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Abstract: Reflection and transmission of electromagnetic waves at the
boundaries of periodic composites (electromagnetic/optical metamaterials)
depends in general on both bulk and surface waves. We investigate the
interplay of these two contributions using three-dimensional full-wave
numerical simulations and a recently developed non-asymptotic homoge-
nization theory.
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1. Introduction

The problem of homogenization of periodic electromagneticcomposites has proved to be quite
complicated and is currently the subject of lively research[1–7]. In many applications and sim-
ulations reported in the literature, the composite has the overall shape of a slab with elementary
cells arranged on a cubic lattice with the periodh. Let us assume that a slab of sufficiently large
width L (that is,L = Nh whereN ≫ 1) can be accurately described by some effective medium
parameters. On the other hand, for a slab containing only onelayer of elementary cells (N = 1),
this description is expected to be be substantially different or inapplicable. The composites used
in practice will, most likely, have some intermediate valueof N. This raises the questions of
how large the number of elementary layers should be for the effective medium description to be
applicable, what errors are incurred by using this description for a given finiteN, and whether
the effective medium parameters can depend onN. It should be noted that many simulations
have revealed that the width effects are unimportant in slabs containing only a few layers of
elementary cells [8–10]. These findings, however, are largely heuristic. It is desirable, there-
fore, to gain some qualitative understanding of the interplay between the sample width and the
accuracy of the effective medium description.

The problem has been considered previously in a number of publications. In Ref. [11] it was
shown that material parameters retrieved from the reflection and transmission coefficients of
a composite slab (by means of the so-called S-matrix retrieval method [12, 13]) can, in fact,
depend appreciably on the number of elementary cell layers used. In particular, parameters
obtained for a single layer are inapplicable to a multilayerstructure. Moreover, these parameters
can depend on the angle of incidence of the illuminating plane wave and therefore cannot
always be used in the traditional sense as characteristics of the material itself independent of



the illumination conditions (see also relevant work in Ref.[8,9,14]).
In this paper, instead of using the transmission and reflection data for parameter retrieval, we

investigate the problem by looking at the electromagnetic fields excited inside the composite.
To this end, we use the homogenization methodology of Refs. [15–17]. In these references, the
effective parameters are derived from the electromagneticfields computed inside a given cell.
In most practical applications, this computation is done numerically because analytical solu-
tions are known only for a few rare special cases (e.g., one-dimensional periodically-layered
medium). The advantage of this homogenization approach is that it allows one to study the
effective parameters not only as functions of the number of layers, but also as functions of po-
sition relative to the slab surfaces. It is, in fact, the key objective of this paper to demonstrate
that the effective parameters of surface layers can be defined independently from the bulk pa-
rameters and may differ from the latter. To keep numerical simulations and analysis relatively
simple, we focus exclusively on the surface effects and do not consider a number of other rel-
evant issues. In particular, even though the theory of Refs.[15, 17] applies to any illumination
conditions, in the present paper we consider normal incidence only. Correspondingly, the ef-
fective parameters computed below represent the medium accurately for a normally-incident
plane wave, but not necessarily for other types of illumination. The effective parameters we
compute are guaranteed to apply to all types of illuminationfor sufficiently long waves, but this
may cease to be true for shorter waves. We expect that the spatially-dispersive behavior (that
is, inapplicability of a purely local effective medium theory) takes place in the spectral regions
where the magnetic permeability is noticeably different from unity, e.g., forλ/h . 5 [8,18,18]
(h is the lattice period, see below). We note that the practicalutility of nonlocal parameters, if
these can be reasonably introduced at all, is debatable and,in any event, the onset of nonlo-
cality tends to destroy all physical effects that enable thefrequently discussed applications of
metamaterials, such as super-resolution. We, therefore, do not investigate the short-wavelength
spectral region or the effects of nonlocality in detail, butrather focus on the influence of the
surface wave, which is present at both long and short waves.

