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This study proposes a simplified sub-structural model to explore the floor micro-vibration induced by automated

guided vehicles in thin-film transistor liquid crystal display factories. Time history analyses of a sequence of

automated guided vehicles moving loads considering various car spacings on an equivalent three-span continuous

beam model of a thin-film transitor liquid crystal display factory were simulated. The effectiveness of vibration

control using viscoelastic dampers was also examined. Numerical simulations demonstrate that the simplified method

can predict the measured floor vibration spectra with satisfactory accuracy and that the automated guided vehicles

induced floor vibrations without control exceed the acceptable VC-B level required for the installation of specific

precision process tools. The application of energy dissipation devices has shown to be effective in vibration

mitigations as they enhance the damping characteristics of a multi-span floor system. The maximum response of the

whole continuous beam induced by a group of automated guided vehicles can be effectively suppressed to a desired

VC-B level if multiple viscoelastic dampers are implemented along the automated guided vehicles moving bay and

the spacing between each automated guided vehicle is properly adjusted. The simplified analytical method can help

engineers quickly assess the level of automated guided vehicles-induced floor vibration and assist in the design of

low-vibration floor systems in high-technology factories.

Notation
A discrete-time system matrix

A� continuous-time system matrix

A(x) cross-sectional area

a0, a1 coefficients of Rayleigh damping

C damping matrix

Cd contribution of damping matrix for VE damper

cve damping coefficient of VE damper

dx discretised element length of the beam

E Young’s modulus

E location matrix of the moving loads

E� continuous-time moving load matrix

E0 discrete-time moving load matrix of the previous

time step

E1 discrete-time moving load matrix of the current

time step

F(t) engine force of AGV

Fd(x, t) damper force

Fmax maximum engine force of AGV

f natural frequency (Hz)

f g1, f g2, parameters of the modified Kanai–Tajimi

�g1, �g2 model

H1 j Hermitian polynomials of the modified cubic spline

function

I (x) moment of inertia of cross-section

J performance index

K stiffness matrix

Kd contribution of stiffness matrix for VE damper

kij coefficients of stiffness matrix

kve stiffness coefficient of VE damper

L total length of beam

la AGV spacing

lw distance between the two axles

M mass matrix
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mij coefficients of mass matrix

N number of moving loads

n number of vibration modes

Ps moving loads

Q number of supports of beam

q(t) modal displacement vector

qi(t) ith generalised coordinate

t time

t0 time instant when moving loads come onto beam

te time instant when moving loads leave beam

u(t) unit step function

v speed of AGV

w(t) moving load vector

w(x, t) displacement of beam

X (xd) vibration mode vector at location of VE damper

X i(x) ith vibration mode

X 0i (x) ith curvature function of beam

X i(x) ith assumed vibration mode
~XX i(x) ith modified cubic spline function

x location of beam

xd location of VE damper

x ps(t) location of the moving loads

z [k] state vector

˜t sampling time

� number of VE dampers

Łij rotation of beam

� damping ratio

ø natural angular frequency (rad/s)

1. Introduction
The development of thin-film transistor liquid crystal display

(TFT-LCD) (Jang and Choi, 2006) has become one of the fastest

growing industries in the past decade because of the strong

market demand for products such as displays for computers,

mobile telephones, digital cameras and flat-screen televisions.

The TFT-LCD industry specialises in glass substrates as opposed

to silicon wafers, which are used in the semiconductor industry,

but adopts similar micro-vibration criteria, fabrication processes

and equipment. The manufacturing processes of silicon wafers

and glass panels are susceptible to a variety of interior and

exterior vibration sources. Significant interior vibration sources

include pumps, motors, carts, servo robots, conveying systems,

personnel walking and automated material handling systems

(Jang and Choi, 2006). Exterior ground-borne sources may

include supply mechanical equipment in neighbouring buildings,

nearby traffic, rail lines (high-speed trains) and pile construction.

If the ambient floor vibration does not meet specified vibration

criteria, the desired production yield of the chips or displays will

not be achieved.

