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 6 
Abstract 7 
 8 
Steel jacketing has been widely used for strengthening reinforced concrete (RC) columns in the past 9 

four decades. In practice, the RC columns to be strengthened are usually subjected to eccentric pre-10 

compressed axial loads. Until now, there have been only limited studies conducted that address the 11 

stress-lagging effects between the original column and the new jacket due to the pre-existing load. In 12 

this paper, the precambered steel plate strengthening approach, which can alleviate the stress-lagging 13 

effects, was adopted to improve the axial strength and moment capacity of the preloaded RC columns 14 

subjected to eccentric compression loading. An experimental study that involved eight specimens with 15 

different eccentricities, plate thicknesses and initial precamber displacements was conducted to examine 16 

the ductility and moment-curvature response of strengthened columns and to validate the effectiveness 17 

of this approach. A theoretical model was developed to predict the axial load capacity of the plate-18 

strengthened columns. A comparison of the theoretical and experimental results showed that the 19 

theoretical model accurately predicted the axial load-carrying capacities of the plate-strengthened 20 

columns under eccentric compression loading. 21 
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Introduction  27 

Due to the deterioration of materials and the demand for additional strength, a large number of 28 

reinforced concrete (RC) columns may need to be retrofitted or strengthened. Steel jacketing, which is 29 

executed by attaching steel plates or angles onto the concrete, has been widely used to strengthen RC 30 

structures due to the cost effectiveness and simple construction. Although a number of studies (Oey et 31 

al. 1996; Ersoy et al. 1993; Ramírez 1996; Wu et al. 2006; Fukuyama et al. 2000; Cirtek et al. 2001; 32 

Adam et al. 2007, 2008 and 2009; Giménez et al. 2009) were conducted to investigate the performance 33 

of the jacketed columns under axial compression loads, only a few considered the effects of pre-34 

existing loads on stress-lagging between the concrete core and the new jacket. Ersoy et al. (1993), 35 

Takeuti et al. (2008) and Giménez et al. (2009) experimentally investigated the effects of pre-existing 36 

loads on the strengthening efficiency. Their test results demonstrated that the stress-lagging effects can 37 

significantly decrease the ultimate axial load capacity of the strengthened columns.  38 

    In real applications, many columns are subjected to various degrees of eccentric compression 39 

loading. The effects of RC columns strengthened by steel jackets under eccentric compression loads 40 

should be investigated. Li et al. (2009) and Garzón et al. (2011) studied the behavior of steel-caged 41 

columns under combined bending and axial loads. Their experimental results revealed that the steel 42 

strips and angles can increase the load resistance and ductility of strengthened columns. Montuori and 43 

Piluso (2009) tested thirteen RC columns strengthened by steel angles and battens under eccentric 44 

loading. Their study demonstrated that both the axial load-carrying capacity and the lateral 45 

deformability of strengthened concrete columns can be enhanced. Furthermore, they proposed a 46 

theoretical model that was able to predict the load-carrying capacity of the strengthened columns 47 

based on a kinematic mechanism. In their model, the hoops were considered simple support restraints, 48 

and the longitudinal bar was modeled as a continuous beam on simple supports that were subjected to 49 

a compressive axial load. With increasing axial load, the section of the bar between the two hoops 50 

developed a kinematic mechanism characterized by three plastic hinges. In addition, a comparison of 51 

the moment-curvature responses was performed that showed the accuracy of the model in predicting 52 



the structural response within the whole deformation range. Our companion paper (Wang and Su 2012) 53 

presented a test of nine preloaded RC columns strengthened by precambered steel plates under 54 

eccentric loading. The test results showed that precambered steel plates could actively share the existing 55 

axial loads with the original column. Stress relief in the original concrete column and post-stress developed 56 

in the steel plates can alleviate the stress-lagging and displacement incompatibility problems. Both the 57 

axial and moment capacities of strengthened columns were enhanced. The post-yield deformation was 58 

substantially increased.  59 

In this paper, new experimental results in terms of the ductility and moment-curvature response of 60 

strengthened RC columns with precambered steel plates under eccentric compression loads are 61 

presented. A theoretical model based on elementary structure mechanics with consideration of stress-62 

lagging effects was developed to predict the axial load-carrying capacity of plate-strengthened 63 

columns under eccentric compression loading. The accuracy of the model was verified through a 64 

comparison of the model with experimental results obtained by the authors and by Montuori and 65 

