
Title Development of a Bidirectional Pedestrian Stream Model with an
Oblique Intersecting Angle

Author(s) Xie, S; Wong, SC; Lam, WHK; Chen, A

Citation Journal of Transportation Engineering, 2013, v. 139 n. 7, p. 678-
685

Issued Date 2013

URL http://hdl.handle.net/10722/185776

Rights Journal of Transportation Engineering. Copyright © American
Society of Civil Engineers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38025826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 
 

DEVELOPMENT OF A BI-DIRECTIONAL PEDESTRIAN STREAM 1 

MODEL WITH OBLIQUE INTERSECTING ANGLE 2 

Siqi XIE1; S.C. WONG, M. ASCE;2 William H.K. LAM3; Anthony CHEN4 3 

 4 

Abstract 5 

This study establishes a mathematical model that can represent the conflicting effects of two 6 

pedestrian streams with an oblique intersecting angle in a large crowd. In a previous study, a 7 

controlled experiment in which two streams of pedestrians were asked to walk in designated 8 

directions was used to model the bi-directional pedestrian stream of certain intersecting angles. In this 9 

study, we revisit that problem and apply the Bayesian inference approach to calibrate an improved 10 

model with the controlled experiment data. We also collected pedestrian movement data from a busy 11 

crosswalk using a video observation approach. The two sets of data are used separately to calibrate 12 

our proposed model. With the calibrated model, we study the relationship between speed, density, and 13 

flow in both the reference and conflicting streams, and predict how these factors affect the 14 

interactions of moving pedestrian streams. We find that the speed of one stream not only decreases 15 

with its total density, but it also decreases with the ratio of its flow in relation to the total flow, i.e., the 16 

speed of the pedestrians decreases if their stream changes from the major to the minor stream. We 17 

also observe that the maximum disruption induced by pedestrian flow from an intersecting angle 18 

occurs when the angle is near 135. 19 
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CE Database subject headings: Pedestrians; Traffic surveys; Bayesian analysis; Measurement; 20 

Experimentation. 21 

Keywords: Pedestrian stream model; Bi-directional interactions; Empirical studies; Bayesian 22 

inference 23 

 24 

Introduction 25 

Walking is an environmentally friendly mode of transportation. A good understanding of 26 

pedestrian activities and the effective planning of walking facilities are particularly important for 27 

densely populated Asian cities such as Hong Kong. Previous studies have used observational surveys 28 

and controlled experiments to examine one-dimensional and bi-directional pedestrian streams. Video 29 

recording has been a widely applied survey method in these studies, as it is economic, convenient, and 30 

has relatively high accuracy. The video provides a real-time record of the pedestrian movements from 31 

which it is possible to extract the position of each individual pedestrian at any moment. Bi-directional 32 

pedestrian streams are more common in daily life than one-dimensional pedestrian movements, but 33 

very few previous studies have modeled bi-directional streams. Hence, in this study, we video 34 

recorded the pedestrian movements at a busy crosswalk in Hong Kong and extracted relevant data to 35 

develop a mathematical model that reflects the relationships between macroscopic quantities related 36 

to bi-directional pedestrian flow, including the speed, density, flow, and the intersecting angle 37 

between the reference stream and the conflicting stream.  38 

Since Hughes (2002) proposed equations governing two-dimensional pedestrian flow and pointed 39 

out the importance of the conflicting effect induced by the interactions of bi-directional pedestrian 40 

streams, studies have increasingly focused on bi-directional pedestrian flows. Compared to uni-41 

directional pedestrian flows, bi-directional flows are more complicated but also more commonly 42 

found in various walking facilities such as crosswalks, metro stations and even shopping malls. Lam 43 

et al. (2002, 2003) investigated bi-directional pedestrian movement in several walking facilities in 44 

Hong Kong, including signalized crosswalks in various areas. Ye et al. (2008) conducted an 45 
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observational experiment on several walking facilities in Shanghai, including a two-way passageway. 46 

In addition to observational surveys, controlled experiments have been widely used in the study of bi-47 

directional pedestrian behavior, as they can be designed to cover the full range of model parameters 48 

and provide data under a variety of conditions. 49 

However, most experimental studies on bi-directional pedestrian flows have only considered the 50 

counter-flow case, in which two streams of pedestrians walk toward each other. Some experiments 51 

have involved crossing flows with two perpendicular streams, such as those conducted by Daamen 52 

and Hoogendoorn (2003) and Helbing et al. (2005). Moreover, Wong et al. (2010) and Ando et al. 53 

