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Comparison of Kasai Autocorrelation and Maximum
Likelihood Estimators for Doppler Optical

Coherence Tomography
Aaron C. Chan, Student Member, IEEE, Edmund Y. Lam*, Senior Member, IEEE, and Vivek J. Srinivasan

Abstract—In optical coherence tomography (OCT) and ultra-
sound, unbiased Doppler frequency estimators with low variance
are desirable for blood velocity estimation. Hardware improve-
ments in OCTmean that ever higher acquisition rates are possible,
which should also, in principle, improve estimation performance.
Paradoxically, however, the widely used Kasai autocorrelation es-
timator’s performance worsens with increasing acquisition rate.
We propose that parametric estimators based on accurate models
of noise statistics can offer better performance. We derive a max-
imum likelihood estimator (MLE) based on a simple additive white
Gaussian noise model, and show that it can outperform the Kasai
autocorrelation estimator. In addition, we also derive the Cramer
Rao lower bound (CRLB), and show that the variance of the MLE
approaches the CRLB for moderate data lengths and noise levels.
We note that the MLE performance improves with longer acqui-
sition time, and remains constant or improves with higher acqui-
sition rates. These qualities may make it a preferred technique
as OCT imaging speed continues to improve. Finally, our work
motivates the development of more general parametric estimators
based on statistical models of decorrelation noise.

Index Terms—Cramer–Rao bound (CRB), Doppler optical co-
herence tomography, Doppler ultrasound, frequency estimation,
maximum likelihood estimation (MLE).

I. INTRODUCTION

I N RECENT years, Doppler optical coherence tomography
(OCT) has become an invaluable tool in blood velocity esti-

mation [1], [2] and promises to be important for absolute blood
flow quantification [3]. Many authors have provided valuable
insight into Doppler frequency estimation in OCT [4]–[6], sonar
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[7], and ultrasound [8]–[11], including work that applied esti-
mation theory to this problem [12]. One commonly used esti-
mator, an autocorrelation method, was derived by Kasai [8] in
1985, during the era of analog electronics for use in continuous
wave and pulse-echo Doppler ultrasound [13]–[15]. The Kasai
estimator [8] has been widely used in Doppler frequency esti-
mation [16] and has been ported for use in Doppler OCT. It is
a fast and simple algorithm, with wide applicability due to its
nonparametric nature.
On the other hand, it is known that the Kasai estimator is

not statistically optimal in the sense of estimator mean squared
error (MSE) and variance [17]. Since it was derived and first im-
plemented with analog electronics, with most signal processing
becoming digital nowadays, it is worthwhile to reevaluate the
suitability of this technique in the discrete domain. In addition,
Schmoll et al. [18] have noticed an undesirable feature of the
discretized Kasai estimator: that increasing the acquisition rate
decreases the estimator performance. In practice, the time be-
tween samples is sometimes increased in order to lower the es-
timator variance [18]. However, this clearly represents an unde-
sirable feature, as this necessarily reduces the maximum mea-
surable frequency. Discarding data in this manner negates the
advantages of hardware advances towards higher acquisition
rates [19].
In this paper, we first present a theoretical analysis and ex-

perimental verification to evaluate the performance of the Kasai
estimator compared with the maximum likelihood estimator
(MLE). We compare these estimators against the Cramer–Rao
lower bound (CRLB) , which indicates the theoretical best
performance of an unbiased estimator. While ad hoc estimators
may provide reasonable performance under practical situations,
they may not be optimal. Maximum likelihood estimation (a
parametric method) has the advantages of asymptotic effi-
ciency, consistency and unbiasedness [17]. MLEs can closely
match the CRLB, for moderate data lengths and signal-to-noise
ratios (SNRs). Hence we propose MLEs as better alternatives
to the Kasai estimator. The tradeoff, however, is that parametric
estimators are more susceptible to outliers and violations of
model assumptions [20], [21]. Parametric estimators may also
be more computationally complex. Despite these limitations,
they are better suited to take advantage of advances in compu-
tational power and improvements in OCT acquisition speed.
After a detailed discussion on the Kasai estimator, we de-

scribe a simple additive white Gaussian noise model for the
Doppler OCT signal. By providing mathematical derivations of
the MLE under these assumptions, we prove that the position

