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INV ITED
P A P E R

Overview of Large-Scale
Computing: The Past,
the Present, and the Future
This paper provides a review of the development of computational

electromagnetics, summarizes achievements, and discusses challenging issues

and future possibilities.

By Weng Cho Chew, Fellow IEEE, and Li Jun Jiang, Member IEEE

ABSTRACT | This is a brief review of the development of

computational electromagnetics (CEM) to partially summarize

its achievements, issues, and possibilities.

KEYWORDS | Computational electromagnetics (CEM); finite

element method (FEM); integral equation (IE); large-scale

computing

I . INTRODUCTION

Calculation is indispensable in many fields. This is even

more so in science and technology where a huge number of

calculations are routinely done in order to achieve the

design goal, gain physical insight, and reveal and predict
the inner truth of nature. Hence, instruments to speed up

calculations have been in demand since ancient times.

First, there is the abacus since historical times, a mecha-

nical device that can retain long numbers, and enables one

to perform calculations mechanically. The user of the

abacus memorizes the operational moves so that the cal-

culation can be done as Brobot[-like as possible. In this

case, the robot is the trained human [1].

Even with these inventions, calculations were painfully

slow. The value of PI was first computed to sixth decimal

place by ZU Chong Zhi in the 5th century [2].

The lower and upper bounds to the value of PI were ob-

tained by using inscribing and excribing polygons of a

circle with over 12 000 sides. Even then, the calculation
took two generations, the work of the father and son

team.

Mechanical calculations were in great demand during

the industrial revolution (1500s onward) in the United

Kingdom. Hence, the log table was invented by Napier,

and the slide rule was invented by Oughtred (1600s) [3],

[4]. Pascal and Leibniz also invented mechanical calcula-

tors in the 1600s. In 1801, the Jacquard loom used the idea
of punched cards to control weaving patterns of a loom [5].

Complex weaving patterns could be altered in the loom by

swapping punched cards. It allowed complex patterns to be

weaved by a single machine, and patterned cloth could be

produced in large volume. It was the precursor to prog-

rammable computing. The 1800s also saw the rapid devel-

opment of mechanical calculators, the most notable of

which was the Babbage machine that could hold seven
numbers of 31 decimals each [6], [7].

Calculus was invented in the 17th century by Newton

(1642–1727) and Leibniz (1646–1716) [8]. The advent of

calculus was followed by the development of many elegant

partial differential equations (PDEs) of physics for describ-

ing the physics of solid mechanics, elastodyanmics, and

fluid mechanics. Much of the early works were due to

Euler (1707–1783), Lagrange (1736–1813), and Cauchy
(1789–1857) [9]. Subsequently, PDEs were extended to

describe the physics of electromagnetics (Maxwell,

1831–1879; Heaviside, 1850–1925; Hertz, 1857–1894)
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[10]–[12], and quantum mechanics (Schrodinger, 1887–
1961) [13]. These equations describe the evolution and

relationship of fields in a 3-D space.

In the 19th century and the early 20th century, we saw

the design of ships of unprecedented sizes, and cannons of

unmatched power due to improved knowledge of fluid

dynamics and solid mechanics [14]. Even Fourier (1769–

1830) was reputed for his analysis of heat flow in a cannon

[15]. Due to the low velocity of ships, the fluid flow was the
simpler Helmholtz (1821–1894) flow or Stokes (1819–

1903) flow with less significant dynamic behavior [16].

This period also coincided with the rise of the United

Kingdom as a colonial and maritime power [17].

The Second World War saw another push for the de-

mand of computing. To design aircraft and bombs, high-

speed projectiles called for even more elaborate solutions of

equations of fluid dynamics. These equations are nonlinear,
and difficult to solve. However, it was well known that

those who could solve these equations well would design

the best rockets and aircraft, gaining military supremacy.

Bevies of women were hired to perform laborious mechan-

ical calculation. They were actually called Bcomputers.[1

These unwieldy efforts made it clear that it was necessary to

design machines to perform these laborious calculations

rapidly [18]. Hence, the first primitive computers were
developed around and after the Second World War. The

famous ones were the Eniac (1946) and the Illiac (1951)

[19], [20].

Before the invention of the computer, engineering and

physical insights were obtained by solving geometries with

closed-form solutions, such as spheres, cylinders, planes,

etc. Often, asymptotic techniques were developed to eluci-

date the physics from these closed-form solutions. When
solutions to more complex geometries were needed, they

were obtained by approximate methods, such as the per-

turbation method and the asymptotic method [21].

Modern technologies have progressed with a breakneck

speed. The advancement is possible due to the concurrent

synergy of knowledge in materials, process technology,

systems, theory, and computation. The availability of the

Internet facilitates this synergy at the global level. There is
a significant increase in participation of emerging econ-

omies in knowledge creation activities in the area of com-

puting. Also, there is a huge market demand for enabling

technologies that will change people’s lives. In modern

days, theory is almost synonymous with computation.

Moreover, the globalized economy has sharply reduced the

cost of computing equipment, hence, greatly reducing the

cost of computing activities [22].
With the leaps and bounds progress of computer tech-

nologies, computing becomes an instrumental component

of science and technology development. While gigaflops
technology was common place ten years ago, teraflops and

petaflops technologies are routinely being touted now [23].

Even at the personal computing level, multicore architec-

ture is now pervasive. The vast popularity of search en-

gines has driven the use of computer clusters or Bfarms[ to

meet the speed expectation of users. This has recently

evolved into the concept of cloud computing [24]. The

rapid growth of visualization technology has given rise to
low-cost graphics technologies due to the economy of

scale. It has also spurred the interest of using graphic cards

or graphical processing units for large-scale computing at a

reduced cost [25]. Moreover, the rapid advancement in

microelectronics and nanoelectronics has greatly reduced

the cost of memory, allowing larger problems to be solved

and larger data sets to be stored.

Due to the pervasive use of computers, computing has
replaced pencils and papers as the norm in scientific and

engineering analyses. Computer visualization has added a

new dimension to analyses that are not available in pencil

and paper analyses. Moreover, the mushroom growth and

proliferation of computer software have made the field

more vibrant than ever. Graphical user interface has ena-

bled low-level engineers to perform analyses at a high

level, using sophisticated computing tools.
In electromagnetics, while dense matrix systems with

millions of unknowns have been solved a decade ago

[26]–[28], now over several hundred millions and a billion

unknowns can be solved [29]–[31]. These problems are

solved with the synergy between hardware improvements,

and advances in algorithm design. For sparse matrix sys-

tems, and static problems, even larger problems have been

solved [29]–[32].

II . DIFFERENTIAL EQUATION
SOLVER (DES)

Shortly after the invention of calculus, PDEs were de-

veloped to describe the time evolution of physical fields.

The space derivative of a field can be taken as the rate of

change of the field with respect to a given direction, and
likewise for derivatives in other directions and for the time

derivative. Luckily for us, the physical behavior of many

fields can be understood by studying such derivatives.

Hence, differential equations and PDEs were used since

the 1700s, and even up to modern days in quantum

mechanics.

Such equations were classified as elliptic, parabolic, or

hyperbolic [33], [34]. They describe fields of different
physical types. An example of a PDE which is elliptic is the

Laplace equation or the Poisson equation. They are used

pervasively in low-frequency electromagnetic field, and for

transport problems in electronics and electrochemistry.

They are characterized by the fact that the field or poten-

tial associated with such equations has no singularities

(away from the source point), or that they are smooth:

1According to the Oxford English Dictionary, the word Bcomputer[
was used to describe Ba person who computes or performs calculations,[
and in 1897, it was used to describe a mechanical calculator. The word
Bcompute[ comes from the Latin word Bcomputare.[
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there cannot be any singularity propagation in such
equations

r2�ðrÞ ¼ ��ðrÞ=": (1)

Examples of parabolic equations are the Schrodinger

equation and the diffusion equation. These equations have

the first derivative in time and second derivatives in space.