(1988) looked at cases with an oblique intersecting angle between two streams of pedestrians, which 54 

are situations rarely discussed in the literature. 55 

Many researchers have investigated the counter-flow case using data from studies of uni-56 

directional pedestrian flows. Daamen and Hoogendoorn (2003) and Kretz et al. (2006a) also 57 

performed experiments for pedestrian counter flow in corridors of various widths. Kretz et al. (2006b) 58 

found that the performance of counter flow, in terms of macroscopic quantities such as passing time, 59 

speed, and flux, is not necessarily lower than that of situations without counter flow. They pointed out 60 

that pedestrians are able to increase their efficiency in using space to a certain degree, and thus 61 

compensate for the existence of counter flow. Another interesting finding was the phenomena of lane 62 

formation, whereby the pedestrians in the experiment always chose right-hand traffic. As this 63 

experiment was conducted in Germany and most of the participants were German, the authors 64 

suggested that it would be useful to perform similar experiments in countries with left-hand traffic, to 65 

check the correlation between vehicular traffic rules and pedestrian behavior. In terms of lane-66 

formation, Helbing et al. (2005) observed similar self-organization phenomena in a series of 67 

experiments for bi-directional pedestrian flows in bottlenecks with differing widths. 68 

However, the pedestrian streams in these experiments were mainly opposite to each other, and 69 

there was usually a 180 angle between the two streams. The investigation by Ando et al. (1988) was 70 

one of the few studies on bi-directional pedestrian flow to include an oblique intersecting angle. Jiang 71 
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et al. (2009) proposed a reactive dynamic continuum–user equilibrium model to simulate bi-72 

directional pedestrian flows. Xiong et al. (2011) proposed a high-order computational scheme for the 73 

Jiang et al. model that proved more efficient than the first-order methods. These two studies, although 74 

they involved little empirical data, considered the intersecting angle between the two streams, which 75 

provided useful information for further studies on the influence of intersecting angles in bi-directional 76 

pedestrian flows. Recognizing the limitations of previous research on this problem, Wong et al. (2010) 77 

conducted controlled experiments to address them. 78 

In their controlled experiment, Wong et al. (2010) used a modified form of Drake’s model (1967) 79 

for one-dimensional traffic. In that model, the density of the streams and the intersecting angle are 80 

independent variables. As one of the few studies on bi-directional pedestrian streams with an oblique 81 

intersecting angle, the study advanced our understanding of bi-directional pedestrian streams. 82 

However, in re-evaluating the study, we found that the model could be further modified to better 83 

describe the bi-directional pedestrian movements if it included a key variable. 84 

This paper presents the formulation of the improved model and compares that model with the 85 

original version. We also collected a new set of data at a crosswalk in Hong Kong to verify the 86 

improved model. In a real-world situation, pedestrians have their own destinations rather than 87 

assigned directions, and the pedestrians’ demographic composition is a better reflection of reality than 88 

the student sample used in the controlled experiments. In the next section of this paper, we describe 89 

the data collection in this circumstance, and then demonstrate the formulation of the improved model 90 

for the bi-directional pedestrian stream. Finally, we discuss the model calibration results and the 91 

properties of the improved model. 92 

 93 

Data 94 

 95 

Two sets of data were used in this study. The first was the dataset from the controlled experiment 96 

performed by Wong et al. (2010), and the other was collected from an observational survey of a busy 97 
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signalized crosswalk in Hong Kong. Through a thorough comparison and study of these two data sets, 98 

we identified a key variable that could better describe the bi-directional pedestrian movements and 99 

formed the basis of formulating an improved model. The data from the controlled experiment were 100 

used to recalibrate the improved model. The data from the field observation were then used to verify 101 

that model in a real-world situation. 102 

 103 

Controlled Experiment 104 

 105 

The controlled experiment was conducted in a sports stadium. Volunteer students were asked to 106 

walk in designated directions, and the intersecting angles between the paths for the two streams were 107 

set at 45, 90, 135 and 180 (Fig. 1). The total density and the spilt ratio of the pedestrian numbers 108 

were controlled to test how these factors affected the speed of the pedestrian streams. 109 