The Bolt, Beranek and Newman (BBN) vibration criterion (VC)

is one of the most popular criteria used for vibration-sensitive

equipment in high-tech industries (Gordon, 1991). The VC

curves are a set of velocity spectra (called VC-A, VC-B, VC-C,

VC-D and VC-E) that correspond to the allowable root mean

square (RMS) velocity from 2000 �-inch/s to 125 �-inch/s within

a frequency ranging from 8 to 100 Hz. For frequencies below

8 Hz, the VC curves allow for greater vibration velocity because

this frequency range lies below the lowest natural (resonance)

frequency of most of the equipment, as indicated by Gordon

(1991). The desired floor vibration level for installing process

tools depends on the fabrication precision of the production line

widths. For example, the criterion suggests that the VC-B level

(1000 �-inch/s) is an appropriate standard for 10003 magnifica-

tion optical microscopes, inspection and lithography equipment

for 3 �m line width, while a stringent VC-C level (500 �-inch/s)

is preferable for higher precision lithographic and inspection

equipment including electron microscopes for 1 �m line width.

Normally, VC-B or VC-C levels are acceptable for most

vibration-sensitive tools required by TFT-LCD manufacturers. A

review of practical papers and reports with information on

micro-vibration sources, criteria, measurements and mitigations

can be found at http://www.colingordon.com/papers_body.html.

Over the last two decades, micro-vibrations have been extensively

studied in the context of both human comfort and production

yields for office buildings, biotechnology/metrology labs and

semiconductor factories (Ju, 2009; Pan et al., 2001, 2008; Pavic

and Reynolds, 2002, 2003; Ungar and White, 1979; Ungar et al.,

2004; Willford et al., 2005; Xu and Guo, 2006; Xu and Hong,

2008; Xu et al., 2004; Yang and Agrawal, 2000; Živanović and

Pavić, 2009). Vibration control using passive or active isolation

devices underneath precision equipment has also been widely

explored (Ismail et al., 2009; Kim and Amick, 1997; Nakamura

et al., 1999; Xu et al., 2003a, 2003b, 2004; Yang and Agrawal,

2000; Yang et al., 2003; Yoshioka et al., 2001).

Most studies presented in the literature have focused on floor

vibrations induced by exterior ground-borne traffic (train)

excitations or from personnel walking, and mechanical distur-

bance sources inside a building. However, adverse vibrations

that are directly induced by moving vehicles on the production

floor in industrial factories have rarely been considered in the

design phase. As a consequence, most TFT-LCD factories

encounter interior vehicle-induced floor vibration problems (Lee

et al., 2012) when they begin operations. Figure 1 illustrates a

typical TFT-LCD building with two clean rooms. A reinforced

concrete (RC) waffle slab (Howard and Hansen, 2003) sup-

ported by two-way grillage beams of depth 1.2 m or a flat RC

slab (‘cheese’ slab) of thickness 0.6–0.8 m supported by long-

span steel mega trusses are often adopted in order to minimise

micro-vibrations.

Several empirical formulae to describe the relation between floor

stiffness and maximum velocity vibration have been proposed to

design a stiff and low-vibration floor system for advanced

technology facilities. Ungar and White (1979) proposed a semi-

empirical model to relate the footfall-induced maximum one-

third octave band RMS velocity amplitudes to vertical floor

stiffness and the fundamental frequency. In this equation, the
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maximum velocity is inversely proportional to the stiffness and

an empirical coefficient, which is proportional to the vibration

amplitude, is determined using measured data obtained from

different persons walking on a variety of floors at 100 paces per

minute. Moreover, when using the simplified model, corrections

can be made to adjust for walkers of different weights and

walking speeds.

Gordon (1987), Amick et al. (1991) and Amick and Bayat (1998)

also developed a similar formula to predict the maximum floor

velocity vibrations primarily induced by mechanical excitations

such as the turbulence in piping and ducting connected to the

floors. The relation between mid-bay floor stiffness and maximum

floor velocity is determined using the measured data of a

collection of floors through statistical regression analyses. These

simplified methods are useful in the early design phase of floor

systems, but vibration induced by moving vehicles on production

floors has not been explored in these studies.

At present, the transportation of glass panels between processing

tools in TFT-LCD factories is generally accomplished by auto-

mated guided vehicles (AGVs, http://www.muratec.net/mac/pro-

ducts/fpd/agv.html), rail guided vehicles (RGVs) and stockers

(Jang and Choi, 2006). AGVs, RGVs and stockers have been

found to induce considerably more significant floor micro-vibra-

tions than walking personnel or nearby traffic, and this problem

has become more serious in the TFT-LCD industry as increas-

ingly larger glass panels are being manufactured. The objective

of this study is, therefore, to propose a simplified and effective

sub-structural beam model that will quickly assess AGV-induced

micro-vibration on production floors for the conceptual design

phase or evaluate vibration control performance by the introduc-

tion of dampers.