0278-0062/$31.00 © 2013 IEEE
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TABLE I
SOME FREQUENTLY USED SYMBOLS

of the peak of the power spectral density is the MLE for the
Doppler frequency. From our model, we also derive the CRLB
via an appropriate Fisher information matrix, and discuss the
MLE’s limitations. This is done in the spirit of discrete-time
signal processing, in contrast to the continuous-time analysis of
[12]. Moreover, we show, through simulations, that the Kasai
estimator is statistically suboptimal as determined by the stan-
dard performance metrics of estimator bias, variance, and ef-
ficiency. In addition, we examine the scaling properties of the
Kasai autocorrelation estimator and the MLE with acquisition
rate. We demonstrate that the MLE performance improves with
acquisition time and remains constant or improves with acqui-
sition rate. We conclude by highlighting the relative advantages
of these estimators and point the direction for further improve-
ments in algorithm development, with a brief discussion on the
effects of multiplicative decorrelation noise on these estimators.

II. KASAI ESTIMATOR

Kasai derived an estimator [8] to calculate Doppler shifts of
continuous wave ultrasound signals. The motivation was to de-
duce the Doppler frequency from the autocorrelation function.
The most intuitive and direct way to measure the rate of ro-
tation of a complex phasor is to measure the change over a
small known time interval. One can integrate repeated mea-
surements of the change to obtain a more precise estimate. The
Kasai estimator essentially performs an integral of the phase
changes to obtain an autocorrelation function, from which the
average Doppler frequency is obtained. It can be seen, by the
Wiener–Khinchin Theorem [22]–[24], that the Kasai autocorre-
lation estimate is analogous to the mean of the power spectrum.
It is a nonparametric estimator in the sense that no assumption
is made on the noise statistics.

A. Expression

Kasai [8] derived an estimator for the Doppler shift by finding
the mean value of the angular frequency, (see Table I), from
the power spectrum

(1)

However, this form is not conducive to easy computation. From
the Wiener–Khinchin Theorem, one can determine this in the
time domain

(2)

While Kasai proposed this estimator for analog signals, it is now
often utilized in its discrete form. To compute this, one would
estimate the one-step autocorrelation function by

(3)

where is the signal acquired at the th time instance. If its
phase is given by then one can estimate the
mean angular frequency in (2) by dividing the phase subtended
(indicated by the wedge signal, ) by the time elapsed . This
is the same as the rate of change in phase, , at time zero

(4)

Therefore, from (3) and (4)

(5)

This is a two-step estimation process. First, one estimates the
autocorrelation function. Second, from the autocorrelation func-
tion at unit lag, one estimates the phase velocity. As the effects
of noise were not considered in the derivation, and the autocor-
relation function was assumed to be equal to its estimate, the
Kasai autocorrelation estimate of frequency is ad hoc, and op-
timality was not considered.

B. Advantages and Drawbacks

The Kasai estimator is computationally simple, with few op-
erations: addition, multiplication and an arctangent. It can there-
fore be implemented in real-time easily and cheaply with very
simple analog or digital electronics. However, these benefits are
now largely secondary with the present state of computational
capabilities.
As no assumptions are made about the noise statistics, the

Kasai estimator also has a wider applicability than a parametric
method such as theMLE. As it is nonparametric, a priori knowl-
edge of the noise statistics is not utilized, which means the esti-
mator will probably be nonoptimal. We show in our simulations
(Section V) that the Kasai estimator does not achieve the CRLB
for realistic SNRs.

III. MAXIMUM LIKELIHOOD ESTIMATOR

The MLE is consistent, asymptotically unbiased, and asymp-
totically efficient [17]. Here, we show that the MLE for fre-
quency is equal to the position of peak of the power spectral
density. As the MLE is a parametric estimation technique, a full
derivation requires a statistical noise model.

A. Model

Consider a stationary OCT beam focused at a single loca-
tion. We are interested in the time evolution of the complex re-
flectance of this region of interest. We represent the signal as
the sum of a rotating phasor and an additive white Gaussian
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noise (AWGN) component. The magnitude of the phasor is de-
termined by the amplitude of backscattering, and in our discus-
sion, is given by . Red blood cells are the major backscatterer
in blood, although platelets and white blood cells may also be
present. In reality, so-called “decorrelation noise” will always
be present, as one red blood cell is replaced by another with a
different scattering amplitude and phase. Vakoc et al. [25] have
shown that signal decorrelation is related to the Gaussian profile
of an OCT beam. Accounting for decorrelation would lead to a
more complicated noise model and MLE, but could potentially
lead to more accurate estimates.
As a parametric method, the MLE is asymptotically optimal

for the assumed noise model. Here, we examine the simplest
noise model (additive, white Gaussian noise) for the OCT signal
for the purposes of estimator comparison. This model is com-
monly used for the OCT signal, although more accurate decor-
relation noise models are available [25], [26]. If the model is
incorrect, the performance and accuracy of the estimator are un-
certain [20], [21].
If is a single data point at time instance , we represent

the Doppler OCT data for measuring flow velocity as

(6)