They are characterized by the one-way equation in that the

solution only marches forward in time (or backward in

time). They can only accommodate one-singularity prop-
agation at a given time. The Schrodinger equation is highly

important in quantum mechanics, while the diffusion

equation is important for heat transfer and the low-

frequency electromagnetic field in conductive media. A

typical Schrodinger equation has the form

� �h

2m
r2�ðrÞ þ VðrÞ�ðrÞ ¼ �i�h

@

@t
�ðrÞ: (2)

A typical diffusion equation is of the form

r2�ðrÞ � 1

c�

@

@t
�ðrÞ ¼ 0: (3)

An example of a hyperbolic equation is the wave equa-

tion. It has second derivatives both in space and time. It

can accommodate simultaneously the forward propagating

and backward propagating waves, or a wave in forward

time and reversed time. It can have two singularities pro-

pagating at a given time

r2�ðrÞ � 1

c2

@2

@t2
�ðrÞ ¼ 0: (4)

Differential equations are solved commonly by two

methods: the finite difference method [35], [36], or a

subspace projection method such as the finite element

method (FEM) [37]–[39], and the pseudospectral method

[40]–[42]. In the finite difference method, a set of grid

points is defined, and the derivatives are approximated

over such grid points. A matrix system that can be solved

easily is thereby obtained.
For the subspace projection method, a set of basis

functions is defined to approximate the given field [44].

Since the set of basis functions is finite, it spans a subspace

of the larger space that the field is defined over. In such a

manner, the PDE can be easily converted to an ordinary

differential equation (ODE) in time only. The time deriva-

tives can further be approximated by finite difference, or

the subspace projection method, so that the equation can
be solved by time stepping or marching. Alternatively, one

can Fourier transform in time to remove the time deriva-

tives to obtain a matrix equation that can be solved by an

iterative or inversion

Lf ¼ g; f ¼
XN

n¼1

anbn ¼ bt � a

Lbt � a ¼ g; ht;Lbti � a ¼ ht; gi
L � a ¼g; L ¼ ht;Lbti; g ¼ ht; gi: (5)

Since derivatives only draw information from two

points in space infinitesimally spaced apart, the approxi-

mations of the derivatives on the computer also draw upon
two points close to each other. Hence, only near-neighbor

information is needed in forming or approximating deriva-

tives. Hence, the matrix system associated with a differen-

tial operator is sparse. If space is approximated by N space

points, the number of matrix elements is proportional to

N, as only near-neighbor information is used. Hence, dif-

ferential equations can be solved easily using the sparse

matrix method. A matrix–vector product (MVP) will entail
OðNÞ operations. Therefore, the matrix system in the dif-

ferential equation solver (DES) can be solved efficiently by

an iterative method. When direct methods are needed, they

can be solved by the nested dissection ordering method or

the frontal method [43]. When time evolution of the field is

needed, one can use the time-marching method.

One would like to solve the problem as expeditiously as

possible. However, for wavelike problems, a physical con-
dition such as the Courant stability condition forbids the

use of large time steps [45]. The MVP of the differential

operator conveys information only to its nearest neighbor

grid point, since it is entirely a local operator. Hence, in

the time-stepping method, it takes at least the time to

propagate the information across the entire simulation

region before the quiescent solution is reached. By the

Courant condition, the time step and the space step are
linearly proportional to each other and are related by the

wave velocity. Hence, in the 3-D space, if the number of

grid point is N, the length of the simulation region is

roughly proportional to N1=3. Hence, it takes N1=3 to prop-

agate information across the simulation region. Therefore,

it takes at least N1:33 time to solve the problem. When the

structure is resonant, the wave will bounce around multi -

ple times before the quiescent is reached. In this case, the
number of iterations can be large. The computational

complexity is then MN1:33, where M is the number of times

that the wave will bounce around in the structure. It is

proportional to the Q of the resonant structure. Conse-

quently, the numerical solution of a high-Q resonant struc-

ture is a challenging problem. When iterative solvers are

used to solve the sparse matrix system, the same physical
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condition applies, and the number of iterations is pro-
portional to N1=3, and the computational complexity of

solving the matrix system for a wavelike problem is pro-

portional to N1:33.

For a Laplace or Poisson system, where the velocity of

light is assumed infinite, such a causality relation is not

necessary. Hence, the information can be sent across the

simulation region instantaneously. In the multigrid meth-

od, in order to achieve this, a hierarchy of fine and coarse
grids can be constructed where information is passed back

and forth between the grids. The coarse grid allows the

rapid propagation of information across the region, while

the fine grid retains the accuracy of the solution [46].

III . INTEGRAL EQUATION SOLVER (IES)

In a linear differential equation system, one can define a

point source response called Green’s function. Then, by the

principle of linear superposition, the field due to an arbi-

trary distributed source can be obtained by the spatial con-

volution of the distributed source with Green’s function.

Using this concept, an equivalence principle (see Fig. 1)

[47], the field in a given region can be expressed as Green’s

operator acting on the sources. Hence, integral equations
can be obtained rather than differential equations.

Integral equations have the advantage that the un-

knowns are supported by surface unknowns only, or by

volume unknowns in a finite region in space [21], [44],

[50]. Hence, the number of unknowns can be much smaller

than those in DESs whose unknowns are fields that pervade
all of space. Moreover, in integral equations, by the appro-

priate choice of Green’s function, the radiation condition is

automatically satisfied. This is not the case in DESs where

the radiation condition has to be replaced by absorbing

boundary conditions, or boundary integral equations.

Integral equations can also be converted to matrix

equations by the subspace projection method [44],

[48]–[50], where the integral operator can be converted
into a matrix operator. Since Green’s operator is not a local

operator, the matrix representation of Green’s operator

corresponds to a dense matrix system. Hence, the storage

and operation such as MVPs with a dense matrix system can

be computationally expensive.

Despite the dense matrix system, a slew of methods

have been developed to solve the dense matrix equation.

This includes fast Fourier transform (FFT)-based methods,
fast-multipole-based methods, rank-reduction methods,

the nested equivalence principle algorithm, recursive

algorithms, and so on [21].

The FFT-based methods are efficient when applied to

the volume integral equation where the unknowns are

densely packed in a volume. When combined with iterative

solvers, it allows an MVP to be effected in N log N opera-

tions. However, when applied to surface scatterers, there
could be a lot of zero padding, and efficiency can drop. For

instance, for a fat, almost spherical scatterer of an arbitrary

shape, the surface unknowns Ns / D2 where D is the char-

acteristic diameter of the scatterer. But the FFT unknowns

have to fill the volume in which the surface scatterer sits.

Hence, the volume FFT unknowns Nv / D3 / N1:5
s . Conse-

quently, if the surface unknown number is Ns, the comput-

ing time scales as Nv log Nv / N1:5
s log Ns.

2 For very flat
scatterer that sits in a very thin volume, the number of

volume unknowns Nv / Ns. In this case, the FFT-based

algorithm can be very efficient. Hence, FFT methods are

good for flat surface scatterers, or densely packed volume

scatterers. The fast-multipole-based methods, on the other

hand, provide low complexity for surface scatterers, irre-

spective of the shape of the surface scatterers. For low

frequency or Laplacian problems, they can provide OðNÞ
complexity for an MVP. For dynamic problems where wave

physics is important, the multilevel fast multipole algo-

rithm (MLFMA) has been developed, and it can provide

OðN log NÞ complexity for an MVP. MLFMA remains to be

the only algorithm that can deliver OðN log NÞ complexity

for an MVP for wave physics scattering problems [21]. Time-

domain version of this algorithm has been reported in [51].

IV. MULTISCALE PROBLEMS

Multiscale problems present themselves in circuits,
packages, and chips at all levels of complexity. They are

Fig. 1. Illustration of the equivalence principle: in the top case, the

scattered field is due to induced currents on the scatterer. But the

induced currents that generate the scattered field can be replaced

by equivalent currents on a surface that generate exactly the same

scattered field. In the bottom case, the incident field on a scatterer

is generated by a source outside the scatterer or at infinity. But

the incident field on the scatterer can be generated exactly by

equivalent currents on a surface.