Piluso (2009). 66 

 67 

Theoretical model 68 

Initial Precamber  69 

Two stainless steel rods and bolts are used to control the initial deformation of the plates and to form 70 

the required precambered profile as shown in Fig. 1. Because the bolts at both ends of the steel plates 71 

restrain the end rotations of the plates, the initial lateral displacement (v) of the precambered plate can 72 

be approximated by a cosine function (Su et al. 2011) as expressed in Eq.(1). 73 

                                                                 
,
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                                                           (1) 74 

where δ is the initial precamber at the mid-height of the plate, Lrc,pl is the clear height of the RC 75 

column under preloading (Ppl), x is the coordinate defined along the height of the column, and the 76 



subscript pl denotes the preloading stage. Eq. (1) satisfies the boundary conditions at both ends of the 77 

steel plates, i.e., 0v =  and 0dv
dx

=  when 0x = or ,rc plx L= .     78 

The difference in length of the steel plate and the RC column (ΔL) can be evaluated by Eq. (2). 79 
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Putting Eq. (1) into Eq. (2) gives 81 
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Material Constitutive Laws and Simplified Stress Block Model 83 

The stress-strain relationship of concrete in compression is represented by the parabolic relationship 84 

proposed by Hognestad et al. (1955). 85 
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where fc
’ is the concrete compressive cylinder strength, cσ  and cε are the stress and strain of the 87 

concrete, respectively, and εco is the concrete compressive strain corresponding to fc
’.  88 

    Both the steel plates and steel bars are assumed to be elasto-plastic materials. In the initial elastic 89 

stage, the stress-strain models of steel plates and steel bars can be expressed as 90 

                                                                            p p pEσ ε=                                                                     (5) 91 

                                                                            s s sEσ ε=                                                                      (6) 92 

where pσ  and pε are the stress and strain of steel plates, respectively, and sσ , sε and sE are the stress, 93 

strain and Young’s modulus of the steel bars, respectively. 94 

    Collins and Mitchell (1987) noted that, for a column section with a constant width, the parabolic 95 

portion of the concrete stress distribution can be replaced by an equivalent rectangular block by 96 

introducing the stress block factors α and β as shown in Fig. 2, which can be calculated using Eq. (7) 97 

and Eq. (8).  98 
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Preloading stage 101 

The preloading force is resisted by concrete and steel bars before flattening the precambered steel 102 

plates. The equilibrium equation of the RC column before flattening the plates can be obtained from 103 

the sum of the internal forces. 104 
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The equation obtained from taking moments about the tension steel is                                                                                 106 
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where b is the width of the column section as shown in Fig. 2, d and d’ are the depths of the tension 108 

steel and the compression steel measured from extreme compression fiber, respectively, db is the 109 

diameter of the bolt hole, Esc and Est are the Young’s moduli of the compression steel bar and tension 110 

steel bar, respectively, Asc and Ast are the total cross-sectional areas of the compression steel bars and 111 

tension steel bars, respectively, and e’ is the distance between the load point and the tension steel. The 112 

depth of the compression zone (cpl) and the concrete strain at extreme compression fibers (εc,pl) in the 113 

preloading stage can be obtained from Eqs. (7), (8), (9) and (10). 114 

    The axial stiffness of the RC column (Krc,pl) and a steel plate (Kp) can be determined by Eq.(11) and 115 

Eq.(12), respectively. 116 
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where Ec and Ep are the values for the Young’s moduli of concrete and steel plates, respectively, Ac is 119 

the cross-sectional area of the RC column considering the cracked section, Ap is the cross-sectional 120 

area of a steel plate and Lp is the undeformed length of the steel plate. 121 

 122 

Post-stressing stage 123 

When the precambered steel plates are flattened, the preloading force is resisted by concrete, steel bars 124 

and steel plates. Fig. 3 shows the lengths and deformations of the plates and the RC column at three 125 

different loading stages, i.e., the undeformed stage, the preloading stage and the post-stressing stage. 126 