Here, is the unknown complex constant re-
flectance, and . All phase accumulated from
backscattering and propagation are incorporated into . We
wish to estimate the Doppler frequency, , from the signal. The
time between measurements is , where is the total
acquisition time and is the total number of samples. The
discrete time instances are indexed by . The additive noise is
given by , which is circularly symmetric complex Gaussian,
and independent identically distributed (i.i.d.). This means that
each of the real and imaginary parts of are Gaussian and
independent with variance .

B. Derivation of Maximum Likelihood Estimator—Peak of
Spectrum

From this model, as expressed in (6), we can calculate the
likelihood of obtaining a measured signal. If is a single
measured datum, then each of the real and imaginary parts of
the complex residual, , will have a
Gaussian distribution with zero mean and variance . Hence,
the likelihood is given by

(7)

where is the real part of the signal and
is the imaginary part. By grouping the datum together, the

log-likelihood function for the data can then be written in the
form

(8)

The first term is a constant, and the second term can be written
as

the last term of which is the real part of inverse discrete Fourier
transform of . Given our estimated parameter

vector

(9)

When performing maximum likelihood estimation, the data
, the number of data points, , and the total

acquisition time, , are known. We wish to find the values of
and that give the largest value for the likelihood function,

derived assuming the noise model in (6). The MLE is
obtained by choosing the values of the Doppler frequency,
, and reflectance phase, , that maximizes the real part
of the inverse DFT of the complex conjugate of the signal.
To maximize the expression in (9), is chosen so that the
expression in curly brackets is real. Hence one may proceed
to estimate the Doppler frequency without estimating by
finding the value of that maximizes the absolute value of the
DFT of the signal. This is the location of the peak of the power
spectral density (PSD) , as shown in Fig. 1, and can be found
with established nonlinear search algorithms [27].

C. Advantages and Drawbacks

The advantages of the MLE include asymptotic efficiency,
consistency and asymptotic unbiasedness. However, its draw-
backs include general problems with tractability, complexity,
uniqueness [20], [21], and that optimality properties and unbi-
asedness may not apply for small samples. Tractability is not
a problem here as we can perform a simple one-dimensional
nonlinear search to locate the peak in our spectra. The compu-
tational complexity is low for a simple noise model, but may not
be so for decorrelation noise. For a spectrum with a single peak,
uniqueness does not pose a problem, but if static scattering is
present, either clutter rejection [28]–[30] should be performed
or a static clutter component should directly be incorporated into
the parametric estimation. In our earlier work, we performed
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Fig. 1. MLE for Doppler frequency is the location of the peak of the power
spectral density.

high-pass filtering [3] to remove the static scattering compo-
nent of the OCT signal. For our simulation and flow phantom
experiments in this paper, this was not required as the dynamic
scattering components dominated.
Though MLE techniques can deliver asymptotically accu-

rate and precise Doppler frequency estimates, they require more
computation. The Kasai estimator only uses arithmetic opera-
tions and an arctangent operation. The MLE, as implemented in
this paper, requires an FFT, which is . More gen-
erally, the MLE can be implemented with nonlinear search al-
gorithms. In our experiments, shown in Fig. 8, the MLE took
roughly five times longer than the Kasai estimate. The compu-
tation of color Doppler maps took less than a few seconds on a
modern desktop computer using parallelized Matlab. Hence we
believe that the MLE, with optimization or use of GPUs, can be
used in real-time imaging.

IV. CRAMER–RAO LOWER BOUND

A. Derivation

From the model in Section III-A, we can also derive the
CRLB. This gives the theoretical lower bound on the variance
of an unbiased estimator. For an unbiased estimator, the vari-
ance is equal to the MSE. For convenience, we present the
Fisher Information matrix as a tensor. This matrix is computed
from the log-likelihood function, which is a function of the data
observed, represented by the vector ,
and the parameters to be estimated . If we define

as the Fisher Information matrix, then its elements are
defined by

(10)

The CRLB for the estimator vector is then given by

(11)

where is the covariance matrix of the estimator vector .
As the left-hand side is positive semidefinite, the CRLB for the
variance of each individual estimator is given by

