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Abstract:  Reflection and transmission of electromagnetic waves at the
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interplay of these two contributions using three-dimenalofull-wave
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1. Introduction

The problem of homogenization of periodic electromagnetimposites has proved to be quite
complicated and is currently the subject of lively resedfcty]. In many applications and sim-
ulations reported in the literature, the composite has Heeadl shape of a slab with elementary
cells arranged on a cubic lattice with the pertod.et us assume that a slab of sufficiently large
width L (that is,L = NhwhereN > 1) can be accurately described by some effective medium
parameters. On the other hand, for a slab containing onlyayee of elementary celldN = 1),
this description is expected to be be substantially diffece inapplicable. The composites used
in practice will, most likely, have some intermediate vabfeN. This raises the questions of
how large the number of elementary layers should be for teetfe medium description to be
applicable, what errors are incurred by using this desoriptor a given finiteN, and whether
the effective medium parameters can dependNoiit should be noted that many simulations
have revealed that the width effects are unimportant insstaimtaining only a few layers of
elementary cells [8-10]. These findings, however, are lgrgeuristic. It is desirable, there-
fore, to gain some qualitative understanding of the intrfletween the sample width and the
accuracy of the effective medium description.

The problem has been considered previously in a number digatibns. In Ref. [11] it was
shown that material parameters retrieved from the reflactiod transmission coefficients of
a composite slab (by means of the so-called S-matrix retrimethod [12, 13]) can, in fact,
depend appreciably on the number of elementary cell laysesl.uin particular, parameters
obtained for a single layer are inapplicable to a multilesteucture. Moreover, these parameters
can depend on the angle of incidence of the illuminating @lasave and therefore cannot
always be used in the traditional sense as characteridtitte anaterial itself independent of



the illumination conditions (see also relevant work in R8f9, 14]).

In this paper, instead of using the transmission and reflectata for parameter retrieval, we
investigate the problem by looking at the electromagnegici$i excited inside the composite.
To this end, we use the homogenization methodology of R&$s-17]. In these references, the
effective parameters are derived from the electromagfiefiits computed inside a given cell.
In most practical applications, this computation is donenarically because analytical solu-
tions are known only for a few rare special cases (e.g., emefkional periodically-layered
medium). The advantage of this homogenization approachaisit allows one to study the
effective parameters not only as functions of the numbeayéils, but also as functions of po-
sition relative to the slab surfaces. It is, in fact, the kbyective of this paper to demonstrate
that the effective parameters of surface layers can be dkfimttzpendently from the bulk pa-
rameters and may differ from the latter. To keep numericalutations and analysis relatively
simple, we focus exclusively on the surface effects and d@owsider a number of other rel-
evant issues. In particular, even though the theory of R&%.17] applies to any illumination
conditions, in the present paper we consider normal incidemly. Correspondingly, the ef-
fective parameters computed below represent the mediunratety for a normally-incident
plane wave, but not necessarily for other types of illumorat The effective parameters we
compute are guaranteed to apply to all types of illuminatorrsufficiently long waves, but this
may cease to be true for shorter waves. We expect that thalbpaispersive behavior (that
is, inapplicability of a purely local effective medium thgptakes place in the spectral regions
where the magnetic permeability is noticeably differentirunity, e.g., fod /h <5[8,18,18]
(his the lattice period, see below). We note that the practitiity of nonlocal parameters, if
these can be reasonably introduced at all, is debatableiraady event, the onset of nonlo-
cality tends to destroy all physical effects that enablefteguently discussed applications of
metamaterials, such as super-resolution. We, thereforeptlinvestigate the short-wavelength
spectral region or the effects of nonlocality in detail, bather focus on the influence of the
surface wave, which is present at both long and short waves.

We argue that the presence of a surface wave explains whyitfexs and bulk parameters
are different and why the thickness of the sample affecteffeetive parameters obtained us-
ing the traditional transmission/reflection retrieval €léxponential decay of the surface wave
away from the interface helps to explain why the dependeh@am@mmeters on the thickness
of the slab is appreciable only for relatively thin sampkspbserved in several previous stud-
ies [2,4,8,9,14]. We note that the surface wave exists dtrestlack of discrete translational in-
variance in finite composites, and is conceptually simidesurface plasmon polaritons (SPPs),
even though the typical physical realization of SPPs is sdmaé different: the SPPs are con-
ventionally excited on a metallic or polaritonic (e.g. SETyface separating two media with the
opposite signs of the real part of

A qualitative connection can be made between our study édseiparameters and transition
layers whose importance has been emphasized by Simovgki[24); he traces this subject
back to the work of Drude. Our homogenization model allows tm rigorously define and
guantify electromagnetic parameters of the transitioetay

The remainder of the paper is organized as follows. In Sece drefly recount the theory
of surface waves in finite, periodic, three-dimensional poasites. In Sec. 3 we describe the
homogenization approach used by us. In Sec. 4 we presentdimeresults of this paper and,
finally, Sec. 5 contains a brief discussion.