 110 

[Insert Figure 1 Here] 111 

 112 

Field Observation 113 

 114 

A new set of data was collected so that we could apply the model to a real-world situation. The 115 

site selected for video recording was the busy signalized crosswalk between Queen’s Road Central 116 

and D’Aguilar Street in Central District, Hong Kong. The camera was set at the top of a nearby tall 117 

building, providing us with an ideal top view of the junction.  118 

 119 

[Insert Figure 2 Here] 120 

 121 

Video Data Processing 122 

 123 

The video was taken at 25 frames per second under a PAL analogue television encoding system. 124 

The pictures, in JPEG format, were extracted from the video every 5 frames, i.e., every 0.2 s. This 125 
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sampling interval ensured the smooth and complete tracking of pedestrian movements for this study. 126 

At the selected junction, the signal cycle was about 120 s, and there was a 15 s pedestrian phase in 127 

each cycle. However, we were only interested in periods during which the two pedestrian streams 128 

fully mixed, i.e., the short period, about 2 s, in the middle of each pedestrian phase. The final dataset 129 

consisted of 65 cycles, with an average of 103 pedestrians in each cycle. In total, we traced the 130 

movements of more than 6000 pedestrians in the video. 131 

 132 

Acquisition of Positions 133 

 134 

To obtain the image coordinate of each pedestrian in the region of interest (ROI), the selected 135 

video images were imported into a specially designed Visual Basic (VB) program, and the positions 136 

of pedestrians were marked manually. As shown in Fig. 3, we marked the pedestrians’ heads and feet, 137 

if visible, with blue and green dots, respectively. This prepared the video data for the coordinate 138 

transformation necessary to obtain the real-world positions. 139 

 140 

[Insert Figure 3 Here] 141 

 142 

Computation of Average Speed and Density 143 

 144 

As shown in Fig. 4, the distribution of pedestrians in the region was not homogeneous. To ensure 145 

that the computed average speed and density reflected the true relationship between speed and density, 146 

we divided the region into 18 sub-areas, each measuring 3m x 3m. The sub-areas were distributed 147 

according to the size of the crosswalk, three across the Queen’s Road Central, and six along the road. 148 

 149 

[Insert Figure 4 Here] 150 

 151 

In total, as each sub-area gave one data point, we obtained 18 data points from each frame 152 

(picture) for data analysis. 153 
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To summarize, we counted 1160 pedestrians in the controlled experiment and 6788 in the field 154 

observation. As shown in Table 1, the average speed of pedestrians in the field observation was higher 155 

than in the experiment, but the average density of pedestrians in the field observation was lower than 156 

in the experiment. 157 

 158 

[Insert Table 1 Here] 159 

 160 

Model Formulation 161 

Original Model 162 

The model used by Wong et al. (2010) is a modification of the one-dimensional traffic model 163 

proposed by Drake et al. (1967):  164 

 2 2
r f r r c c cV V exp( ( ) ) exp( (1 cos ) )         (1) 165 

where 166 

Vr is the speed of the reference stream; 167 

Vf is the free-flow speed; 168 

ρr is the density of the reference stream; 169 

ρc is the density of the conflicting stream; 170 

φ is the intersecting angle between the two streams; 171 

θ  and θ  are parameters reflecting the sensitivity of speed to density on isotropic and conflicting 172 

effects, respectively. 173 

 174 
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This model satisfies the following natural boundary conditions as stated in the original study. 175 

1.  When  = 0, there is effectively only a single stream of pedestrians. 176 

2.  The interaction effect due to the conflicting pedestrian stream should be symmetrical across the 177 

180° intersecting angle. 178 

3.  When the walking facility is nearly empty, the speed of the reference pedestrian stream should 179 

approach the free-flow speed, i.e., r fV V when r c, 0   . 180 

4.  When the walking facility is nearly empty, the flow of the reference pedestrian stream should 181 

approach zero, that is, rq 0  when, r c, 0   , because r r rq V  . 182 

5.  When the walking facility is nearly empty, the addition of a pedestrian in the reference or the 183 

conflicting stream does not affect the speed of the reference stream, i.e., r rv / 0   and 184 

r cv / 0   , when r c, 0   . 185 

In this model, an exponential term is added to describe the conflicting effect from the opposite 186 

stream. The conflicting effects from the opposite stream mainly depend on the density of the 187 

conflicting stream, and on the intersecting angle between the two streams: i.e., the direction of the 188 

opposite stream. The conflicting effect is symmetrical across 180°.  189 

As the two streams are actually each other’s conflicting stream, we can also represent the speed of 190 

the conflicting stream as in Eq. (2): 191 

 2 2
c f r r c c rV V exp( ( ) )exp( (1 cos ) )        