(12)

From our model, (6), the log-likelihood is given by

(13)

where is the number of measurements, is the
real part of the measured signal and is the imagi-
nary part of the measured signal. The sums in (13) arise because
the noise from each sample is independent.
The expectations of the random variables are given by

(14)

(15)

From the log-likelihood, (13), we can compute the elements of
the Fisher information matrix as

(16)

Similarly

(17)

and

(18)

Hence, we arrive at the result, using (10) and (12)

(19)

B. Asymptotic Shot-Noise Limited Behavior

For large , the CRLB can be approximated as

(20)

Here, the CRLB, for large , is inversely proportional to the
total number of samples, . It is also inversely proportional
to the SNR, , and inversely proportional to the square
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of the total acquisition time . Further insight can be achieved
by assuming a constant rate of detected photons (power). With
this assumption the shot-noise limited SNR is proportional to

. Under these conditions

(21)

Thus, if the number of samples is sufficiently large, the SNR is
shot noise limited, and the rate of detected photons (power) is
constant, the CRLB has the intuitive property of being inversely
proportional to the cube of the total acquisition time. This can
be understood intuitively, as the total number of photons de-
tected is proportional to , while an additional factor of
arises because the variance of the spectrum is proportional to

. More importantly for large , the CRLB becomes in-
dependent of . As the MLE variance approaches the CRLB
asymptotically, we can infer that for sufficiently large , the
MLE variance also becomes independent of sampling rate. This
behavior contrasts with the Kasai estimator, whose variance in-
creases with increasing sampling rate.

C. “Mutual” Fisher Information

A key aspect of our derivation in Section IV-A is that we cor-
rectly accounted for the fact that the “mutual” Fisher informa-
tion between and , shown by (18), is nonzero. This means
that knowledge of one improves the estimate of the other. Also,
this means that if both are unknown, the CRLB is increased
compared with the case when one is known. This can be under-
stood intuitively by considering a simple method of estimating
the Doppler shift. If one takes two measurements of the phase
at times and , there would be an uncertainty in the value of
phase measured at each time instance. The larger the uncertainty
of each, the larger the uncertainty of the difference ,
and hence the larger the uncertainty of the Doppler shift esti-
mate, .
It can also be shown that , so the presence

or absence of knowledge of the strength of the reflectance does
not affect the performance of the estimation of .
If one assumed that the phase was known, one would

obtain, from the reciprocal of (16), a lower CRLB of
, which is roughly smaller

than the expression in (19) by a factor of four.

D. Performance Metrics

Statistical efficiency, of an estimator is a measure of its
optimality [17]. It is defined as the ratio of the CRLB to the
estimator variance, Therefore

.
Another measure of the “goodness” of an estimator is bias

[17]. Mathematically, it is defined by

(22)

In our simulations the expectation of an estimator is computed
by taking the mean value of the estimator over the number of

simulation instances. The actual value, , is known when setting
up the simulation.

E. Minimum Measurable Doppler Frequency

It is commonly argued that the spectral resolution
determines the minimum resolvable frequency, . While it
is true that improving the spectral resolution by increasing the
observation time should reduce the minimum resolvable fre-
quency, this simple heuristic argument neglects the effects of
noise and sampling rate on the estimation. Our derivation of the
CRLB correctly incorporates the effects of SNR, observation
time, and sampling rate into the expression for estimator vari-
ance. The minimum measurable frequency is then given by the
estimator standard deviation as shown below

(23)

V. SIMULATIONS

We ran simulations , based on the model as described in (6),
to estimate the variances and biases of the estimators. To gen-
erate simulated data of length , the values of , , were
predetermined, and the Gaussian noise component was gen-
erated by a random number generator. We generated 2000 in-
stances of the data vectors of various lengths , making Kasai
and ML estimates for each. The analog frequency was set to be

for the simulations. When low acquisi-
tion rates were used, an analog frequency of
was used: low enough so that aliasing would not occur. By using
several frequencies, we confirmed that the estimator variance
and bias (and our results) are not sensitive to analog frequency.
The variances of the estimators were calculated from the 2000
data vectors. The biases were estimated by taking the difference
of the average estimated value and our preset value in the sim-
ulation. We define the SNR to be . The factor of two
arises because we are dealing with circularly symmetric com-
plex noise. As sampling was performed well above the Nyquist
limit, there were no issues with aliasing.
We can conceive of two approaches to numerically determine