We argue that the presence of a surface wave explains why the surface and bulk parameters
are different and why the thickness of the sample affects theeffective parameters obtained us-
ing the traditional transmission/reflection retrieval. The exponential decay of the surface wave
away from the interface helps to explain why the dependence of parameters on the thickness
of the slab is appreciable only for relatively thin samples,as observed in several previous stud-
ies [2,4,8,9,14]. We note that the surface wave exists due tothe lack of discrete translational in-
variance in finite composites, and is conceptually similar to surface plasmon polaritons (SPPs),
even though the typical physical realization of SPPs is somewhat different: the SPPs are con-
ventionally excited on a metallic or polaritonic (e.g. SiC)surface separating two media with the
opposite signs of the real part ofε.

A qualitative connection can be made between our study of surface parameters and transition
layers whose importance has been emphasized by Simovski (e.g. [2]); he traces this subject
back to the work of Drude. Our homogenization model allows one to rigorously define and
quantify electromagnetic parameters of the transition layers.

The remainder of the paper is organized as follows. In Sec. 2 we briefly recount the theory
of surface waves in finite, periodic, three-dimensional composites. In Sec. 3 we describe the
homogenization approach used by us. In Sec. 4 we present the main results of this paper and,
finally, Sec. 5 contains a brief discussion.

2. Surface waves – theory

In the case of smooth interfaces, SPPs can be excited only by an evanescent incident wave,
i.e., from the near-field, or from a medium with a higher refractive index (in the Kretschmann



geometry [19]). However, in periodically modulated media,SPPs can be exited by both prop-
agating and evanescent incident waves and are, therefore, unavoidable. The excitation of SPPs
in three-dimensional composites can be described in the framework of the generalized Ewald-
Oseen theorem [20,21]. The classical Ewald-Oseen theorem states that any wave incident on an
interface with a homogeneous medium creates a wave of polarization; this, in turn, produces the
extinction electromagnetic wave (which cancels exactly the incident wave) and a transmitted
wave (which has exactly the same spatial dependence as the wave of polarization). The physical
picture of refraction is thus made self-consistent from themicroscopic point of view [21].

A similar situation exists in periodic composites but with an important variation. In this case,
the field in a three-dimensional semi-infinite composite consists of a Bloch wave, an extinction
wave, and an additional term, which is, under certain conditions [stated before Eq. (7) below],
spatially localized near the interface. This term can be interpreted as an SPP or as a surface
guided wave. Let us assume for simplicity that the compositein question consists of inclusions
periodically arranged in the half-spacez> 0. An incident wave would induce a polarization field
P(r) inside the inclusions (P = 0 in vacuum). It is known that the normal modes in aninfinite
composite have the form of the Bloch waves. This applies to every Bloch-periodic function,
and in particular toP(r). However, the Bloch wave is not the normal modes of a semi-infinite
composite. Therefore, the polarization induced in such a composite is a superposition of the
Bloch wavePB(r) and an additional surface wavePS(r).

The first of these functions, as any Bloch wave, can be obtained by considering an infinite
periodic medium. But the second function is, strictly speaking, not a Bloch wave (it can be
viewed as a superposition of infinitely many evanescent Bloch waves [10]), since it does not
obey Bloch periodicity in the depth direction. It must be computed by considering the surface
explicitly, from the surface-wave equation, which, in the frequency domain, is of the form [21]
(here we use notations slightly different from those used in[21]):

PS(r) = χ
[

FS(r)+
∫

Ωtot

G(r , r ′)PS(r ′)d3r ′
]

. (1)

In this equation,r ∈ Ωtot, where the latter is the spatial region occupied by all inclusions,
χ = (3/4π)(ε − 1)/(ε + 2) is the coupling parameter,ε is the dielectric permittivity of the
inclusions at the working frequency, andFS(r) is a free term, which is completely determined
by the transmitted Bloch wave. The functionFS(r) was computed explicitly in Ref. [21]. We
find it useful to adduce this result here in a self-consistentand succinct, yet somewhat less
general from. Consider an incident plane wave