Dynamic analysis of beams and bridges under moving loads

resulting from vehicles and trains is well developed (Lee, 1996;

Wu, 2003; Wu and Dai, 1987; Wu and Shih, 2000; Yang and Lin,

1995; Yang and Yao, 1997; Yang et al., 2004; Yao and Yang,

2006; Zheng et al., 1998) and is adopted in this study. To

simplify the task in a conservative sense, the multi-span cheese

floor of a single bay (AGV moving bay) of a factory is treated as

an equivalent sub-structural multi-span continuous beam (Figure

2) by adjusting its flexural rigidity such that the fundamental

frequency of the beam model is close to the in situ measured

first-mode floor vibration frequency. The modified beam vibration

functions (MBVF) proposed by Zheng et al. (1998) are then

further adopted for the modelling of the sub-structural system.

The dynamic response of the system is resolved using a state-

space procedure (Lopez-Almansa et al., 1988; Wang et al., 2001)

algorithm that preserves the dynamic characteristics of the system

without distortion. Moreover, a modified Kanai–Tajimi model

(Yang and Agrawal, 2000) is adopted in this paper to simulate the

AGV engine force. A numerical simulation of a group of AGVs

moving on the three-span floor system is performed to predict the

floor micro-vibration level and takes into account the effect of

different spacings between any two consecutive AGVs. Finally,

the effectiveness of vibration control (Housner et al., 1997; Soong

and Dargush, 1997) by the introduction of viscoelastic (VE) (Lee

et al., 2005; Yohei et al., 2003) dampers is also examined and

discussed.

2. Review of dynamic analysis of multi-span
beams under moving loads by MBVF

The vertical displacement of a beam, w(x, t), can be represented

in terms of modal contributions as

w(x, t) ¼
Xn

i¼1

qi(t)X i(x)
1:

where n is the number of vibration modes that are considered

AGV

Upper clean room

Lower clean room Mega truss

Figure 1. Elevation view of typical double clean-room building

(Lee et al., 2012)
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when calculating the dynamic responses, qi(t) is the ith general-

ised coordinate and X i(x) is the ith vibration mode that satisfies

the boundary conditions of the supports. The equation defining

the motion of an undamped Bernoulli–Euler beam with (Qþ 1)

supports subjected to N moving loads can be presented as (Zheng

et al., 1998)

Xn

j¼1

mij€qq j(t)þ
Xn

j¼1

kijq j(t)

¼
XN

s¼1

Ps X i[x ps(t)][u(t � t0)� u(t � te)]

i ¼ 1, 2, � � �, n2:

la

lw

P P2 1

v

x 0� 36 54

VE damper

z

72 108

la

lw

P P2 1

v

x 0� 36 54

VE damper

z

72 10818 90

la

lw

P P2 1

v

0 36 60

VE damper

z

72 10824 9612 48 84

3 @ 36 m

9·6 m

Figure 2. Illustration of AGV moving loads on an equivalent

three-span beam model (Lee et al., 2012)
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in which x ps(t) is the location of the moving loads (Ps), t0 and te

are the time instants when the moving loads come onto and leave

the beam, respectively, u(t ) is the unit step function defined as

u(t) ¼ 1 t > 0

0 t , 0

�
3:

and

mij ¼
ð L

0

rA(x)X i(x)X j(x)dx
4a:

kij ¼
ð L

0

EI(x)X 0i(x)X 0j(x)dx
4b:

where r is the density, E is Young’s modulus, A(x) is the cross-

sectional area, I(x) is the moment of inertia of the cross-section

and X 0i(x) denotes the curvature of the beam.

The vibration modes of a multi-span beam can be obtained by

using the vibration modes of a single-span beam that have been

modified by cubic spline functions as follows (Zheng et al.,

1998)

X i(x) ¼ X i(x)þ ~XX i(x)5:

where X i(x) is the ith assumed vibration mode of a multi-span

beam that has a total length L (with the same boundary

conditions of end supports, but without the intermediate supports)

and ~XX i(x) is the modified cubic spline function, which makes

each X i(x) satisfy the boundary conditions at both ends and also

at the intermediate supports without deflections. The assumed

vibration modes are the Fourier sine series of a simply supported

beam of total length L given as

X i(x) ¼ sin
i�x

L

� �
, i ¼ 1, 2, . . ., n

6:

On the other hand, the calculation processes of the modified cubic

spline function ~XX i(x) of a continuous beam, which satisfies

boundary conditions such as zero displacement at each support

and zero curvature at two simply-supported ends, are provided by

Zheng et al. (1998) as

~XX i(x) ¼ H1 j(� j)yi( j�1) þ H2 j(� j)Łi( j�1)

þ H3 j(� j)yij þ H4 j(� j)Łij

x 2 [xj�1, xj], j ¼ 1, 2, . . ., Q7:

where

yij ¼ ~XX i(xj) ¼ �X i(xj), Łij ¼ ~XX 9i(xj),

i ¼ 1, 2, . . ., n, j ¼ 1, 2, . . ., Q8:

H1 j(� j) ¼ 1� 3�2
j þ 2�3

j9a:

H2 j(� j) ¼ l j� j(1� � j)
2

9b:

H3 j(� j) ¼ 3�2
j � 2�3

j9c:

H4 j(� j) ¼ l j�
2
j(� j � 1)9d:

� j ¼ (x� xj�1)=l j, l j ¼ xj � xj�1,

j ¼ 1, 2, . . ., Q9e:

The coefficients yij are known from Equations 6 and 8, while Łij

are further determined by the continuity of the second derivative

at the intermediate point supports (Zheng et al., 1998). This

modelling technique is adopted for the clean-room floor repre-

sented by an equivalent multi-span continuous beam in this

study.

3. State-space procedure algorithm
Equation 2 can be further elaborated in matrix formation as

M€qq(t)þ C _q(t)þKq(t) ¼ E w(t)10a:

where M ¼ [mij] is the n 3 n mass matrix with the coefficients

shown in Equation 4a, K ¼ [kij] is the n 3 n stiffness matrix

with the coefficients shown in Equation 4b, C is the n 3 n

damping matrix determined by the damping ratios assigned to

each vibration mode considered in the analysis and by the

eigenvectors obtained from the M and K matrices. Further-

more,
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q(t) ¼

q1(t)

q2(t)

..

.

qn(t)

2
6664

3
7775

10b:

is the n 3 1 modal displacement vector

E ¼

X1[x p1(t)] X 1[x p2(t)] � � � X1[x pN (t)]

X2[x p1(t)] X 2[x p2(t)] � � � X2[x pN (t)]

..

. ..
. . .

. ..
.

X n[x p1(t)] X n[x p2(t)] � � � X n[x pN (t)]

2
66664

3
77775

10c:

is the n 3 N location matrix of the moving loads on the beam

and

w(t) ¼

P1(t)

P2(t)

..

.

PN (t)

2
6664

3
7775

10d:

is the N 3 1 moving load vector.

The analytical solution to Equation 10a can be obtained by the

recursive difference state-space equation (Lopez-Almansa et al.,

1988; Wang et al., 2001)

z [k] ¼ A z k � 1½ � þ E0w k � 1½ � þ E1w k½ �11a:

In this equation

z [k] ¼ q[k]

_q[k]

� �
11b:

is the 2n 3 1 state vector,

A ¼ eA�˜ t11c:

is the 2n 3 2n discrete-time system matrix and ˜t is the

sampling time.

A
� ¼ 0 I

�M�1K �M�1C

� �
11d:

is the 2n 3 2n continuous-time system matrix,

E0 ¼ (A�)�1Aþ 1

˜t
(A�)�2(I� A)

� �
E�

11e:

is the 2n 3 N discrete-time moving load matrix of the previous

time step,

E1 ¼ �(A�)�1 þ 1

˜t
(A�)�2(A� I)

� �
E�

11f:

is the 2n 3 N discrete-time moving load matrix of the current

time step and

E� ¼ 0

�M�1E

� �
11g:

is the 2n 3 N continuous-time moving load matrix.

4. Assessment of AGV-induced floor
vibration

4.1 The target TFT-LCD facility and its modelling

The TFT-LCD building illustrated in Figure 1 is considered in the

study. Since the vertical floor vibration is in essence a localised

behaviour of the structure and the vibration is most pronounced

along the AGV moving path (bay), a sub-structure of a three-span

continuous beam subjected to moving loads (as shown in Figure 2)

is considered to be adequate. The 9.6 m wide mega truss spans

36 m equally in each bay. It supports a RC cheese slab of thickness

0.55 m, giving a mass per unit length of rA ¼ 9:1505 3 103 kg/m

(with air circulation holes) and an equivalent flexural rigidity of

EI ¼ 2:3097 3 1011 Nm2 (Lee et al., 2012), so that the funda-

mental frequency of the three-span continuous beam is around

6.1 Hz. The first five natural frequencies of the equivalent three-

span continuous beam determined from eigenanalysis of the mass

and stiffness matrices are summarised in Table 1. Moreover, a 5%

damping ratio is assumed for each vibration mode.