the MLE in (9). First, it is possible to perform an iterative non-
linear search, and second it is possible to directly compute a
discrete Fourier transform (DFT) and determine the position of
the maximum amplitude. The DFT approach can take advan-
tage of fast FFT algorithms. However, since the DFT approach
requires discretization of the continuous frequency variable, the
DFT approach may not enable accurate estimation if the spec-
tral resolution is insufficient. In our simulations, zero padding
was used to increase the length of the data vectors by a factor of
at least 256. Zero padding does not increase spectral resolution
[31] in the sense of being able to resolve two closely spaced fre-
quency components. However, it does improve sampling. This
is important so that the calculated estimator variance is not ar-
tifactually rounded to zero, due to it being less than the DFT
spectral interval. As a rule of thumb, one should zero pad to en-
sure that the spectral interval is at least one order of magnitude
smaller than the estimator standard deviation expected from the
CRLB, as computed from (19).
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Fig. 2. (a) The sample variance of estimates (simulated) compared with the
CRLB, for , s. The y-axis is the estimator variance in
decibels. The variance of the MLE can be seen to rapidly approach the bound
even at low SNRs. The Kasai estimator is more than 7 dB worse than the MLE,
even at high SNRs. (b) Estimator bias in radians per second with SNR. For
moderate SNRs, these values are too small to be significant, hence the estimator
variance and the MSE can be considered to be the same.

A. Varying SNR

Fig. 2(a) shows that under correct model assumptions, the
MLE achieves the CRLB at an SNR of roughly . The
Kasai estimator slowly approaches the CRLB but is worse than
the CRLB by more than 7 dB at 30 dB SNR. Hence at typical
SNRs its efficiency is less than 0.20. In all of our simulations,
the biases of the estimators are too small to be significant, hence
the values of the estimator variance and MSE are practically the
same.

B. Varying Acquisition Rate

The scaling of estimator performance with acquisition rate is
an important consideration, especially as high-speed Doppler
OCT imaging in the range of kHz to a few MHz becomes
possible. Ordinarily, when the acquisition rate is increased, the
number of photons collected from the sample per time step is
reduced, and hence SNR scales as . In some appli-
cations it is possible to compensate the increase in acquisition
rate with an increase in power on the sample, such that the
SNR remains unchanged. Fig. 3 shows that, at an SNR of 36.5
dB, the MLE closely matches the CRLB for data lengths of
eight and higher. The performance of the MLE and the CRLB
improves with data length. The Kasai estimator variance, on the
other hand, either remains roughly constant or increases as the
data length is increased. Note that, theoretically, one can make
a frequency estimate with either the Kasai estimator or MLE
with as few as two data points. However, the Nyquist sampling
theorem still applies. In our simulations, a data length of two
corresponds to an acquisition rate of 1 kHz and a Nyquist
frequency of 500 Hz.
In other applications, such as retinal imaging, the total power

on the sample is limited; thus the SNR will be reduced as the
acquisition rate is increased. In such cases, the total number
of photons collected from the sample remains the same even if
the acquisition rate is increased. When we incorporate this type
of noise scaling, as shown in Fig. 4, we see that there is little
or no improvement of estimator performance with data length
for the CRLB and the MLE. This behavior is intuitive, as the
total number of photons detected during the acquisition time,
, remains the same, hence the estimator performance is not

Fig. 3. (a) Variance of Kasai andML estimators (simulated) against data length
(varying acquisition rate), for at a constant SNR of 36.5 dB.
In practice, holding the SNR constant would require increasing the detected
photon rate (power) with increasing acquisition rate. The acquisition rates used
were . The Kasai estimator performance does not improve
significantly with data length. TheMLE performance improves with data length
and closely matches the CRLB. (b) Bias estimates for Kasai estimator and MLE
suggest that at 36.5 dB SNR, both are unbiased.

Fig. 4. (a) Variance of Kasai and ML estimators (simulated) with shot noise
SNR scaling for against data length (varying acquisition rate).
This corresponds to maintaining a constant detected photon rate (power) with
increasing acquisition rate. The SNRs for were 54.6,
51.6, 48.6, 45.6, 42.6, 39.5, and 36.5, respectively, approximating the experi-
mental values encountered in Fig. 6 and Table II. The acquisition rates were

. The SNR scales as , hence the CRLB is constant with
data length, as shown in (21). The Kasai estimator performance deteriorates
with increasing sampling rate. (b) Bias estimates for Kasai estimator and MLE
suggest that, both are unbiased.

expected to improve appreciably. Furthermore, this behavior
agrees with the limit derived in (21). The Kasai estimator, on
the other hand, increases its variance and becomes more ineffi-
cient as the data length (acquisition rate) is increased.