Ei = A i exp[i(k ixx+kizz)] , (2)

wherek i = x̂kix + ẑkiz is the incident wave vector which satisfiesk2
i = k2

ix +k2
iz = k2

0 = (ω/c)2.
Thus, referring to a rectangular reference planeXYZ, the plane of incidence isy = 0 and the
interface is located in the planez= 0. Then

FS(r) = 2π ih ∑
p6=0

exp(ikp · r)
exp[i (Qp −qz)h]−1

k2
0−kp ⊗kp

Qp
P̃B (kp) , (3)

wherep = (2π/h)(x̂nx+ ŷny) (nx,ny = 0,±1,±2, . . .) are the reciprocal lattice vectors with zero
component along thez-axis,⊗ denotes tensor product,qz is thez-component of the transmitted
Bloch wave vector (thex-component is the same as in the incident wave, so that we can write
q = x̂kiz + ẑqz), and

kp = x̂kix +p+ ẑQp , Qp =
√

k2
0− (x̂kix +p)2 . (4)



Finally, P̃B(k) is the Fourier transform of the transmitted Bloch wave of polarizationPB(r)
taken over an elementary cell. The transform is defined as follows. Consider an elementary cu-
bic cellCn centered at the pointrn. Then forr ∈Cn, we can writePB(r) = exp(iq · rn)Pcell(rn+
R), where the Cartesian components ofR satisfy−h/2≤ Rα ≤ h/2. The Fourier transform is
defined as

P̃B(k) =
1
h3

∫

Pcell(R)exp(ik ·R)d3R . (5)

The transmitted wave is completely defined by the geometry ofthe cell and the amplitude of
the incident wave. Specifically, it was shown in [21] that

A i = −2π ih
k2

0−k i ⊗k i

exp[i(kiz−qz)h]−1
P̃B(k i) . (6)

Equations (1)-(6) completely characterize the surface wave from the mathematical stand-
point. However, direct analysis of these equations is complicated and requires, at the very
least, finding the Bloch wave vectorq and the corresponding functionPcell(R) in an absorbing
medium. This is conceptually different from the similar problem encountered in conventional
photonic crystals composed of transparent and nondispersive dielectrics; in the latter case, the
problem can be reduced to a real symmetric eigenproblem whilst the problem encountered here
is not even Hermitian. In addition to computing the Bloch wave, one also faces the problem of
solving the integral equation Eq. (1), which can have resonant and therefore non-perturbative
solutions. Thus, instead of computing the surface wave directly, we have adopted in this paper
an approach based on computing the total field and polarization inside the composite, which
includes both the direct and reflected Bloch waves (in the case of a finite slab), as well as the
surface wave contributions.

Before proceeding, it is useful to point out one aspect of thesurface wave that is easily
amenable to analysis. If(x̂kix +p)2 > k2

0 ∀p 6= 0, then all the quantitiesQp in (3) have nonzero
imaginary parts. Therefore, the functionFS(r) decays exponentially away from the interface.
The same is true in this case for the surface wave of polarization, PS(r). In the homogenization
limit, the exponential decay is fast. Indeed, in the limith → 0, we have (forp 6= 0): Qp →
i|p|, kp → p+ iẑ|p|, exp[i (Qp −qz)h]−1→−1|g|h. With these limits taken into account, the
surface wave takes the following form:

FS(r) = −2π ih ∑
p6=0

k2
0− (p+ iẑp)⊗ (p+ iẑp)

p2 exp[(ip− ẑp) · r ] P̃B (p+ ẑp) . (7)

It can be seen thatES(r) decays exponentially on the scale ofh and is, therefore, evanescent, as
any SPP.