2It is to be noted that for � > 0, log N � N�, N !1. Hence, log N
grows slowly with N.
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also found in antennas on complex platforms as well as in

nano-optics and nanolithography. While the functioning of

the antennas relies on the intricate physics of the feeds, the

probes, and the waveguide and resonant structures, the

platforms they are mounted on are a lot simpler. Hence,

solutions to multiscale problems are instrumental for a
large number of applications [55]–[61].

Researchers with various focuses have very different

definitions for low frequencies and high frequencies. Fig. 2

shows the one used in this paper. Based on the electrical

size, the frequency band is divided into low, mid, and high

frequencies. However, it is more universal to use the

dominant physics to characterize the problem. These are

circuit physics, wave physics, and ray physics from the
classic theory point of view, as shown in Fig. 2. When the

object’s feature dimension is a small fraction of the wave-

length, circuit physics is dominant. The field is smooth and

evanescent. Static or quasi-static approximations can be

applied to build the model and improve the efficiency.

Traditional integrated circuit (IC) physical layer parasitic

extraction and PCB modeling are primarily in this domain.

When the feature size is over many wavelengths, ray
physics is dominant. High-frequency asymptotic approxi-

mation can be conveniently applied in the area. In between,

the field is oscillatory and propagating. The wave physics

has to be understood based on the first principles

(Maxwell’s equations) rigorously.

It is critical to evaluate the multiscale structures rela-

tive to the wavelength to determine if circuit physics, wave

physics, or optics physics is critical to the problem solving.
It can effectively help to avoid or identify ill-conditioned

numerical systems (Fig. 2). When multiscale structures

exist, the meshes that describe their geometries are dis-

parate in sizes, giving rise to very ill-conditioned matrix

systems. When mesh sizes are too small compared to

wavelength, low-frequency breakdown of the solutions

also occurs. Hence, special treatments have to be sought to

overcome these problems.

When the frequency is low, electromagnetic physics
becomes circuit physics where there are inductances, capa-

citances, and resistances, which are decoupled from each

other. In an electric field integral equation (EFIE), the

electric field dominates over the magnetic field. Hence, at

low frequency, the inductance physics is swamped by the

capacitance physics, giving rise to low-frequency break-

down. This problem can be overcome by the loop-charge

(tree/star) decomposition [62]–[68]. In this method, the
current on an object is decomposed into loop currents

which have zero divergence, and charge currents which

have nonzero divergence. The charge currents are either

described by tree currents or star currents. When the cur-

rent is partitioned into these currents, the capacitance

physics and the inductance physics of the problem can be

separated. But once the physics can be partitioned into

different matrix blocks, frequency normalization can be
used to rectify this problem.

The disadvantage of the loop-charge decomposition is

the need to search for the loops which can be quite un-

wieldy for highly complex structures. However, it has been

known that the circuits community never had to search for

loops in solving low-frequency circuits problems. The aug-

mented EFIE (A-EFIE) [60] is motivated by such an ob-

servation. In A-EFIE, the EFIE is converted into one that
looks like Kirchhoff voltage law, and Kirchhoff current law

by augmenting the EFIE with the current continuity equa-

tion. In this manner, plus proper frequency normalization,

the equation is converted into a saddle point problem that

is often used in circuits. The A-EFIE has been found to be

low-frequency stable down to statics.

Multiscale problems are also fraught with mixed phy-

sics problems. When geometry sizes are small compared to
wavelengths, circuit physics predominates, but when

geometry sizes are on the order or larger than wavelengths,

wave physics rules. Hence, in a multiscale geometry, co-

existence of circuit physics and wave physics makes their

simulation even more difficult. In such geometry, close

interactions are dominated by circuit physics, while far

interactions are dominated by wave physics.

To overcome this problem, the equivalence principle
algorithm (EPA) [57], [58] was proposed. This algorithm

evolved from the nested equivalence principle algorithm

(NEPAL) or the recursive Green’s function method [69],

[70] for reducing the computational complexity of solving

complicated scattering problems. However, the key intent

of EPA is to separate wave physics from circuit physics in

multiscale problems. By so doing, ill-convergence of ma-

trix equations can be circumvented.

V. WAVELETS SCHEME

The wavelets scheme has been proposed to sparsify

dense matrix systems that follow from integral equations

[71]–[78]. This is especially effective for circuit physics

problems where Laplacian and static fields predominate.

Fig. 2. The multiscale structures relative to the wavelength. At

different scales, different dominant physics will be involved.
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The nature of the static field is that it does not carry
information over long distances [79]. This is confirmed by

the fact that the higher the order of the multipole, the faster

the algebraic decay of the field. Hence, if one is at a certain

distance from the source, the most dominant field is the

monopole field, followed by the dipole field, and the higher

order multipole fields. Therefore, there is little information

in the field far away from a static source. The off-diagonal

blocks of the matrix representation of Green’s operator
represent the interaction between well-separated groups of

sources, and by the above reasoning, they are low rank.

Wavelets basis can be used to compress the matrix system

that results from integral equations at low frequencies,

because the off-diagonal blocks for the matrix system do not

contain much information, and hence are low rank. It has

been shown that matrix systems from static field can be

compressed from OðN2Þ to OðNÞ or OðN log NÞ elements
using wavelets transforms.

However, for wave physics problems, the wave conveys

information over long range. Hence, the off-diagonal

blocks contain information for long-range interactions re-

gardless of how well separated the sources are. Even though

the long-range interaction can be compressed by wavelets

transforms, the long-range interactions cannot completely

be compressed. Hence, in the wavelet transformed space,
there is always a block of dense matrix representing the

OðN2Þ long-range interaction that persists in the system

regardless of the basis used. Hence, wavelets scheme

cannot be used to reduce the computational complexity of

wave physics problems, but it can be used to reduce the

computational complexity of circuit physics problems.

Moreover, on a smooth surface, a wave problem will

induce oscillatory currents, where at least two points per
wavelength are needed to capture the embedded informa-

tion. Therefore, the current cannot be Bsmoother[ than

the BNyquist barrier[ of two points per wavelength. But

for a long-wavelength problem, the current induced on a

smooth surface is infinitely smooth, requiring few sam-

pling points to capture its information content.

VI. WELL-CONDITIONED
SCHEMESVCALDERON
PROJECTION METHOD

Because of the ill-conditioned nature of many integral

equations, the Calderon projection method has been

proposed to derive well-conditioned equations from ill-

conditioned ones [80]–[82]. The integral operator corre-

sponding to EFIE is unbounded and ill conditioned when
the frequency is low. It is also the first kind of an integral

operator. However, the square of the EFIE operator can be

written as an identity operator plus a compact part. Hence,

the EFIE operator is its own preconditioner. This concept

has been exploited by a number of researchers to derive

well-conditioned systems. While on paper the EFIE ope-

rator is its own preconditioner, this fact does not mate-

rialize in the approximate numerical representations of the
operator. The use of analytic cancellation has been used to

achieve this preconditioner property. Recently, the use of

curl conforming basis functions has facilitated the nume-

rical implementation of this concept, and numerous papers

have been published on this topic [80]. The method still

suffers from low-frequency inaccuracy problems, and the

loop-charge decomposition concept has been used to alle-

viate this problem. One of the remaining issues regarding
this method is the inversion of the Gram matrix for complex

loop-charge systems, which can be quite complicated.

Recently, the perturbation method has been used to alleviate

the low-frequency inaccuracy problem in this method [83].

VII. DIVIDE-AND-CONQUER SCHEMES

Even though computers have advanced dramatically in the
computing speed and accessible memory, the practical

complexities of real electromagnetic problems still make

OðN2Þ and OðN3Þ intolerable. As a general algorithm devel-

opment paradigm, divide and conquer (DAC) is an impor-

tant process to reduce the overall computational cost down

to a reasonable level. In general, DAC recursively divides

one big problem into smaller subproblems. By collecting

contributions from all subproblems in a certain order, the
final solution can be obtained with a much lower com-

putational cost. Because the computational load is distrib-

uted into subproblems, a distributed hardware system

could be naturally employed to support the DAC strategy.