C. Varying Acquisition Time

Fig. 5 shows that the performance of the estimators improves
with increasing acquisition time, as predicted by (19). In partic-
ular for sufficiently large, the scaling of the MLE variance
as predicted from (21) is demonstrated. The MLE perfor-
mance improves at a greater rate than the Kasai estimator with
increasing acquisition times.

VI. EXPERIMENTAL VERIFICATION

A. System Description

A 1310 nm spectral/Fourier domain OCT microscope was
used for the imaging of a flow phantom. The light source
consisted of two superluminescent diodes combined by using
a 50/50 fiber coupler to yield a spectral bandwidth of 170
nm. The axial (depth) resolution was , full-width at
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Fig. 5. (a) Variance of Kasai and ML estimators against data length (varying
acquisition time), for a constant acquisition rate of 47 kHz at an SNR of 36.5 dB.
Compare these simulated data with Fig. 7. As the acquisition time is increased,
both estimator variances and the CRLB are reduced. The MLE performance
closely matches that of the CRLB. (b) Bias estimates for Kasai estimator and
MLE suggest that both are unbiased.

TABLE II
SNRS AT VARIOUS ACQUISITION RATES FOR COVER-GLASS EXPERIMENT.
WE TOOK THE RATIO OF THE AVERAGE OF THE ABSOLUTE VALUE OF THE
MEASURED SIGNAL, , AND THE VARIANCE OF THE SIGNAL, , AS
AN ESTIMATE OF THE SNR. AS THERE IS SOME PERIODICITY IN THE SIGNAL,
THE ESTIMATE WILL BE DATA LENGTH DEPENDENT. EACH ACQUISITION

CYCLE HAS AN INACTIVE PERIOD OF AROUND

half-maximum, and the transverse resolution was
(full-width at half-maximum), and the highest imaging speed
was 47 000 axial scans per second, achieved by an InGaAs line
scan camera (Goodrich–Sensors Unlimited, Inc.). The camera
sensitivity was typically set to “medium” to obtain the widest
dynamic range. The high sensitivity setting typically resulted
in a signal saturating the camera pixels. A objective, Mitsu-
toyu, was used and either the coverglass or the center of tubing
was placed in focus.

B. Stationary Cover-Glass

We tested the variance of the Kasai and ML estimators by
using our OCT system to image a slightly defocused region of
the top of a cover-glass slip. The estimated SNR increased with
acquisition rate (see Table II). We took an M-scan of a single
location. As the cover-glass was stationary, there should be a
zero Doppler shift. Hence the bias of the Doppler frequency es-
timators can be estimated as the difference from zero. To nor-
malize the signal, we divided the signal value of the upper layer
of the cover glass by that of the lower layer. We tested the data
for normality by running a one sample two-sided Kolmogorov-
Smirnov test on the real part of the data. We tested 51 200 data
points for four acquisition rates, using the test statistic

. The p-values obtained were 0.0024, 0.9219, 0.0473, and
for , , , and sampling

times, respectively. We do not reject the null hypothesis that
the noise is normal for . However, for the other acquisi-
tion rates, we would reject the null hypothesis at a 5% signifi-
cance level. Still, this may be within the 10% level of contam-

Fig. 6. (a) Plot of experimentally determined estimator performance against ac-
quisition rate from a fixed M-scan of a nonmoving cover-glass, estimated from
100 samples, with . The SNRs (see Table II) were estimated from
data and used to determine the CRLB. The experimentally measured SNR was
36.5 dB for an acquisition rate of 47 kHz. These results are in agreement with
Fig. 4, taking into account a longer acquisition time. (b) The bias estimates are
on the order of tenths of , which is negligible and the estimators can be
assumed to be unbiased.

ination typically accepted for an AWGN model [20], [21]. We
confirmed that the noise was Gaussian using quartile–quartile
plots. For the rates where the null hypothesis was rejected, dis-
tribution had slightly fatter tails than in a Gaussian distribution.
Fig. 6(a) shows that for a constant acquisition time of approx-

imately 0.0025 s, the performance of the MLE follows that of
the CRLB. The performance of the Kasai estimator was worse,
and deteriorated with higher acquisition rates. The experimental
results are consistent with simulation, as shown in Fig. 4(a). The
CRLB remains roughly constant with acquisition rate, as pre-
dicted by theory and simulation. The estimators performed as
predicted by simulation and theory, though they appear to have
a slightly worse performance than Fig. 4(a), as a slightly longer
acquisition time was used. A 3 dB estimator improvement can
be attributed to a 25% increase in acquisition time, due to the
relationship, CRLB (21).
However, with increasing acquisition time, the MLE perfor-

mance deviates from the CRLB, as shown in Fig. 7(a). This
is due to the increased effect of other sources of noise such
as galvanometer noise and phase instabilities of the acquisition
system.