By progressively tightening the bolts on both sides of the column, the precambered steel plates are 127 

gradually flattened. Due to the arching action, a post-compressive force (Pp,ps) is generated in the steel 128 

plates, and an equal magnitude de-compressive force is generated in the RC column. Using Hooke’s 129 

law, the total post-stressed force provided by the plates is 130 

                                                                       , ,2p ps p p psP K= ∆                                                               (13) 131 

where Δp,ps is the axial shortening of the steel plate while tightening the bolts when compared to the 132 

original undeformed state, and the subscript ps denotes the post-stressing stage. 133 

    The de-compressive force in the RC column can be written as 134 

                                                                      , , ,p ps rc pl rc psP K= ∆                                                              (14) 135 

where Δrc,ps is the increase in length of the RC column during the post-stressing stage, as shown in Fig. 136 

3.  137 

    The difference in lengths of the steel plate and RC column in the preloading stage can be expressed 138 

as 139 

                                                                        ,L p rc plL L∆ = −                                                                (15) 140 

    According to the displacement compatibility model (Fig. 3), the difference in the lengths of the steel 141 

plate and RC column in the preloading stage is equal to the sum of the axial stretching of the RC 142 

column (Δrc,ps) and the axial shortening of the steel plates (Δp,ps). Hence, 143 

                                                                       , ,L rc ps p ps∆ = ∆ + ∆                                                             (16) 144 



    Substituting Eq. (13) and Eq. (14) into Eq. (16) gives 145 
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    Putting Eq. (17) into Eq. (13), the post-compressive force in the plates can be obtained by 147 
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    Meanwhile, the stress of steel plates (σp,ps ) at the post-stressing stage can be expressed by 149 

                                                                          ,
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σ =                                                                  (19) 150 

    By considering vertical force equilibrium, the preloading force is resisted by the concrete, the steel 151 

bars and the steel plates. Hence,  152 

                                                           , , ,2pl c ps c s ps s p ps pP A A Aσ σ σ= + +                                                  (20) 153 

where σc,ps, σs,ps and σp,ps are the axial stresses in the concrete, the steel bars and the steel plates in the 154 

post-stressing stage, respectively, and As is the total cross-sectional area of the vertical steel bars.    155 

    We assume that there is no bond slip between the steel bars and the concrete. Hence, 156 

                                                                            , ,c ps s psε ε=                                                                   (21) 157 

    By considering the equivalent rectangular stress block, the equilibrium equation of the strengthened 158 

column can be obtained from the sum of the internal forces. 159 
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The equation obtained from taking moments about the tension steel is                                                                      161 
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where d’’ is the distance from the center of the compression block of the steel plate to the tension steel. 163 

The depth of the compression zone (cps) and strain of concrete (εc,ps) in the post-stressing stage can be 164 

obtained by solving Eqs. (7), (8), (22) and (23).     165 

 166 



Ultimate Load Capacity 167 

Assuming that the compression steel has been yielded, the equilibrium equation can be obtained from 168 

the sum of the internal forces. 169 

                                           '( 2 ) 2 2u u b c sc scy st st pcu ptuP b c d f A f A f P Pαβ= − + − + −                                       (24) 170 

The equation obtained from taking moments about the tension steel is                            171 
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where fscy is the compression steel yield strength, fst is the stress in the tension steel, Ppcu and Pptu are 173 

the forces defined in Fig. 4(c), and dpcu and dptu are the distances from the center of force Ppcu and 174 

force Pptu to the tension steel, respectively.  175 

    Force Ppcu at the ultimate load is  176 

                                                                        pcu p py puP t f c=                                                                 (26) 177 

where tp is the thickness of plate, fpy is the yield strength of steel plate, and cpu is the depth of the 178 

neutral axis measured from the extreme compression fiber of the steel plate, as shown in Fig. 4(b), 179 

which can be calculated by 180 
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where h is the width of steel plate and φ  is the change of curvature of RC column between the post-182 

stressing stage and the ultimate load stage, which can be expressed as 183 

                                                                  ,
2 1
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u psc c
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where 1φ  is the curvature of RC column at the post-stressing stage and 2φ  is the curvature of the RC 185 

column at the ultimate load stage, as shown in Fig. 4(a). 186 

    According to the assumption of curvature compatibility between the RC column and steel plates, the 187 

force Pptu is  188 

                              , , , ,( ) ( )cu c ps p ps py cu c ps p ps
ptu p p pyP t E h h

ε ε ε ε ε ε ε
ε φ

φ φ
− + − − + 

= − − − 
 

                     (29)                                                189 



The depth of the compression zone (cu) and ultimate load-carrying capacity (Pu) can be obtained from 190 