 
 (2) 192 

Dividing Eq. (1) by Eq. (2), we obtain: 193 

     2 2r
c r c

c

V
exp θ 1 cosφ

V
     (3) 194 
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   2r c
c t

c t

V 2
exp θ 1 cosφ 1

V

   
           ,

 (4) 195 

where ρt represents the total density, i.e., the sum of ρr and ρc. This indicates that the ratio between the 196 

speed of the two streams is governed by the density difference between the two streams. If r c   , 197 

i.e., c

t

0.5





, then r

c

V
1

V
 . This means that the stream with a higher density will suffer a relatively 198 

lower conflicting effect from the other stream, so that it can achieve a higher speed, and vice versa. 199 

Both the experimental data and the field data agree with the model that r

c

V

V
 is generally larger 200 

than 1, when the density ratio c

t




is less than 0.5. However, as shown in Table 2, the correlation 201 

between these two quantities is quite weak in both sets of data, i.e., there is no noticeable increase in 202 

the conflicting effect as the density of the conflicting stream rises. On the other hand, we find that 203 

there is a much stronger correlation between the speed ratio and the flow ratio, r

c

q

q
, such that the flow 204 

of one stream is the product of its speed and density, i.e., r r rq V  , c c cq V   and t r cq q q  . 205 

 206 

[Insert Table 2 Here] 207 

 208 

As shown in Table 2, the correlation between speed ratio and flow ratio is more significant. This 209 

suggests that the density difference may not be a good way to represent the speed in bi-directional 210 

pedestrian stream movements, as the density of one stream is a static quantity and does not reflect the 211 

movement of the stream. However, the conflicting effect induced by the opposite stream is dependent 212 

not only on the density of the conflicting stream itself, but also on the movements of both streams. 213 

Therefore, to better model the conflicting effect between the two opposite streams, we adopt a 214 
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momentum term, flow (density × speed, analogous to mass × speed in a physical system), that reflects 215 

the relative movement momentum between the two streams and the density difference. This improved 216 

model is discussed in the next section.  217 

 218 

Improved Model 219 

 220 

Our modification to the previous model is as follows: 221 

    2 r r
r f r c r c

r r c c

V
V V exp ( ) exp 1 1 cos ( )

V V

  
               

         (5) 222 

    2 c c
c f r c r c

r r c c

V ρ
V V exp θ(ρ ρ ) exp β 1 1 cosαφ (ρ ρ )

Vρ V ρ

  
          

         (6) 223 

where Vr, Vf, ρr, ρc and φ are defined in equation (1), θ, β and α are coefficients, and r r

r r c c

V

V V


  

is 224 

the flow ratio (flow = density·speed, the momentum term), with r r

r r c c

V

V V


  

 = 1, when both r 0   225 

and c 0  . 226 

The improved model satisfies the same boundary conditions as the original model. It can also be 227 

reduced to a one-dimensional Drake model when the intersecting angle  = 0. 228 

 229 

Bayesian Inference 230 

 231 



11 
 

Bayesian inference is a method of statistical deduction in which Bayes’ theorem is used to 232 

calculate how the prior distribution changes according to new evidence. This method is a modeling 233 

approach for parameter estimation that integrates prior and current information. The ultimate aim of 234 

Bayesian inference is to obtain the posterior distribution of all unknowns, i.e., the parameters of 235 

interest.  236 

To perform Bayesian inference, we used the WinBUGS software to estimate the proposed model. 237 

According to Ioannis Ntzoufras (2009), Bayesian statistics regard all unknown parameters as random 238 

variables, so prior distribution must be defined initially. Assuming that the prior distribution for all of 239 

the parameters to be estimated is normal, the prior mean μ and variance σ2 should be specified for 240 

each parameter. When we strongly believe that the estimate mean is accurate, the variance can be set 241 

relatively low and great uncertainty concerning to the prior mean can be represented by large variance. 242 

No prior information is available when we first apply the proposed model to the controlled experiment 243 

data. Therefore, a prior distribution that will not influence the posterior distribution should be 244 

specified to let the data speaks for themselves: i.e., a non-informative prior distribution should be 245 

adopted. In practice, the variance σ2 is set very large (σ2 =10000) such that the prior distribution 246 

contributes negligible information to the posterior distribution.  247 

To evaluate the goodness-of-fit and to check the performance of the models, we used the deviance 248 

information criterion (DIC) and the posterior p-value to assess both the statistical fit and the 249 

prediction of the proposed model. The DIC is useful in Bayesian model selection as it measures how 250 

well the model fits and considers penalties on number of parameters. Generally, the model with low 251 

