n−1 . (2.6)

In particular, we can see that Ψ has degree at least n(n− 2) in a1.

On the other hand, by expressing Ψ in term of the zeros w1, · · · , wn−1

of Φ(w), that is,

Ψ(a1, · · · , an−1) = F 2n−4
n−1

∏
i<j

(wi − wj)2,

we can show that Ψ has degree at most n(n−2) in a1. This suffices to show

that for any fixed a2, · · · , an−1,

Ψa2,··· ,an−1(a1) = Ψ(a1, · · · , an−1) ≤ O(|a1|n(n−2)).

To prove this, we need to use a theorem which gives an upper bound for

the zeros of a polynomial in terms of the coefficients of the polynomial. To

state this result, we need the following

Definition ([12, Definition 8.1.2]). Let f(z) = c0 + c1z + · · · + cnz
n be

a polynomial of degree n ≥ 1. Then the Cauchy bound of f , denoted by

ρ[f ], is defined as the unique positive root of the equation |c0| + |c1|x +

· · · |cn−1|xn−1 = |cn|xn when f is not a monomial, and as zero otherwise

(the uniqueness of the root was proved in [12, Lemma 8.1.1]).

Theorem B ([12, Corollary 8.1.8]). If f(z) = c0 + c1z + · · ·+ cnz
n, where

cn 6= 0, then

ρ[f ] ≤ max
0≤ν≤n−1

(
n

∣∣∣∣ cνcn
∣∣∣∣) 1

n−ν
.
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Remark 3. Notice that all the zeros of the non-constant polynomial f lie

in the closed disk with centre at the origin and radius ρ[f ] (see [12, Theorem

8.1.3]).

Let ri (i = 1, · · · , n− 1) be the zeros (which may not be distinct) of p′.

Applying Theorem B to f(z) = p′(z) = nzn−1 + (n − 1)an−1z
n−2 + · · · +

2a2z + a1 for any fixed a2, · · · , an, then we have

|ri| ≤ ρ[p′] ≤ max
0≤ν≤n−2

(
(ν + 1)(n− 1)

n
|aν+1|

) 1
(n−1)−ν

≤ O(|a1|
1

n−1 ).

Note that p(ri) is a critical value of p and therefore Φ(w) = 0 if and only if

w = p(ri). Hence

Ψ(a1, · · · , an−1) = F 2n−4
n−1

∏
i<j

(p(ri)− p(rj))2 = n2n(n−2)
∏
i<j

(p(ri)− p(rj))2.

As

(p(ri)− p(rj))2 ≤ O(|a1|
2n
n−1 )

and there are exactly (n−1)(n−2)
2 distinct pairs of p(ri)− p(rj) for i < j, we

have

Ψa2,··· ,an−1(a1) = Ψ(a1, · · · , an−1)

= n2n(n−2)
∏
i<j

(p(ri)− p(rj))2 ≤ O(|a1|n(n−2)), (2.7)

for any fixed a2, · · · , an.

By (2.6) and (2.7), Ψ has degree n(n − 2) in a1, more precisely, there

exist polynomials R0, · · · , Rn(n−2) ∈ C[a2, · · · , an−1] such that

Ψ(a1, · · · , an−1) =

n(n−2)∑
i=0

Ri(a2, · · · , an−1)ai1,

where Rn(n−2) 6≡ 0. Therefore Wn is the complex hypersurface defined by

the polynomial equation Ψ = 0, where Ψ is of degree n(n − 2) in a1. This

completes the proof of Lemma 1.

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. Let χ : Cn−1 → {0, 1} be the characteristic function

of Uρ(Wn). By Lemma 1, we observe that for a generic (a2, · · · , an−1) ∈

Cn−2, the intersection of Wn with the one dimensional coordinate plane

{(z, a2, · · · , an−1) : z ∈ C} consists of at most n(n − 2) points. Hence we

have∣∣∣∣∣
∫
|a1|<R

χ(a1, a2, · · · , an−1)da1

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
|a1|<∞

χ(a1, a2, · · · , an−1)da1

∣∣∣∣∣
≤ n(n− 2)πρ2.

By the Fubini’s theorem,

Vol(Uρ(Wn) ∩ P (R))

Vol(P (R))

=
1

(πR2)n−1

∫
P (R)

χ(a)da

=
1

(πR2)n−1

∫
|a2|,··· ,|an−1|<R

[∫
|a1|<R

χ(a1, · · · , an−1)da1

]
da2 · · · dan−1

≤ 1

(πR2)n−1

∫
|a2|,··· ,|an−1|<R

[n(n− 2)πρ2]da2 · · · dan−1

=
1

(πR2)n−1
[n(n− 2)πρ2](πR2)n−2 =

n(n− 2)ρ2

R2
.