Hence, many algorithms developed on supercomputers or

parallelized clusters use DAC ideas.

One way to implement DAC algorithms is to partition

the objects based on their spatial distances. Another com-
mon approach is to partition the resultant matrix equation

based on the rank deficiency. Both of them rely on the

decay (at various rates) of electromagnetic (EM) waves

versus the distance.

One of the early DAC methods was the Barnes–Hut

algorithm in 1986 [84]. It was for calculating N particle

interactions via the gravitational force field. Because it

calculates the interactions of each particle with all well-
separated groups, its complexity is in OðN log NÞ. Appel’s

algorithm [85], [86], which was published one year earlier

than the Barnes–Hut algorithm, has actually achieved

OðNÞ complexity because it carefully considered interac-

tions between well-separated groups instead of interac-

tions between particles and groups. Both of them used the

center-of-mass (CoM) concept. It can be conveniently ex-

tended to the center-of-charge (CoC) idea in the static
field [87]. Hence, both methods have been employed to

solve parasitic capacitance extractions [87], [88]. It was

also proven that the CoC method is equivalent to the

second-order fast multipole algorithm if the CoC overlaps

with the origin of the coordinate system [87].

The fast multipole algorithm (FMA) was one of the

great breakthroughs of computational electromagnetics
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(CEM). It delivers OðN log NÞ or OðNÞ complexity for an

MVP, regardless of the shape of the object (Fig. 3). For
Laplacian problems, the far-field contributions from a small

group of sources are replaced by the multipole sources

located at the group center [101]. The nearby field is com-

puted directly like the adaptive integral method (AIM). The

MVP using FMA is done by an oct-tree browsing from the

leafy level toward the root, and then back to the leafy level

of the tree (aggregation, translation, and disaggregation).

The truncation of multipole expansions and the buffer
distance between the source box and the field box enable its

error control. Its computational cost could reach OðNÞ, the

theoretical limit for Laplacian problems. For low-frequency

Helmholtz problems, the additional theorem [44], [100] is

used to implement the low-frequency fast multipole algo-

rithm (LF–FMA) [21], [52]. Because of the scale invariance

of the low-frequency regime, its computational cost could

be OðNÞ. However, when the box size reaches 0.1 wave-
lengths and above, the required multipoles are significantly

increased. Hence, LF–FMA is not effective in and above the

midfrequency regime (Fig. 2).

MLFMA is the first algorithm that can solve practical

large-scale midfrequency electrodynamics problems [102].

Because in the midfrequency propagating wave dominates,
plane waves instead of multipoles are used to implement

the full aggregation, translation, and disaggregation

scheme. Different from static FMA and LF–FMA who

have the dense translators, MLFMA has diagonal transla-

tors. Because the plane wave sampling rate proportionally

increases with bigger box sizes (which does not happen for

low frequencies), interpolation and anterpolation were de-

veloped to optimize the computational cost and storage
requirement. They are the key technologies that success-

fully upgraded FMA to MLFMA and guaranteed the

OðN log NÞ computational cost per MVP for wave physics

problems [21], [103].

When the frequency drops, evanescent waves instead

of propagating waves will be dominant. Hence, MLFMA

using propagating plane waves has the low-frequency

breakdown problem when the translation distance is below
0.1 wavelengths [54], [104]. To solve the low-frequency

breakdown of MLFMA and the high-frequency inefficiency

of LF–FMA, the mixed-form FMA (MF–FMA) was devel-

oped to provide a unified broadband FMA solution [105],

[106]. It employs an analytical transformation between

low-frequency multipoles and midfrequency plane waves

to adopt both low- and high-frequency physics in the same

FMA oct-tree. Hence, it can handle broadband MVP with-
out frequency-dependent breakdowns.

One drawback of the FMA method is its kernel depen-

dence because it relies on the multipole expansion or the

plane wave representation of Green’s function. A kernel-

independent FMA developed by Ying [107] uses the conti-

nuous equivalence source on the surface of the enclosing

box to replace the analytic multipole expansion. The

translations from a source box to its interaction list boxes
are done using FFT. This method is very similar to precor-

rected FFT (PFFT) [89], AIM [93], and the wavelet

method by Wagner and Chew [76].

Many successful DAC methods started with the static

field analysis. The PFFT [89] was first proposed for

FASTCAP, the well-known capacitance extraction code

developed by White’s group at the Massachusetts Institute

of Technology (MIT). The differences between PFFT and
FMA are shown in Fig. 4. PFFT partitions the charge dis-

tribution by uniform boxes. Then, the charges in each unit

box are replaced by equivalent charges located at the uni-

form grids of the cell box surface. Then, the potential

evaluation of the uniform grid charges is a convolution

integral which can be efficiently computed by the FFT

method. Because equivalence sources are not accurate for

nearby interactions, direct computations are required to
correct the near-field data. The overall computational

complexity is OðN log NÞ. PFFT was further applied to

various full-wave problems [90]–[92]. Almost in the same

period of time, the AIM, which is very similar to PFFT, was

directly developed for the full-wave scattering problems

[93]. AIM separates the field evaluation into far field and

near field from the very beginning. Then, the auxiliary

Fig. 3. FMA tree structure used for grouping source-field interaction

computations [21]. Comparing (a) the direct method and (b) the FMA

approach, it is obvious that the needed computational load in FMA

is greatly decreased. (a) Direct interaction computation among N

objects requires OðN2Þ operations. (b) Hierarchically organized

interactions by groups reduce the overall computation cost

greatly to OðN logNÞ or less.
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basis functions are used to decompose the source and

evaluation points onto uniform grids. The resultant far-

field interaction matrix becomes Toeplitz that can be

solved by FFT. The near-field interaction is obtained by a

direct calculation. AIM has been successfully applied to

large-scale scattering problems of several wavelengths.
Beyond metallic surface scattering problems, it has been

extended to volume integral equation related methods to

solve composite dielectric and conducting objects [94],

arbitrary shaped magneto–dielectric objects [95], and

parametric geometries [96].

Another type of DAC methods employs the rank defi-

ciency of the matrix system obtained from the EM model-

ing. In the IES3, the matrix representation of the integral
equation operator was first obtained using the method of

moments (MoM) [97]. Then, the off-diagonal submatrices

are assumed to be of lower ranks than their dimensions.

Using a precomputed rank map, the matrix is divided into

many submatrices whose ranks are further compressed by

eliminating unimportant modes through the singular value

decomposition (SVD). Hence, the total computational cost

needed for the MVP is greatly reduced. Later, a similar
method named the predetermined interaction list oct-tree

(PILOT) QR algorithm was developed [98]. Instead of

using the precomputed rank map as in IES3, PILOT

employs the fast multiple oct-tree to organize the inter-

action list. The setup time is greatly reduced. Both methods

have been applied to low-frequency modeling situations

with the complexity of OðN log NÞ or OðN log2 NÞ. One

significant advantage of these techniques is that they are
kernel independent. The rank deficiency was also success-

fully implemented in a multilevel matrix decompression

algorithm (MLMDA) [99]. It uses a reduced set of equiv-

alence sources and observation points to achieve the rank

deficiency. Then, it develops a well-designed butterfly-like

submatrix–vector multiplication process. Compared to

AIM OðN1:5 log NÞ for the 2-D surface scatterers, MLMDA
does not need the FFT on the entire grid, and its com-

putational complexity is OðN log2 NÞ.
The hierarchical matrices (H-matrices) method is a

method recently applied to CEM applications [108]–[111].