DIC value is preferred (Spiegelhalter et al., 2002). The posterior p-value checks the goodness-of-fit by 252 

comparing the model’s predictive data to the observed data. This assumes that if experiments with the 253 

same parameters were replicated in the future we would obtain another set of observed data. If the 254 

model is appropriate for the observed data, the replicated data should be very close to the observed 255 

data. Hence, the difference between the two sets of data will reveal the goodness-of-fit of the model. 256 

The posterior p-value is defined as the probability that the replicated data is more extreme than the 257 
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observed data. Therefore, the closer the posterior p-value is to 0.5, the better the fit of the model 258 

(Gelman et al., 2004).  259 

Besides these statistics in the Bayesian framework, we also adopted the mean absolute percentage 260 

error (MAPE), the root mean square error (RMSE), and the relative root mean square error (RRMSE) 261 

as statistics to evaluate the goodness-of-fit for the models. 262 

 263 

Results and Discussion 264 

 265 

Table 3 presents the calibration results of the two models for the controlled experiment data. 266 

 267 

[Insert Table 3 Here] 268 

 269 

In Table 3, it can be seen that the value of free-flow speed Vf is 1.074 m/s (0.95 CIs: 1.065, 1.083), 270 

and the parameter of isotropic effect θ is 0.062 (0.95 CIs: 0.058, 0.066) in the improved model. These 271 

values are similar to those in the original model. The calibrated value of β is 0.072 (0.95, CIs: 0.064, 272 

0.080), and α is 1.271 (0.95, CIs: 1.208,1.336), which is between 1 and 2, indicating that the 273 

intersecting angle between the two streams has a negative influence on speed, and this conflicting 274 

effect is maximized when the intersecting angle is between 90° and 180°. The DIC value for the 275 

improved model is far less than that of the original model, and the posterior p-value (the closer to 0.5, 276 

the better the model fit) and other statistical indexes of the improved model also indicate that the 277 

improved model results in a better fit of the experimental data. 278 

There is no doubt that the controlled experiment is a very good sample of bi-directional pedestrian 279 

stream movements with oblique intersecting angles. The volunteers were asked to walk in designated 280 

directions, and a variety of densities and intersecting angles were tested. Hence, the data collected 281 
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from the controlled experiment are of good quality. However, no experiment is the same as a real-282 

world situation. The data from the observational survey are less controllable than those in the 283 

experiment, as we cannot control the density of the crowds or the directions the pedestrians walk. 284 

However, these data are a better reflection of reality.  285 

To test the model’s applicability to a real-world situation, we adopt the Bayesian method to 286 

further calibrate the model with the field data collected from the observational survey. For the 287 

parameters reflecting the interactions between pedestrians, θ, β, and α, we use the posterior 288 

distribution from the controlled experiment to provide prior distribution, as shown in Table 4.  289 

 290 

[Insert Table 4 Here] 291 

 292 

However, for the free-flow speed (Vf), no prior information is available. As pedestrians in the 293 

crosswalk walk much faster than the volunteers in the experiment, the free-flow speed clearly depends 294 

on the environment in which the data are collected. To assess the free-flow speed, we extract the data 295 

points (on the speed of the reference stream) that had low total density ( r c 1   ) from both the 296 

experiment and the field survey, and perform a t-test. We find that the means of the speed for these 297 

two situations ( r c 1   ) are significantly different (at a 0.1% level). The two means are 1.074 m/s 298 

for the experiment and 1.307 m/s for the field survey. The mean value for the controlled experiment 299 

(1.074 m/s) is the same as the calibrated free-flow speed shown in Table 3. The mean value for the 300 

field data is 30% greater than that in the experiment. Therefore, the free-flow speed should be revised 301 

for the model in accordance with the field data. 302 

Finally, we calibrate the model for the field data and compare statistics to those of the controlled 303 

experiment, as shown in Table 5. 304 

 305 
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[Insert Table 5 Here] 306 