Eqs. (7), (8), (24) to (29). If a tension failure occurs, the tension steel yields, and Eq. (24) applies with 191 

fst=fsty. 192 

 193 
 194 
A Brief Description of Experimental Study 195 

Because the detailed experimental procedure for preloaded RC columns strengthened with 196 

precambered steel plates subjected to eccentric loading has been presented in our companion paper 197 

(Wang and Su 2012), only a brief description of the test procedure is given in this paper. The new 198 

experimental results on ductility and moment-curvature response of eight precambered steel plate–199 

strengthened column specimens, involving a new specimen ESC3-3, are presented.  200 

All the tested concrete columns have the same dimensions and reinforcement arrangements. Fig. 5 201 

shows the reinforcement and steel plate details. Specimens ESC1-1, ESC2-1 and ESC3-1 were control 202 

specimens without any strengthening measures to demonstrate the structural performance of RC 203 

columns prior to strengthening. The other five specimens were strengthened by precamber steel plates 204 

with varying initial precamber and plate thicknesses. Table 1 shows the average concrete cube and 205 

cylinder compressive strengths (fcu and fc’) as well as the design parameters for each specimen. Table 2 206 

summarizes the material properties of the steel reinforcements and steel plates. All plate-strengthened 207 

columns were subjected to preloading before the plates were flattened, which was equal to 30% of the 208 

ultimate axial load capacity of the corresponding control column. For the plate-strengthened 209 

specimens, the axial load was applied under a force control with a loading rate of 2 kN/sec. After 210 

tightening the bolts and flattening the precambered plates, the applied load was changed to a 211 

displacement control with a displacement rate of 0.5 mm/min. The test was terminated when the post-212 

peak load reached 80% of the peak load. 213 

    Before installing the steel plates, 65 mm × 65 mm steel angles were welded to both ends of the 214 

plates, as shown in Fig. 6. The gaps between the steel angles and the concrete at the bottom and top of 215 

the steel plates were filled with an injection plaster, forming a layer of bedding between the steel 216 



angles and the concrete. The post-stress procedure described in Wang and Su (2012), which can avoid 217 

warping or buckling of the steel plates during decompression of the RC column by flattening the 218 

precambered steel plates, was adopted. 219 

 220 

Results and Discussion 221 

Ultimate Load Capacity and Bending Strength  222 

Table 3 summarizes the ultimate axial load capacities of all of the specimens. Compared with the 223 

control column in each of the groups, the strengthened specimens show various degrees of 224 

strengthening from 13.9% to 64.0%. In group A, the ultimate load capacities of Specimens ESC1-2, 225 

ESC1-3 and ESC1-4 are increased by 27.1%, 64.0% and 44.6%, respectively. In group B, the ultimate 226 

load capacity of Specimen ESC2-2 is enhanced by 13.9%. In group C, the ultimate capacity of 227 

Specimen ESC3-3 is increased by 49.0%.  228 

    According to the proposed theoretical model described in the previous sections, the predicted axial 229 

load capacity (Ppre) of the specimens was determined by Eq. (22) and Eq. (23). During the calculations 230 

of the ultimate load capacity of the RC columns, the extreme fiber compression strain of concrete εcu 231 

was assumed to be 0.003 (Park and Paulay, 1975), and the gross sectional area of the concrete (Ac) did 232 

not include the areas of the bolt holes. The predicted axial load capacity of the specimens is presented 233 

in Table 3. Comparing the theoretical and experimental axial load capacities reveals that the proposed 234 

design procedure is generally able to conservatively estimate the actual axial load capacities of the 235 

plate-strengthened columns under eccentric compression loading with an average overestimation of 236 

2.1%. 237 

    Due to the eccentricity of the applied axial load, a bending moment is always generated. The 238 

ultimate moment (Mu) at the mid-height of the column is composed of the primary moment (Mp), 239 

which is calculated based on the nominal eccentricity, and the secondary moment (Ms) caused by the 240 

P-Δ effect; both are summarized in Table 3. The definitions of the primary, secondary and ultimate 241 

moments can be found in Wang and Su (2012). In Group A, the secondary moment of the 242 



strengthened columns ESC1-2, ESC1-3 and ESC1-4  due to the P-Δ effect increased by 27.6%, 49.2% 243 

and 37.3%, respectively. In Group B, the secondary moment of the strengthened column due to the P-244 