3. Effective medium theory

In this paper, we investigate the influence of the surface wave on the effective medium param-
eters. To this end, we use the non-asymptotic homogenization theory of Refs. [15–17]. This
theory uses accurate approximations of the exact electromagnetic fieldsb, h, e andd in the
composite to define the coarse-grained fieldsB, H, E, D. It should be emphasized that byb, h,
e, andd are not “truly microscopic”, e.g., atomic-scale fields, butrather rapidly varying fields
on the scale of tens of nanometers. These fields still obey macroscopic Maxwell’s equations
in the composite with spatially-varying material parameters. In contrast, the “macroscopic” or,
as we refer to them, coarse-grained fieldsB, H, E, D are obtained by appropriate interpolation
procedures and experience spatial variations on larger spatial scales. Note that in intrinsically-
nonmagnetic composites,b = h identically.



The key premise of the homogenization method of Refs. [15–17] is that the coarse-grained
fields must satisfy Maxwell’s equations everywhere in spaceincluding the sample boundary.
Consequently,E andH are sought ascurl-conforminginterpolants of the rapidly varying fields
e, b – i.e., as the interpolants which preserve the tangential continuity across all interfaces. At
the same time,B, D are sought as thediv-conforminginterpolants which preserve the normal
continuity across all interfaces. The procedure is closelyrelated to the theory of discrete Hodge
operators [22,23].

Once the coarse-grained fields have been computed, a linear mapL is sought between the
field pairs(E,H) and(D,B). In a suitable “canonical” basis, the operatorL becomes a gen-
eralized material tensor with a leading 6×6 block relating(D,B) to (E,H). Note thatL can
also contain a “nonlocal” block that relates the coarse-grained fields to field variations over a
cell [17].

The fieldse, d, h andb in the composite can be approximated by a superposition of suitable
basis functions [15,17].

The algorithmic steps for obtaining the generalized material tensor are as follows [15–17]:

1. Choose a set ofN approximating modes.

2. Choose a set ofMEH andMDB degrees of freedom (d.o.f.s) for the(E,H) and (D,B)
pairs, respectively. The d.o.f. will in general include themean values of the tangential
components ofE,H and of the normal components ofD,B; in addition, the mean values
of some derivatives ofE,H may be included. By increasing the number of d.o.f., one
trades higher accuracy for a greater level of nonlocality inthe characterization of the
material. Typically for 3D problems,MDB = 6 (three mean values for each of the two
fields) butMEH ≥ 6. Note that nonlocal d.o.f.s may be included in addition to the mean
values.

3. For each modem= 1,2, . . .M, compute its respective d.o.f. (the mean boundary values
of the tangential components ofE,H for this mode, etc.) Assemble the d.o.f. for theE,H
fields into themth column of matrixWEH and the d.o.f. for theD,B fields into themth
column of matrixWDB. Ultimately, matrixWEH is of dimensionMEH ×N and matrix
WDB is MDB×N (typically 3×N).

4. Find the extended material tensorη as a solution of (in general) the least squares (l.s.)
problem

ηWEH l .s.
= WDB ⇒ η = WDBWEH+ (8)

where ‘+’ denotes the Moore-Penrose pseudoinverse.

The procedure employed in this paper follows [15] and involves, as an additional step, volume
averaging of auxiliary material tensors defined pointwise,as explained in [15]. The approxi-
mations involved in this procedure and the errors incurred are described in detail in [15–17]. In
particular, the “in-the-basis error”γ that comes from the least squares fit of the material relation
(8) is defined as

γ = ‖WDB−ηWEH‖/‖WDB‖ (9)

where‖ · ‖ is a suitable matrix norm.

4. Numerical results

We consider a composite consisting of periodically-arranged cubic cells of periodh. A spherical
gold particle of radiusa< h/2 is located at the center of each cell; the rest of the cell is assumed
to be air. The sample under investigation is a plane-parallel slab that contains a finite numberN
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(a) (b) (c)

Fig. 1. (Left Panel) The simulation schematic. A metamaterial slab with a cubic lattice of
gold spheres is modeled as a stack of lattice cells, with periodic boundary conditions (PBC,
for normal incidence) or Bloch conditions (for oblique incidence) imposed on its bound-
aries as shown. The Perfectly Matched Layers (PML) are standard in FDTD simulations.