Since, Uρ(Cn) ⊂ Uρ(Wn), we have

Vol(Uρ(Cn) ∩ P (R))

Vol(P (R))
≤ Vol(Uρ(Wn) ∩ P (R))

Vol(P (R))
≤ n(n− 2)ρ2

R2
.

3. Composite polynomials of small degrees

3.1. Degree 4 polynomials By considering composite polynomials of

degree 4, we shall see that the density estimate of C4 in Theorem 1 is not

sharp. In fact, by Theorem 1, we have

Vol(Uρ(C4) ∩ P (R))

Vol(P (R))
≤ 8ρ2

R2
.

However, we actually have the following
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Proposition 1.

Vol(Uρ(C4) ∩ P (R))

Vol(P (R))
≤ ρ2

R2
.

To see this, note that if p(z) = z4 + a3z
3 + a2z

2 + a1z is composite, then

Ψ(a1, a2, a3) = 0. By using mathematical software such as Mathematica, we

obtain

Ψ(a1, a2, a3) = −4096(a33 − 4a3a2 + 8a1)
2

×(108a21 − 108a3a2a1 + 27a33a1 + 32a32 − 9a23a
2
2)

3.

From the proof of Theorem 1, we know that the upper bound
8ρ2

R2
comes

from the fact that Ψ(a1, a2, a3) is of degree 8 in a1. We can get a much better

bound
ρ2

R2
by showing that p(z) is composite if and only if a33−4a3a2+8a1 =

0.

To prove this, suppose that p is composite, then there exist some A,B ∈

C such that

z4+a3z
3+a2z

2+a1z = (z2+Az)◦(z2+Bz) = z4+2Bz3+(A+B2)z2+ABz.

Comparing the coefficients, we have a3 = 2B, a2 = A+B2, a1 = AB. After

eliminations of A and B, we have a33 − 4a3a2 + 8a1 = 0.

Conversely, suppose that a33 − 4a3a2 + 8a1 = 0. Then

(z2 + (a2 −
a23
4

)z) ◦ (z2 +
a3
2
z) = z4 + a3z

3 + a2z
2 + (a2 −

a23
4

)(
a3
2

)z

= z4 + a3z
3 + a2z

2 + a1z.

So p is composite. Hence C4 = {(a1, a2, a3) ∈ C3 : a33 − 4a3a2 + 8a1 = 0}.

Proof of Proposition 1. Note that a33 − 4a3a2 + 8a1 is of degree 1 in a1,

hence for any (a2, a3) ∈ C2, the intersection of C4 with the one dimensional

coordinate plane {(z, a2, a3) : z ∈ C} consists of exactly one point. Hence

we have

12



∣∣∣∣∣
∫
|a1|<R

χ(a1, a2, a3)da1

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
|a1|<∞

χ(a1, a2, a3)da1

∣∣∣∣∣ = πρ2.

It then follows from the proof of Theorem 1 that

Vol(Uρ(C4) ∩ P (R))

Vol(P (R))
≤ ρ2

R2
.

This proves Proposition 1.

Remark 4. As C4 ⊂ W4, a33−4a3a2+8a1 = 0 implies that Ψ(a1, a2, a3) = 0.

So there should be certain relation between a33− 4a3a2 + 8a1 and Ψ. In fact,

recall that

Ψ(a1, a2, a3) = −4096(a33 − 4a3a2 + 8a1)
2

×(108a21 − 108a3a2a1 + 27a33a1 + 32a32 − 9a23a
2
2)

3.

It follows that a33 − 4a3a2 + 8a1 is a factor of Ψ with multiplicity 2.

3.2. Degree 6 polynomials By considering composite polynomials of

degree 6, we also see that the density estimate of C6 in Theorem 1 is not

sharp. In fact, by Theorem 1, we have

Vol(Uρ(C6) ∩ P (R))

Vol(P (R))
≤ 24ρ2

R2
.

However, we actually have the following

Proposition 2.

Vol(Uρ(C6) ∩ P (R))

Vol(P (R))
≤ 2ρ2

R2
.