Δ effect increased by 24.9%. In Group C, the secondary moment of the strengthened column due to 245 

the P-Δ effect increased by 188.3%. It is evident that the bending moment of Specimen ESC3-3 is the 246 

largest among the eight specimens due to the largest lateral displacement and degree of eccentricity as 247 

listed in Table 3.  248 

Deformation and Ductility 249 

The deformability factor (λ), proposed by De Luca et al. (2011), was adopted to evaluate the 250 

deformation performance of the strengthened columns, which is defined as  251 

                                                                           f uλ = ∆ ∆                                                                   (30) 252 

where Δu is the axial shortening at the ultimate load and Δf is the axial shortening at the failure load, 253 

which is equal to 75% of the ultimate load. In Group A, compared to the control column, the axial 254 

shortening at the failure load of the strengthened columns ESC1-2, ESC1-3 and ESC1-4 improved by 255 

61.7%, 160.2% and 103.9% respectively, as shown in Fig. 7(a), and the deformability factor of the 256 

strengthened columns increased by 27.3%, 61.4% and 65.9% respectively. In Group B, compared to 257 

the control column, the axial shortening at the failure load of the strengthened column improved by 258 

49.0%, as shown in Fig. 7(b), and the deformability factor of the strengthened column increased by 259 

31.8%. In Group C, compared to the control column, the axial shortening at the failure load of the 260 

strengthened column improved by 222.2%, as shown in Fig. 7(c), and the deformability factor of the 261 

strengthened column increased by 93.0%. Thus, the plate thickness plays an important role in 262 

increasing the deformability of the strengthened columns, whereas the initial precamber and 263 

eccentricity do not have a substantial effect on the displacement ductility of columns. 264 

    The displacement ductility factor (η) is introduced to evaluate the ductility performance of the 265 

strengthened columns. The load-axial shortening responses of the specimens shown in Fig. 7 can be 266 

idealized as a bi-linear curve (Fig. 8). The displacement ductility factor (Su et al. 2010) is defined as 267 

the ratio of the axial shortening at peak load (Δu) to the notional yield displacement (Δy); thus,  268 



                                                                           u yη = ∆ ∆                                                                   (31) 269 

    As shown in Table 4, the displacement ductility factors range from 1.36 (for Specimen ESC2-1) to 270 

1.94 (for Specimen ESC3-3). For each of the groups, the displacement ductility factor of the control 271 

columns was the lowest. Compared with Specimens ESC1-4 (δ = 6 mm), the displacement ductility 272 

factor of Specimens ESC1-3 (δ = 10 mm) was increased by only 3.4%. Hence, the increase in the 273 

initial precamber cannot effectively enhance the displacement ductility. Compared with Specimens 274 

ESC1-2 and ESC1-3 (e = 30 mm), the displacement ductility factors of Specimens ESC2-2 (e = 70 275 

mm) and ESC3-3 (e = 100 mm) were increased by only 1.4% and 5.4%, respectively. Hence, the 276 

displacement ductility is not sensitive to the eccentricity of the applied load. Using thicker plates (tp = 277 

6 mm) for Specimen ESC1-3 instead of thinner plates (tp = 3 mm) for Specimens ESC1-2, the 278 

displacement ductility of ESC1-3 was increased by 30.5 %. Hence, using thicker plates can effectively 279 

improve the ductility of strengthened columns.   280 

 281 

Moment-curvature Responses 282 

Fig. 9(a) and Fig. 9(b) show the effects of eccentricity on the moment-curvature relationship of the 283 

columns. For the specimens strengthened by 3 mm plates, the moment-curvature relationship of 284 

Specimen ESC2-2 under 70 mm eccentricity was elastic until the moment reached 13.1 kNm, which 285 

was 19.3% larger than the moment of Specimen ESC1-2 under 30 mm eccentricity. Specimen ESC2-2 286 

failed when the curvature was 26.2×10-3 m-1, which was 12.9% larger than that of Specimen ESC1-2. 287 

For the specimens strengthened by 3 mm plates, the moment-curvature relationship of Specimen 288 