C. Intralipid Flow Phantom

We used Intralipid-10% [32] and a syringe pump with
0.58-mm-diameter tubing. Intralipid globules have an average
diameter of 100 nm. The pipe was placed at a 16 incline, so
that there was an axial velocity which could be measured by
calculating the shift in the position of the peak of the PSD. Fluid
flow in a tube has a Poiseuille profile, hence measurements of
the Doppler shift were taken at 0.16 mm from the inner edge of
the tubing. Fig. 7 shows that for a flow rate, our
MLE performs better than the Kasai estimator for short acqui-
sition times. For data lengths above 8 (acquisition times longer
than 0.17 ms) decorrelation noise becomes dominant and the
MLE performance becomes worse than the Kasai performance.
The effects of decorrelation, are negligible if acquisition time
is less than the coherence time of the signal, but increase as
acquisition times increase. Other sources of noise, including
galvanometer jitter, thermal drift, and other phase instabilities
could also contribute to a worse performance, as these effects
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Fig. 7. (a), (b) Experimental verification of the Kasai and ML estimator vari-
ances against data length (acquisition time), for constant acquisition rate of
47 kHz measured on the surface of a cover-glass. The CRLB was plotted as-
suming a 36.5 dB SNR. Compare this figure with Fig. 5(a). The MLE slowly
diverges from the CRLB as acquisition times increase, contrary to the predic-
tion from simulation, due to other sources of noise. (c), (d) Verification using
a intralipid flow phantom, at about one quarter in from the edge
of the tubing. The SNR was approximately 10.0 dB. The MLE performs better
than the Kasai estimator for data lengths of up to 8 or acquisition times of up to
0.17 ms. For data lengths longer than this, decorrelation noise becomes signifi-
cant and the MLE performance becomes worse.

are also amplified with increasing acquisition time. As the
actual value of the Doppler frequency is not known with suf-
ficient precision in the flow phantom experiments, one cannot
estimate the bias.

VII. MODEL LIMITATIONS

A. Decorrelation Noise

“Decorrelation noise” [25] is caused by random deviations of
the signal. This is primarily due to the entry and exit of different
red blood cells (RBCs) into and out of a voxel. The random
distribution of RBC position, speed, orientation or shape are
also contributing factors. In addition, the translation of the probe
beam due to transverse scanning contributes to decorrelation.
Decorrelation is typically characterized by a time scale, known
as the coherence time, after which the complex amplitude is
randomized. The value of the complex OCT signal at any given
time would have much less predictive value after the coherence
time has passed.
Our results show that good estimation performance can be

achieved by the MLE with a simple AWGN model, under
restricted conditions that obey the model assumptions. How-
ever, for many in vivo applications, decorrelation noise [25]
is present, as shown in our flow phantom experiments. This
would broaden the peak of the power spectral density (PSD),
and lower its height. The MLE derived here, which takes the
frequency estimate as the position of the peak of the power
spectral density, assumes AWGN and would be suboptimal in

the presence of a significant amount of decorrelation noise. For
our experimental verification of the MLE, we chose conditions
where decorrelation is minimized, such as scanning a stationary
glass coverslip or very slow flow. Fig. 8 shows experimental
verification of these estimators, at an acquisition time where
decorrelation noise begins to become significant. Beyond
roughly 0.2 ms, the MLE performance is no longer superior
to that of the Kasai estimator. We thus propose that further
estimation accuracy under a broader range of conditions may
be achieved by incorporating decorrelation noise into the noise
model.
Another important limitation of this model, especially for

Doppler ultrasound, is the assumption of ergodicity [33]. In re-
ality, blood flow is pulsatile and velocities would have some
periodicity. In our phantom experiments, a syringe pump does
not produce a constant pressure differential. In this work, how-
ever, our acquisition times in both simulation and experiment
were in the order of milliseconds, and for normal human heart
rates, this time is sufficiently short to estimate an instantaneous
velocity. To apply our analysis to the slower acquisition rates of
pulse-echo ultrasound would require modifications to the anal-
ysis in this paper to account for the pulsatile flow.