It assumes that typical integration kernels are asymptoti-

cally smooth. Then, the panel clustering method is applied

to obtain the kernels’ degenerate approximations. If all

admissible sub-blocks (well separated by definition) of the
matrix have the rank less than certain k, the matrix is

defined as the H-matrix structure. Then, all matrix–vector

multiplications, additions, and inversions can all be han-

dled in lower ranks hierarchically. It is kernel independent

and has been applied to solve large-scale IC parasitic

problems. In principle, this method is valid for the low-

frequency regime where the quasi-static approximation is

valid because its efficiency comes from a systematic rank
deficiency exploitation strategy.

The adaptive cross approximation (ACA) method em-

ploys similar rank deficiency concept to construct an ap-

proximated matrix without computing the whole matrix

[112]. Unlike the H-matrix method that uses submatrices,

in its early stage, ACA was proposed to approximate the

whole matrix. Later it was developed into a hierarchical

multilevel algorithm [113]. It groups unknowns hie-
rarchically based on their geometrical relations. Then,

the impedance matrix is split into coupling sub-blocks.

Most off-diagonal submatrices corresponding to well-

separated interactions will be compressed by the original

ACA method. The diagonal matrices and neighboring

interactions will be computed directly. This method has

been successfully applied to static and dynamic problems.

Most of aforementioned algorithms are used to accel-
erate the MVP in the numerical calculation. However, there

is another category of DAC methods that influences the

initial physical model setups. It is the domain decomposition

method (DDM) that divides the problem into regions,

normally larger than those of DAC methods we already

discussed. The mathematical formulation is directly based on

this partition. It does not group basis to reduce the compu-

tational cost at this stage even though all aforementioned
methods could be applied to accelerate its computation.

One method that has been developed is the equivalence

principle algorithm (EPA) [57], [58]. It is related to the

earlier method of nested equivalence principle algorithm

(NEPAL) and the recursive Green’s function method [69],

[70]. To implement EPA, the objects are partitioned by

artificial equivalence surfaces (Fig. 5). Using the tangential

electric field and the magnetic field, equivalent electric
current and magnetic current are created. Based on

Huygens’ principle, interactions between objects are re-

placed by internal interactions inside each equivalence

surface and intermediate translations between equivalence

surfaces [57]. It is similar to the [S] parameter with ports

placed all over the equivalence surface. The EPA method

has been applied to midfrequency problems such as

Fig. 4. The difference between FMA and PFFT. FMA replaces local

sources using equivalent multipoles at the center of the group.

PFFT replaces local sources using equivalence sources at the

grid points on the box surface.
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antenna arrays and large-scale scattering problems [58]

(Fig. 6). Its low-frequency extension is being studied [114],

[115]. This method can be regarded as the domain decom-

position for IES, and NEPAL [69] is related to the nested

dissection algorithm [116] for DES.

Yet another successful DDM development is the non-
overlapping DDM developed by Lee’s group [117]. It di-

rectly segments object bodies during the partition process.

Its difference compared with the EPA method [57] is il-

lustrated in Fig. 7. Then, the first-order or second-order

Robin-type transmission conditions are established to en-

force the continuity of boundary conditions at the cutting

surface. Later, a cement technique is employed to adapt to

nonoverlapping meshes. It has been successfully applied to

analyze both large-scale scattering and coupling problems
[117]–[119]. Very impressive results have been achieve-

ment from these methods. One example is shown in Fig. 8.

Another DAC scheme to note is the diakoptic approach.

It has also been generalized to using the equivalence prin-

ciple and FEM [120]–[131].

For multilayer systems, DDM can be naturally applied

by splitting regions by layer interfaces. The time-domain

layered finite element reduction recovery (LAFT–RR)
method in [132] rigorously reduces the matrix of the mul-

tilayer system into that of a single-layer system irrespective

of the original problem size. It is able to solve a single-layer

matrix problem in OðMÞ, where M is the number of single-

layer unknowns. It is very suitable for an on-chip structure

analysis.

Recently, another very popular time-domain DDM is

the discontinuous Galerkin time-domain method (DGTD)
[133], [134]. It can handle various elements with different

shapes, accommodate nonconfirming meshes, achieve

high-order accuracy, and favor parallelization process

[135]–[137]. A detailed review paper on this method is

given by Chen and Liu in this special issue [138].

VIII . LAYERED MEDIUM FMA

While it is relatively easy to develop fast methods for free

space and the homogeneous medium, it is more difficult to

Fig. 6. The top two figures show the 30� 30 antenna array on a ground

plane with every element enclosed by an equivalent surface. The

bottom two figures show the resultant Ex and Ey field distributions.

The number of unknowns is reduced from 7.2 million for a MoM

solver to 856 216 for the EPA solver [59].

Fig. 7. Two different types of DDMs. One method (the top figure)

uses artificial boxes to partition and include the objects [57].

Another method (the bottom figure) cuts through the objects

directly and creates sources on the boundary interface and

the object’s body surface [119].

Fig. 5. The mutual and self-interactions among EPA equivalent

sources and PEC objects.
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develop them for the layered medium [52]–[54]. When the
layered medium is thin, a thin stratified medium fast

multipole algorithm (TS–FMA) has been developed [52].

In this method, the layered medium is assumed thin, and

the observation point is close to the horizontal. In this

case, the Sommerfeld integration path for the layered

medium Green’s function can be detoured to the vertical

branch cut, and be expressed as an efficient integral sum-

mation of 2-D Green’s functions. Then, 2-D MLFMA can
be applied to accelerate the computation of MVPs.

When the layered medium is not thin, the fast inho-

mogeneous plane wave algorithm (FIPWA) can be applied

[53], [54]. The advantage of FIPWA is that it keeps the

important form of Sommerfeld integral intact and yet al-

lows the building of the factorization of Green’s function

into the complex layered medium Green’s function.

There have been attempts of using discrete complex
image methods (DCIM) to accelerate the calculation of

layered medium Green’s functions [139]–[141]. DCIM

uses the complex images to obtain the approximated closed

forms of integrals with the layer medium Green’s function.

But it has difficulties in processing the poles and branch-

point singularities. Also it has unpredictable errors for the

far-field interaction. Recently, a Sommerfeld branch cut
(SBC) method was proposed to capture these singularities

[142]. DCIM was also combined with the static layer med-

ium fast multipole algorithm to accelerate the setup time

for translators [143].

IX. HIGH-PERFORMANCE
COMPUTING (HPC) FOR CEM

Computer hardware was advancing when CEM was prog-

ressing. High-performance computing for CEM has be-

come an unavoidable research direction adopted by the

CEM community. Using distributed central processing

unit (CPU) capability and distributed memories, massive
computational workload can be shared. Hence, significant

speedups can be achieved by the hardware scaling.

There are three major types of HPC platforms for to-

day’s CEM researchers.

1) Computer clusters: it is very economical to build

a cluster with 10 or 20 nodes to achieve up to

10–20 times acceleration of the original compu-

tation task.
2) Supercomputers: such as those in the top 500 su-

percomputer list [144]. They are highly optimized

computing platforms with tens of thousands of

nodes.

3) Cloud computing: it is a technology that is still in

its infancy today. It emphasizes services and re-

source sharing instead of scientific computing.

Hence, its impact on CEM is still unknown
[145], [146].

Parallel computer memory architectures are of three

types [147]: 1) shared memory system; 2) distributed

memory system; and 3) hybrid distributed-shared memory

system that is a combination of the previous two types

(Fig. 9). Most today’s supercomputers are the hybrid

system.

Fig. 8. Microwave photonic crystal (MPC) was simulated using the

DDM proposed in [120]. The top figure shows the geometry and domain

partition of MPC. The bottom figure shows the negative reflection

and the resultant electric field at 9.7 GHz. One thousand forty eight

subdomains were required (courtesy of Prof. J. F. Lee).