4.2 Simulation of AGV engine forces

The total static weight of the AGV vehicle considered is

P ¼ 2200 kgf with a distance between the two axles of

lw ¼ 1.2 m. A modified Kanai–Tajimi power spectral density

(PSD) function (Yang and Agrawal, 2000) is adopted in this study

to simulate the engine force in a frequency domain format as

F( f ) ¼
[1þ 4�2

g1( f = f g1)2]( f = f g2)2S2
0

f[1� ( f = f g1)2]2 þ 4�2
g1( f = f g1)2g

3f[1� ( f = f g2)2]2 þ 4�2
g2( f = f g2)2g12:

where f g1, f g2, �g1 and �g2 are the constant parameters (where f g1

and f g2 control the predominant frequency contents of the engine
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excitation) and S0 is the force intensity. Figure 3 shows a compari-

son between the simulated and in situ floor vibration spectra at

x ¼ 45 m of the target TFT-LCD factory, in which the simulated

and measured vibration spectra are consistent and comparable if a

maximum engine force of Fmax ¼ 150 kgf with frequency para-

meters f g1 ¼ 5 Hz and f g2 ¼ 30 Hz (with S0 ¼ 1:0, �g1 ¼ 0:7 and

�g2 ¼ 0:6), and maximum engine force of Fmax ¼ 300 kgf with

frequency parameters f g1 ¼ 5 Hz and f g2 ¼ 50 Hz (with S0 ¼ 1:0,

�g1 ¼ 0:7 and �g2 ¼ 0:6) for the modified Kanai–Tajimi model are

adopted, respectively. This allows us to derive the input engine

force time histories (Figure 4) for dynamic analyses with AGV

speeds (v) of 1.0 and 2.0 m/s. The results reveal that the intensity

and the predominant frequency content of AGV engine forces

increase with AGV speed. As a result, the AGV-induced peak floor

vibration and the most seriously contaminated bandwidth tend to

increase with AGV speed, as shown in Figure 3(a). Moreover, in

order to investigate the accuracy of the results obtained by consid-

ering constant damping ratios (5%) for each vibration mode used

in this paper, the floor vibration spectra at x ¼ 45 m of the central

span obtained using Rayleigh damping are illustrated in Figure 5.

The Rayleigh damping matrix can be represented as (Chopra,

1995)

C ¼ a0Mþ a1K13:

where the coefficients a0 and a1 can be determined from the pre-

specified damping ratios �i and � j for the ith and jth modes by

solving the following algebraic equations

1

2

1=øi øi

1=ø j ø j

� �
a0

a1

� �
¼ �i

� j

� �
14:

Number of

VE dampers

Frequency: Hz

f1 f2 f3 f4 f5

0 6.089 7.804 11.395 24.357 27.759

1 6.757 7.804 10.652 24.357 27.684

3 6.139 7.873 11.509 24.357 27.631

6 6.091 7.806 11.399 24.502 27.932

Damping ratio: %

�1 �2 �3 �4 �5

0 5.00 5.00 5.00 5.00 5.00

1 23.29 5.00 28.42 5.00 6.08

3 61.00 49.44 38.05 5.00 6.60

6 88.28 70.08 49.86 25.97 24.13

Table 1. First five modal parameters of the three-span continuous

floor system with and without VE dampers

F
v
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Figure 3. Measured and simulated floor vibration spectrum at

x ¼ 45 m: (a) measured; (b) simulated (v ¼ 1.0 m/s); (c) simulated

(v ¼ 2.0 m/s)
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Figure 5 shows that the trend of the spectra obtained with

constant damping ratio and Rayleigh damping are consistent, and

the floor vibration spectrum obtained using a constant damping

ratio of 5% falls within the median values of these spectra.

Therefore, the damping matrix of the continuous beam system

that is simulated with a constant damping ratio (5%) for each

vibration mode is considered to be valid and was adopted in this

study to simplify the task.