ESC3-3 under 100 mm eccentricity was elastic until the moment reached 27.2 kNm, which was 97.1% 289 

larger than the moment of Specimen ESC1-3 under 30 mm eccentricity. Specimen ESC3-3 failed 290 

when the curvature was 38.3×10-3 m-1, which was 13.7% larger than that of Specimen ESC1-3.  291 

    Fig. 9(c) shows the effects of the plate thickness on the moment-curvature relationship of the 292 

columns. Under the condition of 30 mm eccentricity, the moment-curvature relationship of Specimen 293 

ESC1-3 strengthened by the plates that were 6 mm thick was elastic until the moment and curvature 294 



reached 13.8 kNm and 5.8×10-3 m-1, respectively, which were 21.1% and 99.7% larger than the 295 

moment and curvature of Specimen ESC1-2 strengthened by the plates that were 3 mm thick. 296 

Specimen ESC1-3 failed when the ultimate curvature was 32.3×10-3 m-1, which was 38.1% larger than 297 

that of Specimen ESC1-2.  298 

    Fig. 9(d) shows the effects of the initial precamber on the moment-curvature relationship of the 299 

columns. The moment-curvature relationship of Specimen ESC1-3 with 10 mm initial precamber was 300 

elastic until the moment reached 13.8 kNm, which was 8.7% larger than that of Specimen ESC1-4 301 

with 6 mm initial precamber. Both of them had the same curvature (5.7×10-3 m-1) during the elastic 302 

stage. Specimen ESC1-3 failed when its curvature was 32.3×10-3 m-1, which was 4.5% larger than that 303 

of Specimen ESC1-4. The results demonstrated that the ductility of the column was mainly affected by 304 

the plate thickness rather than the eccentricity and the initial precamber, and a larger plate thickness 305 

can provide better ductility.  306 

Comparison with Available Experimental Results 307 

   Montuori and Piluso (2009) tested eight RC columns strengthened with steel cages subjected to 308 

eccentric compression loads. The steel cage consisted of steel angles and battens. The strengthened 309 

columns can be divided into three different types according to the function of steel angles. The 310 

ultimate capacity of the strengthened columns was evaluated using the proposed theoretical model. 311 

The stress-strain relationship of confined concrete used by Montuori and Piluso (2009) was adopted in 312 

our theoretical calculation.  313 

   Table 5 compares the ultimate load capacity presented in Montuori and Piluso (2009) with that 314 

obtained from the theoretical model.  As shown in the table, all the theoretical load capacities (Ppred) 315 

agree well with the experimental ultimate load capacities (PMon,exp). The average discrepancy of 316 

PMon,exp/Ppred is only 2%. Meanwhile, comparing the theoretical results (PMon,pred) proposed by 317 

Montuori and Piluso (2009) with the theoretical results obtained from our proposed model, the average 318 

discrepancy of PMon,pre/Ppred is also 2%. Hence, the proposed theoretical model is of a similar accuracy 319 

when compared with that from Montuori and Piluso (2009).  320 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bMontuori%2C+Rosario%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bPiluso%2C+Vincenzo%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bMontuori%2C+Rosario%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
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Conclusions  321 

    The paper presents a study on the strengthening of RC columns using precambered steel plates. The 322 

theoretical and experimental findings are summarized as follows: 323 

    (1) The experimental results show that precambered plates can share the existing axial load in the 324 

original column. Stress-lagging effects can be alleviated by controlling the initial precambered profile 325 

of the steel plates. 326 

    (2) External steel plates can considerably enhance the axial strength and deformation capacity of 327 

plate-strengthened columns under eccentric compression loading. 328 

    (3) Thicker steel plates and larger initial precamber can enhance the ultimate load capacity of 329 

columns, and a larger plate thickness can also improve the axial deformation capacity and ductility of 330 

columns significantly. 331 

    (4) The bending moment capacity of a column is significantly affected by the degree of eccentricity 332 

because the larger degree of eccentricity can increase the lateral displacement at the mid-height of 333 

columns and, hence, increase the secondary moment caused by the P-Δ effect. 334 

    (5) An original theoretical model was developed based on the principles of force equilibrium and 335 

the displacement compatibility between the steel plates and the RC column. The experimental and 336 

theoretical results showed a good agreement with each other. The comparison between the available 337 

test results of Montuori and Piluso (2009) and the predicted theoretical results was also presented. This 338 

study demonstrates that the theoretical model is able to accurately predict the axial load-carrying 339 

capacity of the plate-strengthened columns under eccentric compression loading.  340 
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 446 
Table 1.  Summary of strengthening details 447 