Fig. 9. A hybrid distributed-shared memory computer memory

architecture. Each unit node is a shared memory systemVthere are

two or more symmetric multiprocessors (SMPs) sharing the same

memory resources. Then, a distributive system is formed by

connecting shared memory nodes through networks [148].
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One key challenge of parallelizing CEM algorithms is
on how to maintain its scalability when the number of

nodes is increasing. If there is little communication be-

tween computing nodes, the algorithm is said to be em-

barrassingly (or pleasingly) parallel. Or else, hard work is

needed to balance the workload in the parallel system, syn-

chronize processes on all the nodes, and expedite and reduce

the internode communications to optimize the scalability.

Large-scale CEM was primarily spurred by the need for
radar cross-section (RCS) analysis. Moreover, fast multi-

pole algorithms were very successful in handling that chal-

lenge on the single node computer. Consequently, many

HPC CEM efforts were focused on the parallelization of

FMA related algorithms, which is also academically

challenging.

One of the initial efforts to parallelize FMA is the Fast

Illinois Solver Code (FISC) at the University of Illinois at
Urbana-Champaign (UIUC). Using shared memory system,

the RCS of a full-size aircraft at X-band [27] was computed

for the first time. Later, it also successfully calculated the

solution to a MoM matrix (a dense matrix) with ten million

unknowns [27]. A distributed memory parallel algorithm,

ScaleME, was later developed at UIUC [28]. For the first

time, it achieved the record of ten million unknowns for the

RCS calculation. It used 126 processors of the SGI Origin
2000 system to support that calculation. Thereafter, many

advanced FMA parallelization efforts have been made.

Today, for static particle interactions, the record is set to

solving three trillion particles in 11 min using FMA [32]. For

electromagnetics (dynamic) problems, over half a billion to

over a billion unknowns have been possible [29]–[31].

It is very difficult to partition and balance the hierar-

chical FMA oct-tree among a large number of computing
nodes. Improper arrangement easily causes significant data

traffic between nodes for FMA aggregation, disaggrega-

tion, and translation. Normally, the overall scalability is

dramatically degraded when the number of nodes is

greater than 32. To overcome it, a technique based on an

appropriate partitioning scheme for each level of the

MLFMA tree was developed [29]. It partitions both sub-

domains and their samples using the load-balancing algo-
rithms. As a result, much higher parallelization efficiency

was achieved. Up to 374 million unknown RCS problems

have been solved based on this method by 2011 [30].

In 2009, another method named FMA–FFT showed

extraordinary scalability [31]. It employed the idea of using

a simpler solver to achieve higher scalability. It only ap-

plied one level FMA to organize irregularly distributed

sources. Hence, almost no internode communication is

needed for the FMA tree, which was the trouble source of

the bad load balancing. Then, the FFT method was used to

calculate coarse level interactions. By this, the workload
could be evenly distributed to all nodes, and very limited

internode communication was needed. Its award winning

scalability was almost 100% on 512 nodes [149] (Fig. 10).

This method was further extended to the MLFMA–FFT

method that employed the multilevel FMA on each com-

puting node and FMA–FFT over the whole distributive

system [31].

The FDTD method is a one representative embarrass-
ingly parallel algorithm [149], but it needs a larger number

of unknowns than integral equation solvers. It has been

parallelized by so many researchers in commercial soft-

ware tools that it is totally beyond authors’ capability to

summarize them.

X. CONCLUSION AND FUTURE

CEM has been dramatically advanced by a successful integ-

ration of physics, mathematics, and computer technologies.

It has also advanced science and engineering knowledge
and contributed to the changes of today’s technology

landscape. As a necessary tool for electromagnetic analysis

and its broad applications, CEM and large-scale computing

will continue to evolve. It will enhance our deeper under-

standing of the physics of highly complex systems. h
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H. Lewy, BÄUber die partiallen
differenzengleichungen der mathematischen
physic,[ Math. Ann., vol. 100, p. 32, 1928.

[46] W. Hackbusch and U. Trottenberg, Eds.,
Multigrid Methods. New York:
Springer-Verlag, 1982, vol. 960.

[47] R. F. Harrington, Time-Harmonic
Electromagnetic Fields, Piscataway, NJ:
IEEE Press, 2001.

[48] R. F. Harrington, BMatrix methods for
field problems,[ Proc. IEEE, vol. 55, no. 2,
pp. 136–49, Feb. 1967.

[49] S. M. Rao, D. R. Wilton, and A. W. Glisson,
BElectromagnetic scattering by surfaces
of arbitrary shape,[ IEEE Trans. Antennas
Propag., vol. 30, no. 3, pp. 409–418,
May 1982.

[50] W. C. Chew, M. S. Tong, and B. Hu, Integral
Equations Methods for Electromagnetic and
Elastic Waves. New York: Morgan &
Claypool, 2008.

[51] D. S. Weile, G. Pisharody, N. W. Chen,
B. Shanker, and E. Michielssen, BA novel
scheme for the solution of the time domain
integral equations of electromagnetics,[
IEEE Trans. Antennas. Propag., vol. 52, no. 1,
pp. 283–295, Jan. 2004.

[52] J. S. Zhao, W. C. Chew, C. C. Lu,
E. Michielssen, and J. M. Song,
BThin-stratified medium fast-multipole
algorithm for solving microstrip structures,[

IEEE Trans. Microw. Theory Tech., vol. 46,
no. 4, pp. 395–403, Apr. 1998.

[53] B. Hu, W. C. Chew, E. Michielssen, and
J. Zhao, BAn improved fast steepest
descent algorithm for the fast analysis of
two-dimensional scattering problems,[
Radio Sci., vol. 34, no. 4, pp. 759–772,
Jul.–Aug. 1999.

[54] B. Hu and W. C. Chew, BFast
inhomogeneous plane wave algorithm
for scattering from objects above the
multi-layered medium,[ IEEE Trans. Geosci.
Remote Sens., vol. 39, no. 5, pp. 1028–1038,
May 2001.

[55] E. Michielssen and J. M. Jin, BGuest editorial
for the special issue on large and multiscale
computational electromagnetics,[ IEEE
Trans. Antennas Propag., vol. 56, no. 8,
pp. 2146–2149, Aug. 2008.

[56] F. Andriulli, A. Tabacco, and G. Vecchi,
BA multiresolution approach to the electric
field integral equation in antenna problems,[
SIAM J. Sci. Comput., vol. 29, pp. 1–21,
2007.

[57] M. K. Li, W. C. Chew, and L. J. Jiang, BA
domain decomposition scheme based on
equivalence theorem,[ Microw. Opt. Technol.
Lett., vol. 48, no. 9, pp. 1853–1857,
Sep. 2006.

[58] M. K. Li and W. C. Chew, BWave-field
interaction with complex structures using
equivalence principle algorithm,[ IEEE
Trans. Antenna Propag., vol. 55, no. 1,
pp. 130–138, Jan. 2007.

[59] M. K. Li and W. C. Chew, BMultiscale
simulation of complex structures using
equivalence principle algorithm with
high-order field point sampling scheme,[
IEEE Trans. Antennas Propag., vol. 56,
no. 8, pp. 2389–2397, Aug. 2008.

[60] Z. G. Qian and W. C. Chew, BFast
full-wave surface integral equation solver
for multiscale structure modeling,[ IEEE
Trans. Antennas Propag., vol. 57, no. 11,
pp. 3594–3601, Nov. 2009.

[61] Z. G. Qian and W. C. Chew, BEnhanced
A-EFIE with perturbation method,[ IEEE
Trans. Antennas Propag., vol. 58, no. 10,
pp. 3256–3264, Oct. 2010.

[62] D. R. Wilton and A. W. Glisson,
BOn improving the electric field integral
equation at low frequencies,[ in URSI
Radio Sci. Meeting Dig., Los Angeles, CA,
Jun. 1981, p. 24.

[63] J. Mautz and R. Harrington, BAn E-Field
solution for a conducting surface small or
comparable to the wavelength,[ IEEE
Trans. Antennas Propag., vol. AP-32, no. 4,
pp. 330–339, Apr. 1984.