4.3 Time history analysis of AGV-induced floor

vibration

In this study, the vibration level induced by a single AGV or

AGVs in series (two or three AGVs) moving with v ¼ 2.0 m/s on

the three-span continuous beam is assessed by considering n ¼ 12

modes. To examine the effect of the spacing (la) between any two

consecutive AGVs on the floor vibration, the dynamic floor

responses with AGV spacings of 3, 6, 9, 12, 15 and 18 m are

compared. It should be noted that the maximum engine force of

Fmax ¼ 300 kgf and frequency parameters fg1 ¼ 5 Hz and

fg2 ¼ 50 Hz for the modified Kanai–Tajimi model are adopted to

assess the AGV-induced floor vibration and the effectiveness of

vibration control by energy dissipation. Thus, the AGV can be

simulated as a pair of concentrated moving loads of

P1(t) ¼ P2(t) ¼ P=2þ F(t)=2

separated at a distance of 1.2 m.

Figure 6 illustrates the central acceleration time histories of the

middle span at x ¼ 54 m for a continuous beam subjected to a

single AGV and three AGVs. The histories were obtained using

the state-space procedure algorithm with ˜t ¼ 0.002 s. The

acceleration responses in the time domain are shown to have

increased with the number of AGVs, and a smaller AGV spacing

results in more pronounced floor vibrations. Moreover, the AGV-

induced maximum floor velocity ratios (VRs) at various locations

along the AGV bay are also explored. Figure 7 illustrates the

maximum VRs at various locations (6 m uniformly spaced, except

at the supports) of the three-span continuous beam subjected to

AGV moving loads. It is noted that the maximum VR is defined

as the ratio of overall maximum AGV-induced RMS velocity in

the one-third octave band to the VC-B level of 0.0025 cm/s. A

maximum VR value greater than 1.0 implies that the floor

vibration exceeds the desired VC-B level. The results show that

the floor vibrations exceeded the VC-B level regardless of the

locations of the three-span continuous beam subjected to either

single or multiple AGV moving loads, and the vibrations in-

creased with decreased AGV spacing. Moreover, maximum VRs

normally occur near to the central position of each span and may

be as high as 3.14 for a single AGV, 6.38 for two AGVs and 9.57

when three AGVs with la ¼ 3 m are moving on the floor.

4.4 Vibration control via passive energy-dissipation

device

Floor vibrations may be controlled by simply reducing the span

length of the floor system. However, a recent study of the effect

of span length on the floor vibration induced by a single AGV

(Lee et al., 2012) indicated that span reduction does not

effectively improve the overall micro-vibration performance in

terms of the spectral response because the predominant frequen-

cies of the span-reduced structures may be potentially in

resonance with the major frequency contents of the AGV loads

that span a broad bandwidth. Therefore, only the vibration control

of long-span floors in a TFT-LCD factory using energy-dissipa-

tion devices (in particular VE dampers (or panels)) (Lee et al.,

2005; Yohei et al., 2003) is examined in this study. Without loss

of generality, the force of an equivalent linear VE damper with a

stiffness, kve, and damping, cve, installed at the position xd is

represented as

Fd(xd, t) ¼ kvew(xd, t)þ cve _w(xd, t)

¼ kve

Xn

i¼1

qi(t)X i(xd)þ cve

Xn

i¼1

_qi(t)X i(xd)
15:

If a single VE damper is installed under a central position of the

middle span (xd ¼ L=2) and its damping force is regarded as an
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external force, another term that is similar to the right-hand side

of Equation 2 for the jth generalised coordinate can be written as

Fd(L=2, t)X j(L=2)¼ kve

Xn

i¼1

qi(t)X i(L=2)

 !
X j(L=2)

þ cve

Xn

i¼1

_qi(t)X i(x)

 !
X j(L=2),

j¼1, 2, . . ., n16:

The modal contributions of the VE damper on damping and

stiffness, which are related to the global structural system, can be

further elaborated from Equation 16 in matrix forms as

Cd ¼ cveX (xd)XT(xd), xd ¼ L=217a:

Kd ¼ kveX (xd)X T(xd), xd ¼ L=217b:

in which

X (xd) ¼ X1(xd) X 2(xd) � � � X n(xd)
� 	T

is the n 3 1 vibration mode vector at the damper location. From

Equations 17a and 17b, the equation of motion (Equation 10a) of

a Bernoulli–Euler beam implemented with a single VE damper

to resist moving loads can then be expressed as

M€qq(t)þ C _q(t)þKq(t) ¼
Ew(t)� [Cd _q(t)þKdq(t)]18a:

or

M€qq(t)þ (Cþ Cd) _q(t)þ (KþKd)q(t) ¼ Ew(t)18b:
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If multiple VE dampers are implemented at various locations

along the continuous beam, as shown in Figure 2, Equation 18b

can be further expressed as

M€qq(t)þ fCþ
X�
i¼1

cve[X (xdi)X
T(xdi)]g _q(t)

þfKþ
X�
i¼1

kve[X (xdi)X
T(xdi)]gq(t) ¼ Ew(t)

18c:

where � is the number of VE dampers.

In this study, the damping and stiffness coefficients of the

equivalent linear VE damper are determined through a parametric

study by considering three AGVs with la ¼ 3 m moving on the

continuous beam that was implemented with a single VE damper

at xd ¼ 54 m, three VE dampers at xd ¼ 18, 54 and 90 m, and six

VE dampers at xd ¼ 12, 24, 48, 60, 84 and 96 m, as shown in

Figure 2. The performance index J is defined as the square of the

sum of the maximum VRs at various locations (6 m uniformly

spaced, except at the supports) along the three-span continuous

beam as

J ¼ (VRx¼6)2 þ (VRx¼12)2þ � � �

þ (VRx¼96)2 þ (VRx¼102)2
19:

The parametric study is performed by varying the stiffness

coefficient between 1.0 3 103 and 1.0 3 108 N/m, and the damp-

ing coefficient between 1.0 3 103 and 1.0 3 107 N s/m, respec-

tively. Figure 8 illustrates the effects of damper parameters on the

0
Time: s

�10

0

10

�10

0

10

�10

0

10

C
en

tr
al

 a
cc

el
er

at
io

n 
of

 t
he

 m
id

dl
e 

sp
an

: c
m

/s
2

�10

0

10

Single AGV

Three AGVs ( 3 m)la �

Three AGVs ( 9 m)la �

Three AGVs ( 15 m)la �v 2·0 m/s�

70605040302010

Figure 6. Central acceleration responses of the middle span with

one and three AGVs

(VC-B)

42
48

1

3

5

7

9

11

13

0

2

4

6

8

10

12

14

M
ax

im
um

 v
el

oc
ity

 r
at

io

(VC-B)

F vmax 300 kgf, 2·0 m/s� �

Single AGV
Two AGVs ( 3 m)la �

Two AGVs ( 6 m)�la
Two AGVs ( 9 m)�la

Two AGVs ( 12 m)�la
Two AGVs ( 15 m)�la
Two AGVs ( 18 m)�la

Position of continuous beam: m
(b)

0
6

12
18

24
30

36 108
102

96
90

84
78

72
66

60
54

(a)

F vmax 300 kgf, 2·0 m/s� �

Single AGV
Three AGVs ( 3 m)la �

Three laAGVs ( 6 m)�

Three laAGVs ( 9 m)�

Three laAGVs ( 12 m)�

Three laAGVs ( 15 m)�

Three laAGVs ( 18 m)�

42
48

1

3

5

7

9

11

13

0

2

4

6

8

10

12

14

M
ax

im
um

 v
el

oc
ity

 r
at

io

0
6

12
18

24
30

36 108
102

96
90

84
78

72
66

60
54

Figure 7. Effect of AGV spacing on maximum velocity ratios at

various locations: (a) two AGVs; (b) three AGVs

191

Structures and Buildings
Volume 166 Issue SB4

Assessment of vibrations induced in
factories by automated guided vehicles
Lee, Wang and Su



performance index. With the exception of the case involving a

single VE damper, J decreases monotonically with increased

damping for multiple VE dampers. Significant reductions in the

performance index (at least 60%) were achieved with six VE

dampers implemented as cve . 10 3 106: The stiffness coefficient

is found to have a minor effect on the performance index for a

fixed damping coefficient. The minimum performance index

occurs at cve ¼ 10 3 107 N s/m, where the continuous beam

becomes, however, a critically damped system. It is usually

impractical to design a critically damped civil structure. There-

fore, a damper with cve ¼ 7.0 3 106 N s/m and kve ¼ 1.0 3

105 N/m will be adopted for assessment of the effectiveness of

vibration control.