2. Surface waves —theory

In the case of smooth interfaces, SPPs can be excited only leyanescent incident wave,
i.e., from the near-field, or from a medium with a higher refiae index (in the Kretschmann



geometry [19]). However, in periodically modulated med®Ps can be exited by both prop-
agating and evanescent incident waves and are, therefaeoidable. The excitation of SPPs
in three-dimensional composites can be described in timedinsork of the generalized Ewald-
Oseen theorem [20,21]. The classical Ewald-Oseen thedegesghat any wave incident on an
interface with a homogeneous medium creates a wave of patem; this, in turn, produces the
extinction electromagnetic wave (which cancels exactyyititident wave) and a transmitted
wave (which has exactly the same spatial dependence asvYieeoiaolarization). The physical
picture of refraction is thus made self-consistent fromrtheroscopic point of view [21].

A similar situation exists in periodic composites but withimnportant variation. In this case,
the field in a three-dimensional semi-infinite compositesists of a Bloch wave, an extinction
wave, and an additional term, which is, under certain ciomst[stated before Eq. (7) below],
spatially localized near the interface. This term can berpreted as an SPP or as a surface
guided wave. Let us assume for simplicity that the compasitpiestion consists of inclusions
periodically arranged in the half-spaze 0. An incident wave would induce a polarization field
P(r) inside the inclusionsR = 0 in vacuum). It is known that the normal modes iniafinite
composite have the form of the Bloch waves. This applies &yeBloch-periodic function,
and in particular td°(r). However, the Bloch wave is not the normal modes of a semiitefi
composite. Therefore, the polarization induced in suchrapmsite is a superposition of the
Bloch wavePg(r) and an additional surface watg(r).

The first of these functions, as any Bloch wave, can be olddiyeconsidering an infinite
periodic medium. But the second function is, strictly spegknot a Bloch wave (it can be
viewed as a superposition of infinitely many evanescent Bloaves [10]), since it does not
obey Bloch periodicity in the depth direction. It must be qurted by considering the surface
explicitly, from the surface-wave equation, which, in tihequency domain, is of the form [21]
(here we use notations slightly different from those use¢®it]):

Ps(r)ZX{Fs(r)f/;)t G(r,r)Ps(r) | M

In this equationy € Qi, Where the latter is the spatial region occupied by all isidos,

X = (3/4m)(e —1)/(e + 2) is the coupling parameteg, is the dielectric permittivity of the
inclusions at the working frequency, akd(r) is a free term, which is completely determined
by the transmitted Bloch wave. The functié®(r) was computed explicitly in Ref. [21]. We
find it useful to adduce this result here in a self-consisterd succinct, yet somewhat less
general from. Consider an incident plane wave

Ei = Aiexpi(kixX+kiz2)] , (2)

wherek; = Xkix + 2k, is the incident wave vector which satisfis= k2 + k2 = k% = (w/c)?.
Thus, referring to a rectangular reference plaf¥¢z the plane of incidence ig= 0 and the
interface is located in the plarze= 0. Then

. exp(ikp-r)  Ks—kp®@Kp =
F = 2mih - P
=20 ) el Q-1 QP

wherep = (2r1/h) (Xny+yny) (nx,ny =0,+1,42,...) are the reciprocal lattice vectors with zero
component along theaxis,® denotes tensor produci; is thez-component of the transmitted
Bloch wave vector (th&-component is the same as in the incident wave, so that we G w
q = Xkiz +20;), and

kp = Xkix +Pp+2Qp , Qp = \/k§— (Rkix +p)? . 4

(kp) ’ (3)



Finally, Pg(k) is the Fourier transform of the transmitted Bloch wave ofapiaationPg(r)
taken over an elementary cell. The transform is defined é@a#isl Consider an elementary cu-
bic cellC,, centered at the poimt,. Then forr € C,, we can writePg(r) = exp(ig - rn)Pcen(rn+
R), where the Cartesian componentso$atisfy—h/2 < Ry < h/2. The Fourier transform is
defined as

B (k) — h—13/Pce||(R)exp(ik~R)d3R. )

The transmitted wave is completely defined by the geometthefcell and the amplitude of
the incident wave. Specifically, it was shown in [21] that