[64] J. S. Zhao and W. C. Chew, BIntegral
equation solution of maxwell’s equations
from zero frequency to microwave
frequencies,[ IEEE Trans. Antennas Propag.,
vol. 48, James R. Wait Memorial Special Issue,
no. 10, pp. 1635–1645, Oct. 2000.

[65] G. Vecchi, BLoop star decomposition of
basis functions in the discretization of the
EFIE,[ IEEE Trans. Antennas Propag., vol. 47,
no. 2, pp. 339–346, Feb. 1999.

[66] Z. G. Qian and W. C. Chew, BA quantitative
study on the low frequency breakdown of
EFIE,[ Microw. Opt. Technol. Lett., vol. 50,
no. 5, pp. 1159–1162, May 2008.

[67] V. I. Okhmatovski, J. D. Morsey, and
A. C. Cangellaris, BEnhancement
of the numerical stability of the adaptive
integral method at low frequencies
through a loop-charge formulation of the
method-of-moments approximation,[ IEEE

Chew and Jiang: Overview of Large Scale Computing: The Past, the Present, and the Future

238 Proceedings of the IEEE | Vol. 101, No. 2, February 2013



Trans. Microw. Theory Tech., vol. 52, no. 3,
pp. 962–970, Mar. 2004.

[68] S. Chakraborty, D. Gope, G. Ouyang, and
V. Jandhyala, BA three-stage preconditioner
for geometries with multiple holes and
handles in integral equation-based
electromagnetic simulation of integrated
packages,[ in Proc. IEEE Top. Meeting Electr.
Performance Electron. Packag., Austin, TX,
Oct. 2005, pp. 199–202.

[69] W. C. Chew and C. C. Lu, BThe use of
Huygens’ equivalence principle for solving
the volume integral equation of scattering,[
IEEE Trans. Antennas Propag., vol. 41, no. 7,
pp. 897–904, Jul. 1993.

[70] J. D. Freeze and M. A. Jensen, BThe recursive
Green’s function method for surface integral
equation analysis of inhomogeneous media,[
in Proc. IEEE Antennas Propag. Soc. Int. Symp.,
Montreal, QC, Canada, Jul. 1997, vol. 4,
pp. 2342–2345.

[71] S. Jaffard, BWavelet methods for fast
resolution of elliptic problems,[ SIAM J.
Numer. Anal., vol. 29, no. 4, pp. 965–986,
1992.

[72] B. Alpert, G. Beylkin, R. R. Coifman, and
V. Rokhlin, BWaveletlike bases for the
fast solution of second kind integral
equations,[ SIAM J. Sci. Comput., vol. 14,
no. 1, pp. 159–184, 1993.

[73] H. Kim and H. Ling, BOn the application
of fast wavelet transform to the integral
equation solution of electromagnetic
scattering problems,[ Microw. Opt. Technol.
Lett., vol. 6, no. 3, pp. 168–173, 1993.

[74] B. Z. Steinberg and Y. Leviatan, BOn the
use of wavelet expansions in the method
of moments,[ IEEE Trans. Antennas
Propag., vol. 41, no. 5, pp. 610–619,
May 1993.

[75] G. Wang, G. Pan, and B. K. Gilbert,
BA hybrid wavelet expansion and boundary
element analysis for multiconductor
transmission lines in multilayered dielectric
media,[ IEEE Trans. Microw. Theory Tech.,
vol. 43, no. 3, pp. 664–674, Mar. 1995.

[76] R. L. Wagner and W. C. Chew, BA study of
wavelets for the solution of electromagnetic
integral equations,[ IEEE Trans. Antenna
Propag., vol. 43, no. 8, pp. 802–810,
Aug. 1995.

[77] W. L. Golik, BSparsity and conditioning
of impedance matrices obtained with
semiorthogonal and biorthogonal wavelet
bases,[ IEEE Trans. Antennas Propag.,
vol. 48, no. 4, pp. 473–481, Apr. 2000.

[78] H. Deng and H. Ling, BOn a class of
predefined wavelet packet bases for efficient
representation of electromagnetic integral
equations,[ IEEE Trans. Antennas Propag.,
vol. 47, no. 12, pp. 1772–1779, Dec. 1999.

[79] W. C. Chew, BComputational
electromagnetics: The physics of smooth
versus oscillatory fields,[ Philos. Trans. A
Math Phys. Eng. Sci., vol. 362, pp. 579–602,
1816.

[80] F. P. Andriulli, K. Cools, H. Baci,
F. Olyslager, A. Buffa, S. H. Christiansen,
and E. Michielssen, BA multiplicative
Calderon preconditioner for the electric
field integral equation,[ IEEE Trans.
Antennas Propag., vol. 56, no. 8,
pp. 2398–2412, Aug. 2008.

[81] M. B. Stephanson and J. F. Lee,
BPreconditioned electric field integral
equation using Calderon identities and
dual loop/star basis functions,[ IEEE
Trans. Antennas Propag., vol. 57, no. 4,
pp. 1274–1279, Apr. 2009.

[82] S. Yan, J. M. Jin, and Z. P. Nie, BEFIE
analysis of low-frequency problems with
loop-star decomposition and Calderón
multiplicative preconditioner,[ IEEE Trans.
Antennas Propag., vol. 58, no. 3, pp. 857–867,
Mar. 2010.

[83] S. Sun, Y. G. Liu, W. C. Chew, and Z. H. Ma,
BCalderon multiplicative preconditioned
EFIE with perturbation method,[ IEEE
Trans. Antennas Propag, 2012, DOI: 10.1109/
TAP.2012.2220099.

[84] J. Barnes and P. Hut, BA hierarchical
OðN log NÞ force calculation algorithm,[
Nature, vol. 324, pp. 446–449, Dec. 1986.

[85] A. W. Appel, BAn efficient program for
many-body simulation,[ SIAM J. Sci.
Stat. Comput., vol. 6, no. 1, pp. 85–103,
Jan. 1985.

[86] K. Essenlink, BThe order of Appel’s
algorithm,[ Inf. Process. Lett., vol. 41, no. 3,
pp. 141–147, Mar. 1992.

[87] L. J. Jiang and W. C. Chew, BA new
capacitance extraction method,[ J.
Electromagn. Waves Appl., vol. 18, no. 3,
pp. 287–299, 2004.

[88] J. Aronsson, K. Butt, I. Jeffrey, and
V. I. Okhmatovski, BThe Barnes-Hut
hierarchical center-of-charge approximation
for fast capacitance extraction in
multilayered media,[ IEEE Trans.
Microw. Theory Tech., vol. 58, no. 5,
pt. 1, pp. 1175–1188, May 2010.

[89] J. R. Phillips and J. K. White, BA
precorrected-FFT method for electrostatic
analysis of complicated 3-D structures,[ IEEE
Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 16, no. 10, pp. 1059–1072,
Oct. 1997.

[90] L. W. Li, Y. J. Wang, and E. P. Li, BMPI-based
parameterized precorrected FFT algorithm
for analyzing scattering by arbitrarily shaped
three-dimensional objects,[ PIER, vol. 42,
pp. 247–259, 2003.

[91] X. C. Nie, N. Yuan, and L. W. Li,
BPrecorrected-FFT algorithm for solving
combined field integral equations in
electromagnetic scattering,[ J. Electromagn.
Waves Appl., vol. 16, no. 8, pp. 1171–1187,
2002.

[92] X. C. Nie, L. W. Li, N. Yuan, T. S. Yeo, and
Y. B. Gan, BPrecorrected-FFT solution of
the volume integral equation for 3-D
inhomogeneous dielectric objects,[ IEEE
Trans. Antennas Propag., vol. 53, no. 1,
pp. 313–320, Jan. 2005.

[93] E. Bleszynski, M. Bleszynski, and
T. Jaroszewicz, BAIM: Adaptive integral
method for solving large-scale
electromagnetic scattering and radiation
problems,[ Radio Sci., vol. 31, no. 5,
pp. 1225–1251, Sep.–Oct. 1996.