Figure 9 shows the central floor vibration spectra of the middle
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span for varying numbers of AGVs (with a minimum spacing of

3 m) and VE dampers. The central floor vibrations induced by a

single AGV can be suppressed under the VC-B level with a

reduction of 71–77% (Table 2), while those induced by two and

three AGVs can only be reduced to be within the VC-B and VC-

A levels with a reduction of 72–78%, and near the VC-A level

with a reduction of 72–80%, despite the fact that significant

reductions in floor vibrations were realised by implementing

multiple VE dampers. As shown in Table 1, the damping ratios of

the three-span continuous beam that was implemented with a

single VE damper at the middle of the central span (xd ¼ 54 m)

increase from 5% to 23.29%, 28.42% and 6.08% for the first,

third and fifth modes, respectively, while those for the second and

fourth modes remain at 5%, because the VE damper is installed

in the inflection point of the mode shapes. Increasing the number

of VE dampers implemented at various locations along the

continuous beam further enhances the damping ratios. For

instance, the damping ratios of the first five modes of the

continuous beam implemented with six VE dampers (xd ¼ 12, 24,

48, 60, 84 and 96 m) can be significantly enhanced to over 24%,

as shown in Table 1.

Figures 10–12 show the effects of the number of dampers and

AGV spacing on the maximum VRs at various positions of the

three-span continuous beam under AGV moving loads. The

results show that an increased number of VE dampers results in

more pronounced reductions in floor vibrations. If a single VE

damper is implemented on the central span at xd ¼ 54 m, only the

vibrations of the central span can be effectively reduced. How-

ever, in some cases, those of the side spans are amplified. In fact,

the vibrations of the side spans are also governed by the second

mode. The equivalent damping ratio of the second mode is

unchanged for xd ¼ 54 m (the inflection point of the second and

fourth mode shapes). If the damping ratio of the second mode

cannot be significantly enhanced, the maximum response of the

side spans will not be effectively reduced, despite the fact that the

damping ratio of the first mode has considerably increased. When

three VE dampers are installed at the middle of each span, the

maximum VRs can be further reduced. In this case, it is found

that the damping ratio of the fourth mode remains at 5%. If six

VE dampers are installed at xd ¼ 12, 24, 48, 60, 84 and 96 m,

and the spacing of two and three AGVs is set by the vehicle

control system to be larger than 12 m and 18 m, respectively, the

maximum response of the entire continuous beam can be reduced

to meet the VC-B vibration level, as shown in Figures 11 and 12.

5. Conclusion
This study explored AGV-induced vertical vibration on long-span

floors of a TFT-LCD manufacturing factory. To allow quick

assessment of AGV-induced floor micro-vibrations, a reduced

sub-structural model that uses only the AGV moving bay without

the need to construct a finite-element model of the entire storey

was developed. This was done by considering the AGVs as a

sequence of moving loads on an equivalent multiple-span con-

tinuous beam. The state-space procedure was adopted to achieve

the desired numerical stability and accuracy in high-frequency

responses.

The effectiveness of vibration mitigation using VE dampers was

also examined. Simulation results indicate good agreement be-

tween the predicted and in situ measured floor vibration spectra,

and the simulated AGV-induced floor vibrations without control

exceed the acceptable VC-B vibration level that is required for

the installation of some specific precision process tools in the

TFT-LCD industry, regardless of the number of AGVs that are in

motion on the floor. On the other hand, the application of energy-

dissipation devices has shown to be promising in the control of

AGV-induced floor vibrations, as they enhance the damping

characteristics of a multi-span floor system. The maximum

response of the whole continuous beam when induced by a

sequence of AGV moving loads can be suppressed to the desired

VC-B level if proper locations of multiple VE dampers are

implemented and if the specific distances between any two

Number of

VE dampers

Reduction in floor vibrations: %

Single AGV Two AGVs

la ¼ 3 m

Three AGVs

la ¼ 3 m

1 71 72 72

3 72 73 75

6 77 78 80

Table 2. Percentage reduction in floor vibrations at central

location of the middle span
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consecutive AGVs is adjusted such that la > 12 m for two AGVs

and la > 18 m for three AGVs moving on the production floors of

the target TFT-LCD factory. From a practical point of view, the

proposed simplified procedure for the rapid assessment of the

level of AGV-induced floor vibrations may be a good alternative

during the preliminary design phase of new floor systems and for

a quick evaluation of existing production floor systems in high-

technology factories.
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