Group Specimen fcu 
(MPa) 

f ’c 
(MPa) 

Ec 
(GPa) 

Lrc  
(mm) 

e 
(mm) 

tp 
(mm) 

δ 
(mm) 

Ppl 
(kN) 

[A] ESC1-1 31.3 25.6 23.8 600 30 - - - 
 ESC1-2 31.9 25.8 23.9 600 30 3 10 101 
 ESC1-3 31.6 25.9 23.9 600 30 6 10 101 
 ESC1-4 32.7 26.1 24.0 600 30 6 6 101 
          

[B] ESC2-1 33.3 27.8 24.8 600 70 - - - 
 ESC2-2 32.0 25.7 23.8 600 70 3 10 63 
          

[C] ESC3-1 29.7 24.2 23.1 600 100 - - - 
 ESC3-3 32.6 26.5 24.2 600 100 6 10 43 

 448 
 449 

Table 2. Material properties of reinforcements and steel plates 450 
Steel Plate 

Thickness fyp(MPa) Ep (GPa) 
3 mm 301 215 
6 mm 327 219 

 451 
Reinforcement bars 

Specimen fy(MPa) Es (GPa) 
T10 497 198 
T12 516 198 
R6 464 186 
R8 437 187 

 452 
 453 

Table 3. Comparison of the theoretical and experimental results 454 

Group Specimen ζu 
(mm) 

Mp 
(kN m) 

Ms 
(kN m) 

Mu 
(kN m) 

Pexp 
(kN) 

Ppred 
(kN) 

Pexp/Ppred  
 

[A] ESC1-1 5.51 10.08 1.85 11.93 336 329 1.02 
 ESC1-2 5.53 12.81 2.36 15.17 427 390 1.09 
 ESC1-3 5.01 16.53 2.76 19.29 551 545 1.01 
 ESC1-4 5.23 14.58 2.54 17.12 486 471 1.03 
         

[B] ESC2-1 9.62 14.63 2.01 16.64 209 208 1.01 
 ESC2-2 10.55 16.66 2.51 19.17 238 227 1.05 
         

[C] ESC3-1 10.11 14.30 1.45 15.75 143 143 1.00 
 ESC3-3 17.36 24.10 4.18 28.28 213 222 0.96 

Note: Pexp is the test result, Ppred is the predicted result. 455 

456 



 457 

Table 4.   Summary of deformability and ductility factors 458 

Group Specimen Δy  
(mm) 

Δu  
(mm) 

Δf  
(mm) λ  η 

[A] ESC1-1 0.71 0.97 1.28 1.32 1.37 
 ESC1-2 0.87 1.23 2.07 1.68 1.41 
 ESC1-3 0.85 1.56 3.33 2.13 1.84 
 ESC1-4 0.67 1.19 2.61 2.19 1.78 
       

[B] ESC2-1 0.28 0.38 0.49 1.29 1.36 
 ESC2-2 0.30 0.43 0.73 1.70 1.43 
       

[C] ESC3-1 0.14 0.21 0.27 1.29 1.50 
 ESC3-3 0.18 0.35 0.99 2.83 1.94 

  459 
 460 

Table 5.   Comparison of ultimate load capacities from Montuori and Piluso (2009) and the present 461 
proposed theoretical model 462 

Specimen PMon,exp  
(kN) 

PMon,pred  
(kN) 

Ppred  
(kN) 

PMon,exp/ Ppred  
  

PMon,pred/ Ppred  
 

A-R1 513.95 527.02 507.08 1.01 1.04 
B-R1a 703.23 683.62 683.38 1.03 1.03 
B-R1b 662.71 649.75 656.56 1.01 0.99 
C-R1 498.74 495.15 480.55 1.04 1.03 
D-R1 545.19 553.24 528.23 1.03 1.05 
D-R2 568.98 583.22 563.18 1.01 1.04 
D-R3 483.63 453.84 462.86 1.04 0.98 
E-R1 713.24 713.80 705.28 1.01 1.01 
Mean - - - 1.02 1.02 

Note: PMon,exp is the test result and PMon,pred is the predicted result, both from Montuori and Piluso (2009). 463 
  464 

 465 
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