Table 5 shows that the free-flow speed increases to 1.326 m/s when the field data is used to 307 

update the model to account for the people hurrying through the crosswalk. This free-flow speed is 308 

consistent with that measured in an empirical study reported by Lam et al. (2002), which examined a 309 

signalized crosswalk in Hong Kong. The posterior p-value indicates that the model generally fits the 310 

field data. Although the mean absolute percentage error and the relative root mean square error have a 311 

roughly 10% increase, this is still reasonable when considering the large variability of the field data 312 

(standard deviation = 0.5 m/s) compared to the experimental data (standard deviation = 0.2 m/s). 313 

As the model’s form is a set of structural equations, it is not straightforward to compute the speed 314 

of one stream with a given ρr and ρc. Therefore, Fig. 5 provides the design charts for finding the speed 315 

of the reference stream that corresponds to ρr and ρc under different intersecting angles. Fig. 5 also 316 

shows the relationships between the speed of the reference stream and its density, when the density of 317 

the conflicting stream is kept constant. Generally, when the density of the conflicting stream is low 318 

( c 1  ), the speed of the reference stream first decreases very slightly (from 1.3 to 1.2 m/s) as the 319 

density of the reference stream gradually increases from 0 to 1 ped/m2, because the total density is 320 

also low and the interaction between pedestrians is weak at this stage. The reference stream’s speed 321 

reduces more significantly as the total density builds, and the conflicting effect from the opposite 322 

stream grows as the number of interactions between pedestrians increases. Finally, the decline 323 

becomes stable when the reference stream’s density increases to the point that it becomes the major 324 

stream. In contrast, when the density of the conflicting stream is relatively high ( c 1  ), it skips the 325 

first phase that was seen in the previous situation. The speed of the reference stream drops sharply at 326 

the beginning, as the conflicting stream is absolutely the major stream when the reference stream has 327 

very low density. Thus, the conflicting effect from the opposite stream is tremendous at the starting 328 

stage. The gradient gradually reduces as the density of the reference stream increases. 329 

 330 



15 
 

[Insert Figure 5 Here] 331 

Fig. 5 also shows the effects on stream speed induced by different intersecting angles. When the 332 

intersecting angle increases from 0 to 90, the pedestrians actually have the same destination, i.e., the 333 

opposite side of the crosswalk, although they may enter the crosswalk area from different points. The 334 

smaller the intersecting angle, the less difference there is between their directions. Hence, speed 335 

reduces as angle increases. However, when the intersecting angle exceeds 90 and continues to 336 

increase between 90 and 180, the speed no longer decreases steadily with the increase of the 337 

intersecting angle. The worst situation occurs when the intersecting angle is 135. We use Fig. 6 to 338 

illustrate this phenomenon. When the intersecting angle between the two streams is 90 (Fig. 6(a)), 339 

each stream of pedestrians is walking orthogonally to the other, and the pedestrians can easily find 340 

gaps in the conflicting stream. When the intersecting angle is 180 (Fig. 6(b)), the formation of self-341 

organized lanes helps to reduce the conflicting effect induced by the opposite stream. However, when 342 

the intersecting angle is 135 (Fig. 6(c)), there is no obvious gap in the conflicting stream, and 343 

individual pedestrians must zigzag to avoid others coming the other way. Such interactions between 344 

pedestrians of different streams reduce their walking speeds. 345 

To illustrate this flow-density relationship, a straightforward comparison between situations with 346 

different intersecting angles is shown in Fig. 7. Fig. 7 also shows that the optimum total density under 347 

different intersecting angles is about 2.0 ~ 3.0 ped/m2, with a maximum flow of about 1.8 ~ 2.1 348 

ped/m/s (for different intersecting angles). This value is slightly higher than the value reported in 349 

Wong et al. (2010). It is not surprising that pedestrians walk through a crosswalk faster than students 350 

cross a sports stadium in an experiment.  351 

 352 

Conclusions 353 

Expanding on Drake’s model, we developed a mathematical model to represent the movements of 354 

bi-directional pedestrian flows, which introduces the flow ratio and the intersecting angle as attributes 355 
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that influence the speed of the streams. Two sets of data were collected, one from a controlled 356 

experiment and the other from an observational survey. Bayesian inference was adopted in the 357 

parameter calibration. The empirical data was used to calibrate the model as it completely and 358 

homogeneously covers the different possible intersecting angles and the different levels of flows. The 359 

calibrated parameters of the controlled experiment were used as the prior data in the substantial 360 

calibration of the field data. The field data was then used to update the model to reflect real-world 361 