B. Performance With Multiplicative Noise

The effects of decorrelation noise can be modelled with mul-
tiplicative noise [34]. To achieve this we modified the signal
from (6) to include a multiplicative term and assumed negli-
gible additive noise

(24)

where is a correlated complex Gaussian random variable,
with each of the real and imaginary parts having variance
, hence . The variance was chosen without loss

of generality. We predetermined the auto-covariance matrix of
to be real Toeplitz, with the first row (the auto-covariance

function) being the values of a Gaussian profile from the non-
negative domain. Its full-width is determined by the coher-
ence time of the signal, and was set to be for
these simulations. The continuous parameter is used to vary
the relative amount of multiplicative noise compared with the
static reflectivity, or noiseless signal.
Fig. 9 shows that the AWGN MLE performance deteriorates

more rapidly than the Kasai estimator with an increasing
proportion of multiplicative noise. This suggests the Kasai
estimator’s greater robustness against decorrelation noise. In
the signal dominant regime, the AWGN MLE performs better.
In the multiplicative decorrelation noise dominant regime, the
Kasai estimator performs better.

VIII. CONCLUSION

Estimator efficiency and performance scaling with data ac-
quisition rate are important properties to consider as Doppler
OCT imaging speeds continue to improve. Using a simple ad-
ditive white Gaussian noise model, we have shown that MLEs
are preferable to the more computationally simple Kasai esti-
mator. We confirmed that the variance of the commonly-used
Kasai estimator increases with increasing acquisition rate, and
the Kasai estimator becomes less efficient. The performance of
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Fig. 8. Color Doppler maps, with dimensions of 512 by 100, generated using the Kasai [(a), (b)] and AWGN ML [(c), (d)] estimators. The flow rate was
, using intralipid-10% at a 16 incline, with a 10 dB SNR. Scanning was done at a fixed location. The -axis is a time axis. The line scan rate

was 47 kHz, and estimates were made with 4 [(a), (c)] and 16 [(b), (d)] data points, respectively, corresponding to acquisition times of 0.09 and 0.34 ms. These
represent two of the conditions shown in Fig. 7(c) and (d). The variances of the Kasai estimator were (76.0 dB) and
(64.9 dB), respectively. For the MLE, zero padding was used to increase the FFT lengths by 256. For acquisition times of roughly 0.17 ms and below the MLE
outperforms the Kasai estimator. The variances of the ML estimates were (74.5 dB) and (68.8 dB), respectively.

Fig. 9. (a) The sample variance of estimates for varying degrees of multiplica-
tive noise with no additive noise for , . The x-axis shows
the ratio of multiplicative noise components to signal components in decibels.
At roughly the estimators have equal performance. (b) Estimator bias
in radians per second with SNR.

the Kasai estimator deteriorates with higher acquisition rates
while the detected photon rate (power) is kept constant, and this
makes it unsuitable as a Doppler frequency estimator as OCT
acquisition speeds increase. This is nonintuitive and paradox-
ical behavior, since increasing the sampling rate (while keeping
the total number of detected photons the same) should provide
more information about parameters to be estimated.
By contrast, we have shown that the CRLB for estimator vari-

ance, for a sufficiently high number of samples, is proportional
to (21), and is independent of the sampling rate. As the
CRLB gives us the theoretical best performance, this suggests
that there are better alternatives to the Kasai estimator. Since the
MLE variance approaches the CRLB asymptotically, the MLE
also asymptotically possesses this desirable and intuitive prop-
erty. Therefore, our results suggest that the MLE may be the
estimator of choice for high Doppler OCT imaging rates. Con-
trary to the results of [12], we have shown that the MLE asymp-
totically outperforms the Kasai estimator under assumptions of
additive white Gaussian noise.
Several caveats and limitations must also be discussed. First,

the desirable asymptotic properties of the MLE may not hold
for smaller numbers of samples. Second, decorrelation noise
reduces estimator performance, especially at longer acquisition
times. However, we anticipate that it should be possible to define
a more general MLE that incorporates the effects of decorrela-
tion with an appropriate statistical model [26]. Third, as perfor-
mance of parametric estimators can be sensitive to deviations

from the assumed noise model, there is room for further devel-
opment of robust [20] estimation techniques. Finally, one may
also formulate efficient linear estimators that achieve MLE-like
performance [35], [36].
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