To see this, note that if p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z is

composite, then Ψ(a1, a2, a3, a4, a5) = 0. By using mathematical software

such as Mathematica, Ψ can be factorized to the following form:

Ψ(a1, a2, a3, a4, a5) = C[q(a1, a2, a3, a4, a5)]
3[r(a1, a2, a3, a4, a5)]

2,
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for some constant C and some polynomials q, r ∈ C[a1, a2, a3, a4, a5] such

that q has degree 4 in a1 and r has degree 6 in a1. From the proof of

Theorem 1, we know that the upper bound
24ρ2

R2
comes from the fact that

Ψ(a1, a2, a3) is of degree 24 in a1. We can get a much better bound
2ρ2

R2
by

showing the following

Lemma 2. The polynomial p(z) = z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z is

composite if and only if
5a35 + 27a3 − 18a5a4 = 0

a55 − 3a35a4 + 27a5a2 − 81a1 = 0

(3.1)

or 
a55 − 8a35a4 + 8a25a3 + 16a5a

2
4 − 32a4a3 + 64a1 = 0

5a45 − 24a25a4 + 32a5a3 + 16a24 − 64a2 = 0

. (3.2)

Proof of Lemma 2. Suppose that p(z) = z6+a5z
5+a4z

4+a3z
3+a2z

2+a1z is

composite, without loss of generality, we only need to consider the following

two different kinds of factorizations:

1. z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z = (z3 +Az2 +Bz) ◦ (z2 + Cz);

2. z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z = (z2 +Az) ◦ (z3 +Bz2 + Cz).

For case 1,

z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z

= z6 + 3Cz5 + (3C2 +A)z4 + (C3 + 2AC)z3 + (AC2 +B)z2 +BCz.

Comparing the coefficients, we have

a5 = 3C

a4 = 3C2 +A

a3 = C3 + 2AC

a2 = AC2 +B

a1 = BC

.
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After eliminations, we obtain two equations 5a35 + 27a3 − 18a5a4 = 0 and

a55 − 3a35a4 + 27a5a2 − 81a1 = 0.

Conversely, suppose that 5a35 + 27a3 − 18a5a4 = 0 and a55 − 3a35a4 +

27a5a2 − 81a1 = 0. Then

(z3 + (a4 −
a25
3

)z2 + (a2 −
a25a4

9
+
a45
27

)z) ◦ (z2 +
a5
3
z)

= z6 + a5z
5 + a4z

4 + (−5a35
27

+
2a5a4

3
)z3 + a2z

2 + (
a55
81
− a35a4

27
+
a5a2

3
)z

= z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z.

So p is composite.

For case 2,

z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z

= z6 + 2Bz5 + (2C +B2)z4 + (A+ 2BC)z3 + (C2 +AB)z2 +ACz.

Comparing the coefficients, we have

a5 = 2B

a4 = 2C +B2

a3 = A+ 2BC

a2 = C2 +AB

a1 = AC

.

After eliminations, we obtain two equations a55 − 8a35a4 + 8a25a3 + 16a5a
2
4 −

32a4a3 + 64a1 = 0 and 5a45 − 24a25a4 + 32a5a3 + 16a24 − 64a2 = 0.

Conversely, suppose that a55−8a35a4+8a25a3+16a5a
2
4−32a4a3+64a1 = 0

and 5a45 − 24a25a4 + 32a5a3 + 16a24 − 64a2 = 0. Then

(z2 + (a3 −
a5a4

2
+
a35
8

)z) ◦ (z3 +
a5
2
z2 + (

a4
2
− a25

8
)z)

= z6 + a5z
5 + a4z

4 + a3z
3 + (

5a45
64
− 3a25a4

8
+
a24
4

+
a5a3

2
)z2

+(−a
5
5

64
+
a35a4

8
− a5a

2
4

4
− a25a3

8
+
a4a3

2
)z

= z6 + a5z
5 + a4z

4 + a3z
3 + a2z

2 + a1z.
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So p is composite.

Let

R
(1)
1 (a1, a2, a3, a4, a5) = 5a35 + 27a3 − 18a5a4,

R
(1)
2 (a1, a2, a3, a4, a5) = a55 − 3a35a4 + 27a5a2 − 81a1,

R
(2)
1 (a1, a2, a3, a4, a5) = a55 − 8a35a4 + 8a25a3 + 16a5a

2
4 − 32a4a3 + 64a1,

R
(2)
2 (a1, a2, a3, a4, a5) = 5a45 − 24a25a4 + 32a5a3 + 16a24 − 64a2.

By Lemma 2,

C6 = {(a1, a2, a3, a4, a5) ∈ C5 : R
(1)
1 = R

(1)
2 = 0 or R

(2)
1 = R

(2)
2 = 0}

= {(a1, a2, a3, a4, a5) ∈ C5 : R
(1)
1 = R

(1)
2 = 0}

∪{(a1, a2, a3, a4, a5) ∈ C5 : R
(2)
1 = R

(2)
2 = 0}

= C(1)6 ∪ C
(2)
6 ,

where C(1)6 = {(a1, a2, a3, a4, a5) ∈ C5 : R
(1)
1 = R

(1)
2 = 0} and C(2)6 =

{(a1, a2, a3, a4, a5) ∈ C5 : R
(2)
1 = R

(2)
2 = 0}.