 Rewek s
27 i (ke — g =1 B - ©

Equations (1)-(6) completely characterize the surfaceewfaom the mathematical stand-
point. However, direct analysis of these equations is caraf@d and requires, at the very
least, finding the Bloch wave vectgrand the corresponding functidte(R) in an absorbing
medium. This is conceptually different from the similar piem encountered in conventional
photonic crystals composed of transparent and nondisgedglectrics; in the latter case, the
problem can be reduced to a real symmetric eigenproblenstithié problem encountered here
is not even Hermitian. In addition to computing the Bloch wjaone also faces the problem of
solving the integral equation Eq. (1), which can have resbaad therefore non-perturbative
solutions. Thus, instead of computing the surface wavectiyreve have adopted in this paper
an approach based on computing the total field and polasizatiside the composite, which
includes both the direct and reflected Bloch waves (in the cés finite slab), as well as the
surface wave contributions.

Before proceeding, it is useful to point out one aspect ofdhdace wave that is easily
amenable to analysis. (Rkix + p)? > k% Vp # 0, then all the quantitie®y in (3) have nonzero
imaginary parts. Therefore, the functiéiz(r) decays exponentially away from the interface.
The same is true in this case for the surface wave of poléiza®s(r). In the homogenization
limit, the exponential decay is fast. Indeed, in the litmit-> 0, we have (fop # 0): Qp —
ilpl, kp — p+iz|p|, expli (Qp — @) h] — 1 — —1|g|h. With these limits taken into account, the
surface wave takes the following form:

A=

exp[(ip—2p) -r]Pe (p+2p) . @)

— omh ; p+lzp (P+izp)

It can be seen th&is(r) decays exponentially on the scalehdnd is, therefore, evanescent, as
any SPP.

3. Effective medium theory

In this paper, we investigate the influence of the surfacesveavthe effective medium param-
eters. To this end, we use the non-asymptotic homogeniz#teory of Refs. [15-17]. This
theory uses accurate approximations of the exact elecgpeatie fieldsb, h, e andd in the
composite to define the coarse-grained fiddsl, E, D. It should be emphasized that byh,

e, andd are not “truly microscopic”, e.g., atomic-scale fields, bather rapidly varying fields
on the scale of tens of nanometers. These fields still obeyasempic Maxwell's equations
in the composite with spatially-varying material paramgtén contrast, the “macroscopic” or,
as we refer to them, coarse-grained fieBj$H, E, D are obtained by appropriate interpolation
procedures and experience spatial variations on largeiasgaales. Note that in intrinsically-
nonmagnetic compositels,= h identically.



The key premise of the homogenization method of Refs. [1pislfhat the coarse-grained
fields must satisfy Maxwell's equations everywhere in spactiding the sample boundary.
ConsequentlyE andH are sought asurl-conforminginterpolants of the rapidly varying fields
e, b —i.e., as the interpolants which preserve the tangentiatiroity across all interfaces. At
the same timeB, D are sought as thdiv-conforminginterpolants which preserve the normal
continuity across all interfaces. The procedure is closelgted to the theory of discrete Hodge
operators [22, 23].

Once the coarse-grained fields have been computed, a lirsgaiAris sought between the
field pairs(E,H) and(D,B). In a suitable “canonical” basis, the operatgtbecomes a gen-
eralized material tensor with a leading«@ block relating(D, B) to (E,H). Note thatZ can
also contain a “nonlocal” block that relates the coarséngicfields to field variations over a
cell [17].

The fieldse, d, h andb in the composite can be approximated by a superpositionitzitde
basis functions [15, 17].

The algorithmic steps for obtaining the generalized matéeinsor are as follows [15-17]:

1. Choose a set & approximating modes.

2. Choose a set dfIfH and MP®B degrees of freedom (d.o.f.s) for ti{g,H) and (D,B)
pairs, respectively. The d.o.f. will in general include tinean values of the tangential
components oE, H and of the normal components Bf B; in addition, the mean values
of some derivatives oE,H may be included. By increasing the number of d.o.f., one
trades higher accuracy for a greater level of nonlocalitghi@ characterization of the
material. Typically for 3D problemayi®® = 6 (three mean values for each of the two
fields) butME" > 6. Note that nonlocal d.o.f.s may be included in additiorhi® inean
values.

3. For each moden=1,2,...M, compute its respective d.o.f. (the mean boundary values
of the tangential components BfH for this mode, etc.) Assemble the d.o.f. for theH
fields into themth column of matrixWEH and the d.o.f. for thé®, B fields into themth
column of matrixWP8B, Ultimately, matrixWEH is of dimensionMEH x N and matrix
WDB js MPB » N (typically 3x N).