Fig. 2. (Right Panel) Color plot of the electric field forλ = 20h/3; h = 80 nm. (a) Real
part of the original field; (b) real part of the Bloch waves; (c) absolute value of the surface
wave.

of cells in thez-direction but is infinite in thex- andy-directions. The crystallographic axes of
the composite coincide with the axes of the laboratory framexyz.

Simulations were performed using the public-domain FDTD package MEEP [24]. Since we
consider the case when the slab is illuminated by an infinite-front plane wave that is incident
on the slab in the+z direction (Fig. 1), the electromagnetic fields inside the composite sat-
isfy Bloch-periodic boundary conditions. Therefore, the computational domain is effectively
reduced toN elementary cells arranged as shown in Fig. 1(a). In all simulations reported below,
the radius of the sphere isa = 20 nm, the lattice unit ish = 80 nm, so that the filling factor is
f = 4πa3/3h3 ≈ 0.07. We consider the spectral interval 300 nm≤ λ ≤ 900 nm. The unit of the
FDTD cubic grid is∆ = 2.857 nm. In MEEP, boundary conditions at the exterior boundary are
enforced by adding perfectly matched layers (PMLs). Additionally, MEEP allows one to apply
Bloch-periodic boundary conditions in thex- andy-directions. The Lorentz-Drude model with
six pole expansion terms is used for modeling gold particles. The material parameters are taken
from [25].

The basis set used in this paper contained twelve functions (6 incidence directions,±x̂, ±ŷ,
and±ẑ and two transverse polarizations for each incidence direction). One can, of course, take
advantage of the symmetries of the lattice cell and reduce the number of the actual FDTD simu-
lations. For a cubic lattice of spheres, only one basis function needs to be computed numerically
for a cell in the bulk and four functions for a cell at the surface; other basis functions can be
obtained just by symmetry and rotation. In general, the number of basis functions needed to
obtain an accurate homogenization result and to quantify the errors incurred may be greater
than 12.

The total field is a superposition of a surface wave and Bloch waves. To picture the surface
wave – or equivalently, to remove the Bloch components from the total field – we follow a
procedure similar to [26]. More specifically, we considered13 layers of gold particles with the
geometric parameters specified above and found the best fit ofthe formE0exp(iKBzn) to the



Fig. 3. Effective parameters. Solid blue line: Lewin’s theory; red triangles: cubic cell lo-
cated in the center of anL = 9 slab (l = 5); green diamonds: cubic cell located in the center
of anL = 5 slab (l = 3); cyan circles: cubic cell at the surface of anL = 5 slab (l = 1).

field valuesEy at the cell boundariesz1,z2, . . .z7 of the seven inner layers. Color plots of the
total field, its Bloch component and the surface wave are pictured in Fig. 2 forλ = 20h/3. The
slab is illuminated with a plane wave propagating along the+z direction. As seen in Fig. 2(c),
the surface wave decays rapidly in the direction normal to the surface.

We next consider a composite consisting ofL = 5 layers and compare the effective parame-
ters of a cell adjacent to the surface (layerl = 1; cyan circles in Fig. 3) with those of a cell in
the center of the slab (l = 3; green diamonds in Fig. 3). An appreciable difference between the
two cases is observed, which indicates a noticeable effect of the surface wave in this case. The
”in-the-basis error”γ (9) is plotted in Fig. 3(d).

Figure 3 also addresses a somewhat different question. Namely, we assume that the “central”
cell is used to compute the effective parameters and wish to estimate the total number of layers
for which the parameters obtained in this manner accuratelyrepresent the bulk material. In other
words, we want to know the minimum value ofL for which the effective parameters computed
using the “central” cell no longer depend onL. The effective parameters shown in Fig. 3 for
L = 5 (green diamonds) andL = 9 (red triangles) are also compared to those obtained from
Lewin’s theory [27] (solid blue line). The discrepancy between theL = 5 andL = 9 cases is
small, which indicates that, for the parameters considered, L = 5 is sufficient to represent bulk
samples.