Now we look at some examples of composite polynomials of degree 6.

1. Let p(z) = z6 + 2z4 + z2. It is easily seen that (0, 1, 0, 2, 0) ∈ C5

satisfies both (3.1) and (3.2). Hence (0, 1, 0, 2, 0) ∈ C(1)6 ∩ C(2)6 ⊂ C6.

Therefore, there are two different kinds of factorizations for p:

z6 + 2z4 + z2 = (z3 + 2z2 + z) ◦ z2 = z2 ◦ (z3 + z).

2. Let p(z) = z6 + z4 + z2. It is easy to check that (0, 1, 0, 1, 0) ∈ C5

satisfies (3.1), but not (3.2). Hence (0, 1, 0, 1, 0) ∈ C(1)6 \ C(2)6 ⊂ C6.

Therefore,

z6 + z4 + z2 = (z3 + z2 + z) ◦ z2

and z6+z4+z2 cannot be written in the form (z2+Az)◦(z3+Bz2+Cz).
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3. Let p(z) = z6+2z4+z3+z2+z. It is easy to verify that (1, 1, 1, 2, 0) ∈

C5 satisfies (3.2), but not (3.1). Hence (1, 1, 1, 2, 0) ∈ C(2)6 \ C
(1)
6 ⊂ C6.

Therefore,

z6 + 2z4 + z3 + z2 + z = (z2 + z) ◦ (z3 + z)

and z6 + 2z4 + z3 + z2 + z cannot be written in the form (z3 +Az2 +

Bz) ◦ (z2 + Cz).

From the above examples, we have C6 = C(1)6 ∪ C(2)6 , where C(1)6 ∩ C(2)6 6= ∅,

C(1)6 \ C
(2)
6 6= ∅ and C(2)6 \ C

(1)
6 6= ∅.

Proof of Proposition 2. It follows from (3.1) and (3.2) in Lemma 2 that for

any (a2, a3, a4, a5) ∈ C4, there exists at most one a′1 ∈ C such that

(a′1, a2, a3, a4, a5) ∈ C
(1)
6 ,

and similarly there exists at most one a′′1 ∈ C such that

(a′′1, a2, a3, a4, a5) ∈ C
(2)
6 .

Therefore, the intersection of C6 with the one dimensional coordinate plane

{(z, a2, a3, a4, a5) : z ∈ C}

consists of at most two points. Hence we have

∣∣∣∣∣
∫
|a1|<R

χ(a1, a2, a3, a4, a5)da1

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
|a1|<∞

χ(a1, a2, a3, a4, a5)da1

∣∣∣∣∣ ≤ 2πρ2.

It then follows from the proof of Theorem 1 that

Vol(Uρ(C6) ∩ P (R))

Vol(P (R))
≤ 2ρ2

R2
.

This proves Proposition 2.
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Remark 5. As C6 ⊂ W6, R
(1)
1 = R

(1)
2 = 0 or R

(2)
1 = R

(2)
2 = 0 implies that

Ψ = 0. So there should be certain relation between R
(1)
1 , R

(1)
2 , R

(2)
1 , R

(2)
2 and

Ψ. Now we discuss such relation. Recall that Ψ can be factorized to the

following form:

Ψ(a1, a2, a3, a4, a5) = C[q(a1, a2, a3, a4, a5)]
3[r(a1, a2, a3, a4, a5)]

2,

for some constant C and some polynomials q, r ∈ C[a1, a2, a3, a4, a5]. Let

I(1) and I(2) be the ideals < R
(1)
1 , R

(1)
2 > and < R

(2)
1 , R

(2)
2 > generated

by R
(1)
1 , R

(1)
2 and R

(2)
1 , R

(2)
2 respectively. Using mathematical software such

as Mathematica, we find a Groebner basis G(1) for I(1) and a Groebner

basis G(2) for I(2). When dividing r by G(1) and G(2) respectively, both the

remainders are zero. Hence r ∈ I(1) and r ∈ I(2) or equivalently,

r = r
(1)
1 R

(1)
1 + r

(1)
2 R

(1)
2 = r

(2)
1 R

(2)
1 + r

(2)
2 R

(2)
2

for some r
(1)
1 , r

(1)
2 , r

(2)
1 , r

(2)
2 ∈ C[a1, a2, a3, a4, a5]. Therefore

Ψ(a1, a2, a3, a4, a5) = Cq3(r
(1)
1 R

(1)
1 + r

(1)
2 R

(1)
2 )2 = Cq3(r

(2)
1 R

(2)
1 + r

(2)
2 R

(2)
2 )2.
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