4. Find the extended material tengpras a solution of (in general) the least squares (I.s.)
problem

nWEH LswbB n = WPBWEH+ ®)
where ‘+' denotes the Moore-Penrose pseudoinverse.

The procedure employed in this paper follows [15] and ingshas an additional step, volume
averaging of auxiliary material tensors defined pointweaggexplained in [15]. The approxi-
mations involved in this procedure and the errors incurreddascribed in detail in [15-17]. In
particular, the “in-the-basis erroy'that comes from the least squares fit of the material relation
(8) is defined as

y = [IWPB — nwWEH|| /WP ©)

where|| - || is a suitable matrix norm.

4. Numerical results

We consider a composite consisting of periodically-areghgubic cells of periodl. A spherical
gold particle of radius < h/2 is located at the center of each cell; the rest of the cefissimed
to be air. The sample under investigation is a plane-pasdfib that contains a finite numbr



Fig. 1. (Left Panel) The simulation schematic. A metamaterial slab with & ¢attice of

gold spheres is modeled as a stack of lattice cells, with periodic boundadjtioms (PBC,
for normal incidence) or Bloch conditions (for oblique incidence) ingzben its bound-
aries as shown. The Perfectly Matched Layers (PML) are standafdTiDFsimulations.

Fig. 2. (Right Panel) Color plot of the electric field far=20h/3; h = 80 nm. (a) Real
part of the original field; (b) real part of the Bloch waves; (c) abtolalue of the surface
wave.

of cells in thez-direction but is infinite in thex- andy-directions. The crystallographic axes of
the composite coincide with the axes of the laboratory fraye

Simulations were performed using the public-domain FDTDBkage MEEP [24]. Since we
consider the case when the slab is illuminated by an infinitet plane wave that is incident
on the slab in thetz direction (Fig. 1), the electromagnetic fields inside thenposite sat-
isfy Bloch-periodic boundary conditions. Therefore, trmmputational domain is effectively
reduced to\ elementary cells arranged as shown in Fig. 1(a). In all sithers reported below,
the radius of the sphere &= 20 nm, the lattice unit i& = 80 nm, so that the filling factor is
f= 47'[613/3h3 ~ 0.07. We consider the spectral interval 300 gid < 900 nm. The unit of the
FDTD cubic grid isA = 2.857 nm. In MEEP, boundary conditions at the exterior boundag
enforced by adding perfectly matched layers (PMLs). Additlly, MEEP allows one to apply
Bloch-periodic boundary conditions in tixe andy-directions. The Lorentz-Drude model with
six pole expansion terms is used for modeling gold partidiée material parameters are taken
from [25].

The basis set used in this paper contained twelve funct®ie{dence directionstX, £,
and=+z and two transverse polarizations for each incidence daeltOne can, of course, take
advantage of the symmetries of the lattice cell and reduzatimber of the actual FDTD simu-
lations. For a cubic lattice of spheres, only one basis fancteeds to be computed numerically
for a cell in the bulk and four functions for a cell at the sedaother basis functions can be
obtained just by symmetry and rotation. In general, the remab basis functions needed to
obtain an accurate homogenization result and to quantdyetinors incurred may be greater
than 12.

The total field is a superposition of a surface wave and Bloahes. To picture the surface
wave — or equivalently, to remove the Bloch components fromtbtal field — we follow a
procedure similar to [26]. More specifically, we considet@&dayers of gold particles with the
geometric parameters specified above and found the besttfiedbrm Epexp(iKgz,) to the
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Fig. 3. Effective parameters. Solid blue line: Lewin’s theory; red triasgcubic cell lo-
cated in the center of dn=9 slab { = 5); green diamonds: cubic cell located in the center
of anL = 5 slab ( = 3); cyan circles: cubic cell at the surface oflas- 5 slab ( = 1).

field valuesEy at the cell boundaries;, z,, . ..z; of the seven inner layers. Color plots of the
total field, its Bloch component and the surface wave areigctin Fig. 2 forA =20h/3. The
slab is illuminated with a plane wave propagating alongzalirection. As seen in Fig. 2(c),
the surface wave decays rapidly in the direction normal ¢éostirface.

We next consider a composite consistind-of 5 layers and compare the effective parame-
ters of a cell adjacent to the surface (layet 1; cyan circles in Fig. 3) with those of a cell in
the center of the slab & 3; green diamonds in Fig. 3). An appreciable difference ketwthe
two cases is observed, which indicates a noticeable effébecsurface wave in this case. The
"in-the-basis error'y (9) is plotted in Fig. 3(d).