[94] W. B. Ewe, L. W. Li, and M. S. Leong,
BFast solution of mixed dielectric/conducting
scattering problem using volume-surface
adaptive integral method,[ IEEE Trans.
Antennas Propag., vol. 52, no. 11,
pp. 3071–3077, Nov. 2004.

[95] W. B. Ewe, E. P. Li, H. S. Chu, and L. W. Li,
BAIM analysis of electromagnetic scattering
by arbitrarily shaped magnetodielectric
object,[ IEEE Trans. Antennas Propag.,
vol. 55, no. 7, pp. 2073–2079, Jul. 2007.

[96] W. B. Ewe, L. W. Li, Q. Wu, and M. S. Leong,
BAIM solution to electromagnetic scattering
using parametric geometry,[ IEEE Antennas
Wireless Propag. Lett., vol. 4, pp. 107–111,
2005.

[97] S. Kapur and D. E. Long, BIES3: A fast
integral equation solver for efficient
3-dimentional extraction,[ in Proc. IEEE/

ACM Int. Conf. Comput.-Aided Design, 1997,
pp. 448–455.

[98] D. Gope and V. Jandhyala, BPILOT: A fast
algorithm for enhanced 3d parasitic
extraction efficiency,[ in Proc. IEEE Top.
Meeting Electr. Performance Electron. Packag.,
Princeton, NJ, Oct. 2003, pp. 337–340.

[99] E. Michielssen and A. Boag, BA multilevel
matrix decomposition algorithm for
analyzing scattering from large structures,[
IEEE Trans. Antennas Propag., vol. 44, no. 8,
pp. 1086–1093, Aug. 1996.

[100] M. Abramowitz and I. A. Stegun, Handbook
of Mathematical functions. New York:
Dover, 1964.

[101] L. Greengard, The Rapid Evaluation of
Potential Fields in Particle Systems.
Cambridge, MA: MIT Press, 1988.

[102] J. M. Song, C. C. Lu, and W. C. Chew,
BMultilevel fast multipole algorithm for
electromagnetic scattering by large complex
objects,[ IEEE Trans. Antennas Propag.,
vol. 45, no. 10, pp. 1488–1493, Oct. 1997.

[103] L. Greengard and V. Rokhlin, BA fast
algorithm for particle simulations,[ J. Chem.
Phys., vol. 73, no. 2, pp. 325–348, Dec. 1987.

[104] L. J. Jiang and W. C. Chew, BLow
frequency inhomogeneous plane wave
algorithmVLF-FIPWA,[ Microw. Opt.
Technol. Lett., vol. 40, no. 2, pp. 117–122,
Jan. 2004.

[105] L. J. Jiang and W. C. Chew, BA mixed-form
fast multipole algorithm,[ IEEE Trans.
Antenna Propag., vol. 53, no. 12,
pp. 4145–4156, Dec. 2005.

[106] W. C. Chew, S. Koc, J. M. Song, C. C. Lu, and
E. Michielssen, BA succinct way to
diagonalize the translation matrix in three
dimensions,[ Microw. Opt. Technol. Lett.,
vol. 15, no. 3, pp. 144–147, 1997.

[107] L. Ying, G. Biros, and D. Zorin, BA
kernel-independent adaptive fast multipole
algorithm in two and three dimensions,[ J.
Comput. Phys., vol. 196, no. 2, pp. 591–626,
2004.

[108] W. Hackbusch, BA sparse matrix arithmetic
based on H-matrices. I. Introduction to
H-matrices,[ Computing, vol. 62, no. 2,
pp. 89–108, 1999.

[109] W. Hackbusch and B. N. Khoromskij,
BA sparse H-matrix arithmetic. II:
Application to multi-dimensional problems,[
Computing, vol. 64, no. 1, pp. 21–47, 2000.

[110] S. Borm, L. Grasedyck, and W. Hackbusch,
BIntroduction to hierarchical matrices with
applications,[ Eng. Anal. Bound. Elem.,
vol. 27, no. 5, pp. 405–422, Jan. 2003.

[111] W. Chai and D. Jiao, BAn H2-matrix-based
integral-equation solver of reduced
complexity and controlled accuracy for
solving electrodynamic problems,[ IEEE
Trans. Antennas Propag., vol. 57, no. 10,
pp. 3147–3159, Oct. 2009.

[112] S. Kurz, O. Rain, and S. Rjasanow, BThe
adaptive cross-approximation technique for
the 3-D boundary element method,[ IEEE
Trans. Magn., vol. 38, no. 2, pp. 421–424,
Mar. 2002.

[113] K. Z. Zhao, M. N. Vouvakis, and J. F. Lee,
BThe adaptive cross approximation algorithm
for accelerated method of moments
computations of EMC problems,[ IEEE
Trans. Electromagn. Compat., vol. 47, no. 4,
pp. 763–773, Nov. 2005.

[114] L. E. Sun, W. C. Chew, and J. M. Jin,
BAugmented equivalence principle algorithm
at low frequencies,[ Microw. Opt. Technol.
Lett., vol. 52, no. 10, pp. 2274–2279,
Oct. 2010.

Chew and Jiang: Overview of Large Scale Computing: The Past, the Present, and the Future

Vol. 101, No. 2, February 2013 | Proceedings of the IEEE 239



[115] Z. H. Ma, L. J. Jiang, Z. G. Qian, and
W. C. Chew, BA low frequency stable EPA
method accelerated by the adaptive cross
approximation algorithm,[ in Proc. IEEE
Antennas Propag. Soc. Int. Symp., Spokane,
WA, Jul. 2011, pp. 2704–2707.

[116] A. George, BNested dissection of a regular
finite element mesh,[ SIAM J. Numer. Anal.,
vol. 10, pp. 345–363, 1973.

[117] S. C. Lee, M. N. Vouvakis, and J. F. Lee,
BA non-overlapping domain decomposition
method with non-matching grids for
modeling large finite antenna arrays,[ J.
Comput. Phys., vol. 203, no. 1, pp. 1–21,
2005.

[118] Z. Peng, V. Rawat, and J. F. Lee, BOne way
domain decomposition method with second
order transmission conditions for solving
electromagnetic wave problems,[ J. Comput.
Phys., vol. 229, no. 4, pp. 1181–1197,
2010.

[119] Z. Peng and J. F. Lee, BNon-conformal
domain decomposition method with
second-order transmission conditions for
time-harmonic electromagnetics,[ J. Comput.
Phys, vol. 229, pp. 5616–5629, 2010.

[120] G. Kron, Diakoptics: The Piecewise Solution
of Large Scale Systems. New York:
MacDonald, 1963.

[121] G. Goubau, N. N. Puri, and F. K. Schwering,
BDiakoptic theory for multielement
antennas,[ IEEE Trans. Antennas Propag.,
vol. AP-30, no. 1, pp. 15–26, Jan. 1982.

[122] F. K. Schwering, N. N. Puri, and C. M. Butler,
BModified diakoptic theory of antennas,[
IEEE Trans. Antennas Propag, vol. AP-34,
no. 11, pp. 1273–1281, Nov. 1986.

[123] E. Niver, H. H. Smith, and G. M. Whitman,
BFrequency characterization of a thin linear
antenna using diakoptic antenna theory,[
IEEE Trans. Antennas Propag, vol. 40, no. 3,
pp. 245–250, Mar. 1992.

[124] L. N. Merugu and V. F. Fusco, BConcurrent
network diakoptics for electromagnetic
field problems,[ IEEE Trans. Microw. Theory
Tech., vol. 41, no. 4, pp. 708–716,
Apr. 1993.

[125] C. H. Lai, BDiakoptics, domain
decomposition, and parallel computing,[
Comput. J., vol. 37, no. 10, pp. 840–846,
1994.

[126] S. Ooms and D. D. Zutter, BA new iterative
diakoptics-based multilevel moments
method for planar circuits,[ IEEE Trans.
Microw. Theory Tech., vol. 46, no. 3,
pp. 280–291, Mar. 1998.
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