situations.  362 

Compared to the previous model, the new model achieves a better fit for experimental data, and 363 

continues to satisfy the same boundary conditions as the original model. The updating process with 364 

the field data also improves the model to reflect real-world situations. The new model reflects the 365 

reality that the speed of the streams in bi-directional pedestrian movements depends not only on the 366 

density of each stream, but also on the factors of the flow speed in both streams and the intersecting 367 

angle between the two streams. Therefore, the new model is more comprehensive in representing the 368 

interactions of bi-directional pedestrian flows. Finally, the new model also shows that the conflicting 369 

effect induced by the intersecting angle maximizes when the angle is near 135°. At this angle, 370 

pedestrians must pay more attention to avoid pedestrians in the conflicting flow, as there is neither 371 

lane formation nor a straightforward gap between streams in such situations. 372 

These findings build on previous controlled experiments that focused on bi-directional pedestrian 373 

streams with oblique intersecting angles. Data on the flows of streams are added to data from the 374 

previous experiments to better describe the movements and interactions of flows. The result is an 375 

improved form of model for bi-directional pedestrian flows. The use of on-site observation helps us to 376 

better understand the difference between experimental and real situations, and this improves the 377 

model. The results are consistent with similar observations by other researchers. However, more 378 

observational surveys on different walking facilities should be conducted to make the model even 379 

more congruent with actual pedestrian behavior. Once we have a comprehensive understanding of bi-380 

directional pedestrian flows, we can further extend the study to multi-directional pedestrian flows, in 381 

which the interactions between streams can be quite different from the bi-directional ones. 382 
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 383 

[Insert Figure 6 Here] 384 

 385 

[Insert Figure 7 Here] 386 
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Table 1 Summary of data 471 

Dataset 
Controlled 

Experiment 

Field 

Observations 

Total Pedestrian No. 1160 6788 

Average Speed (m/s) 0.74 1.15 
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  472 



22 
 

Table 2 Comparison between experimental data and field data 473 

 
Controlled 

Experiment Data 
Field Data 

Maximum 2.46 8.01 
Minimum 0.61 0.11 

Mean 1.16 1.10 
Standard Deviation 0.28 0.62 
Correlation between 

 
	
		&   -0.099 0.038 

Correlation between 

 
	
		&   -0.368 -0.331 
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Table 3 Comparison of the original and improved models 475 

 
Controlled Experiment 

Original Model Improved Model 

Sample Size  5487 3459 

 
 Estimate (95% BCIs) Estimate (95% BCIs) 

Calibrated 
Parameters 

 
 

Vf  1.076 1.067 1.085 Vf 1.074 1.065 1.083 

θr 0.079 0.075 0.082 θ 0.062 0.058 0.066 

θc 0.025 0.019 0.031 β 0.072 0.064 0.080 

α 1.271 1.208 1.336 

DIC  -4520.32 -7754.05 

Posterior 
p-value 

 
 

0.5275 0.5110 

MAPE  17.7% 17.4% 

RMSE  0.1703 m/s 0.1686 m/s 

RRMSE  19.1% 18.9% 
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Table 4 Informative prior distribution for parameters to be estimated 477 
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θ 0.062 2.18×10-03 

β 0.072 4.27×10-03 

α 1.271 0.032 
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Table 5 Comparison of statistics 479 

 Controlled Experiment  Field Observation 

Sample Size 3459 1737 

 
Estimate (95% BCIs) Estimate (95% BCIs) 

Calibrated 
Parameters 

Vf 1.074 1.065 1.083 1.326 1.312 1.341 

θ 0.062 0.058 0.066 0.065 0.061 0.069 

β 0.072 0.064 0.080 0.078 0.070 0.086 

α 1.271 1.208 1.336 1.214 1.149 1.275 

Posterior 
p-value 

0.5110 0.5028 

MAPE 17.7% 28.8% 

RMSE 0.1703 m/s 0.3400 m/s 

RRMSE 19.1% 30.9% 
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Fig. 3 The interface of the VB program for acquisition of the coordinates 488 
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Fig. 4 Distribution of pedestrians in the region 491 
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Fig. 5 Relationship between the speed of the reference stream and the density of the reference stream 496 
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(a) 90°

  

(b) 180°  

 

(c) 135° 

  
 

Fig. 6 Illustration of conflicting with different intersecting angle 500 
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 503 

Fig. 7 Flow-Total Density relationship under different intersecting angles (ρr=ρc) 504 
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