Figure 3 also addresses a somewhat different question. Mameassume that the “central”
cell is used to compute the effective parameters and wisktimate the total number of layers
for which the parameters obtained in this manner accuraggiesent the bulk material. In other
words, we want to know the minimum value lofor which the effective parameters computed
using the “central” cell no longer depend anThe effective parameters shown in Fig. 3 for
L =5 (green diamonds) and = 9 (red triangles) are also compared to those obtained from
Lewin’s theory [27] (solid blue line). The discrepancy beenm theL =5 andL = 9 cases is
small, which indicates that, for the parameters considdred5 is sufficient to represent bulk
samples.

Applicability of the effective parameter description teegdicting the transmission and
reflection R) coefficients of a composite sample is illustrated in Fig. #eve we compard@
andR of a homogenized slab to the “brute force” FDTD simulatiamghie composite structure
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Fig. 4. The absolute values (top) and the phases (bottom) of the traimmassl! reflection
coefficients for a five-layer slab of gold spheres. Triangles: patensi&om Lewin’s theory;
squares: parameters from our procedure; solid lines: FDTD. Se#teake geometric and
physical parameters of the material.

with spherical inclusions present. We used the effectivampaters obtained by our theory and
also by Lewin’s theory (see plots of the respective effecparameters in Fig. 3). When our
homogenization procedures are used, the overall agreesnguite good (this has already been
observed in [16]). These results were obtained with bullapesters only, which indicates that
the surface wave does not significantly affect transmisarahreflection in the case considered;
however, this may not be true in general, e.g., in the casewied boundaries. Lewin’s the-
ory [27] predicts significantly smaller magnetic effectsmqmared to our homogenization result.
More specifically, for small vacuum wave numbé&gs Lewin’s prediction for the permeability
deviates from unity asymptotically askjn2a?/10, wheref, andn; are the volume fraction
and the index of refraction of the particles. This correttiends to be relatively small for the
parameters considered, as was already noted [16]. For swab values of the transmission
and reflection coefficients, Lewin’s results are less adeutsan ours (Fig. 4, top panel). How-
ever, Lewin’s parameters predict the phases of the TR caafti quite well even for shorter
wavelengths (Fig. 4, bottom panel). We conjecture that b&satheory captures correctly the
first nonvanishing correction to the refractive index of thedium but not necessarily to the
impedance. Then the above result can be explained by ndtatgthie phases dR and, es-



pecially, of T can be very sensitive to the refractive index but can in soaseg tolerate a
moderate error in the impedance.

5. Summary and discussion

Our homogenization procedure [15-17] is based on the asaly®lectromagnetic fields in-
side the composite and, as such, allows one to distinguistelea the corresponding effective
parameters in the bulk and near the surface. We anticipatafiplication of these methods will
prove instrumental in developing accurate homogenizatiodels needed to design structures
and devices with periodic electromagnetic compositeiAlgh the qualitative difference be-
tween surface and bulk parameters has been previously [ie®, 9,14] and could have been
reasonably anticipated, the methods developed in the miresg@er can be used for rigorous
guantitative analysis of the problem.

Surface effects and waves are quite complex and matenmrtkent, but the paper shows
that it is possible to rigorously and quantitatively digiish between the surface and bulk pa-
rameters, or even introduce position-dependent paramekbis approach to homogenization
allows one to improve the accuracy of analysis in two diffésgays. First, under the constraints
of local approximations of parameters, one can solve Maxwell’s ggjus. numerically using
standard methods but with position-dependent parametsots. Secondly, extended material
tensors that represent nonlocal effects [17] could be uAkiile the onset of spatial dispersion
(nonlocality) is expected to be detrimental for some of theli@ations that are currently being
discussed in the literature (most notably, super-resmiuéind cloaking), numerical consider-
ation of nonlocality may be worthwhile for other applicat®of electromagnetic composites,
particularly in the situations where full-scale simulatsoof the microstructure are prohibitively
expensive. We note, however, that the apparent “nonlocgtabior or the constitutive param-
eters that arises in the theory of homogenization shouldaatiewed as a direct or complete
physical analog of the well-known nonlocal effects in natunaterials, such as optical activity
in sugar solutions, etc. The reason is that physical nofitpésitruly a microscopic effect that
cannot be understood within the macroscopic Maxwell thelorgontrast, fields in metama-
terials (with given intrinsic parameters of its constitt®rare fully describable by Maxwell’s
equations.

Acknowledgments

This research was supported in part by the Research GrantscCof Hong Kong (GRF
713011 and GRF 712612), National Science Foundation of &CfNSFC 61271158), HKU
201102160033, and by the University Grants Council of Horandk (AoE/P-04/08). IT
and VM acknowledge support from the US National Science Bation under Grant
DMS1216970.