Applicability of the effective parameter description to predicting the transmission (T) and
reflection (R) coefficients of a composite sample is illustrated in Fig. 4 where we compareT
andRof a homogenized slab to the “brute force” FDTD simulations in the composite structure



Fig. 4. The absolute values (top) and the phases (bottom) of the transmission and reflection
coefficients for a five-layer slab of gold spheres. Triangles: parameters from Lewin’s theory;
squares: parameters from our procedure; solid lines: FDTD. See text for the geometric and
physical parameters of the material.

with spherical inclusions present. We used the effective parameters obtained by our theory and
also by Lewin’s theory (see plots of the respective effective parameters in Fig. 3). When our
homogenization procedures are used, the overall agreementis quite good (this has already been
observed in [16]). These results were obtained with bulk parameters only, which indicates that
the surface wave does not significantly affect transmissionand reflection in the case considered;
however, this may not be true in general, e.g., in the case of curved boundaries. Lewin’s the-
ory [27] predicts significantly smaller magnetic effects compared to our homogenization result.
More specifically, for small vacuum wave numbersk0, Lewin’s prediction for the permeability
deviates from unity asymptotically asfvk2

0n2
pa2/10, wherefv andnp are the volume fraction

and the index of refraction of the particles. This correction tends to be relatively small for the
parameters considered, as was already noted [16]. For the absolute values of the transmission
and reflection coefficients, Lewin’s results are less accurate than ours (Fig. 4, top panel). How-
ever, Lewin’s parameters predict the phases of the TR coefficients quite well even for shorter
wavelengths (Fig. 4, bottom panel). We conjecture that Lewin’s theory captures correctly the
first nonvanishing correction to the refractive index of themedium but not necessarily to the
impedance. Then the above result can be explained by noting that the phases ofR and, es-



pecially, of T can be very sensitive to the refractive index but can in some cases tolerate a
moderate error in the impedance.

5. Summary and discussion

Our homogenization procedure [15–17] is based on the analysis of electromagnetic fields in-
side the composite and, as such, allows one to distinguish between the corresponding effective
parameters in the bulk and near the surface. We anticipate that application of these methods will
prove instrumental in developing accurate homogenizationmodels needed to design structures
and devices with periodic electromagnetic composites. Although the qualitative difference be-
tween surface and bulk parameters has been previously noted[2,4,8,9,14] and could have been
reasonably anticipated, the methods developed in the present paper can be used for rigorous
quantitative analysis of the problem.

Surface effects and waves are quite complex and material-dependent, but the paper shows
that it is possible to rigorously and quantitatively distinguish between the surface and bulk pa-
rameters, or even introduce position-dependent parameters. This approach to homogenization
allows one to improve the accuracy of analysis in two different ways. First, under the constraints
of local approximations of parameters, one can solve Maxwell’s equations numerically using
standard methods but with position-dependent parameter tensors. Secondly, extended material
tensors that represent nonlocal effects [17] could be used.While the onset of spatial dispersion
(nonlocality) is expected to be detrimental for some of the applications that are currently being
discussed in the literature (most notably, super-resolution and cloaking), numerical consider-
ation of nonlocality may be worthwhile for other applications of electromagnetic composites,
particularly in the situations where full-scale simulations of the microstructure are prohibitively
expensive. We note, however, that the apparent “nonlocal” behavior or the constitutive param-
eters that arises in the theory of homogenization should notbe viewed as a direct or complete
physical analog of the well-known nonlocal effects in natural materials, such as optical activity
in sugar solutions, etc. The reason is that physical nonlocality is truly a microscopic effect that
cannot be understood within the macroscopic Maxwell theory. In contrast, fields in metama-
terials (with given intrinsic parameters of its constituents) are fully describable by Maxwell’s
equations.

Acknowledgments

This research was supported in part by the Research Grants Council of Hong Kong (GRF
713011 and GRF 712612), National Science Foundation of China (NSFC 61271158), HKU
201102160033, and by the University Grants Council of Hong Kong (AoE/P-04/08). IT
and VM acknowledge support from the US National Science Foundation under Grant
DMS1216970.


