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Model Order Reduction for Multiband Quantum
Transport Simulations and its Application to

p-Type Junctionless Transistors
Jun Z. Huang, Weng Cho Chew, Fellow, IEEE, Jie Peng, Chi-Yung Yam,

Li Jun Jiang, Member, IEEE, and Guan-Hua Chen

Abstract— An efficient method is developed for multiband
simulation of quantum transport in nanowire electronic devices
within nonequilibrium Green’s function formalism. The efficiency
relies on a model order reduction technique, which projects the
k · p Hamiltonian into a much smaller subspace constructed
by sampling the Bloch modes of each cross-section layer. Sev-
eral sampling approaches are discussed to obtain a minimum
and accurate basis with reduced computational overhead. The
technique is verified by calculating the valence bands of silicon
nanowires (SiNWs) and by solving I-V curves of p-type SiNW
transistors. This enables us to study for the first time the
performances of large cross-section p-type junctionless (JL)
transistors in the quantum ballistic transport limit. The influences
of doping density, transport direction, channel length, and cross-
section size are examined. We find that larger doping densities
may lead to worse sub-threshold slopes due to the enhanced
source-to-drain tunneling. Compared with their counterparts,
i.e., classical inversion-mode (IM) transistors, they have better
sub-threshold behaviors, but they do not necessarily provide a
better ON/OFF ratio except when the channel is short or thin. In
addition, unlike IM transistors, [110] and [111] channel directions
in JL transistors are very robust against channel thicknes scaling.

Index Terms— Junctionless transistors, k · p approach, model
order reduction (MOR), multiband simulation, nonequilibrium
Green’s function (NEGF), quantum transport, silicon nanowire
transistors.

I. INTRODUCTION

ONE-DIMENSIONAL nanowire structures, such as car-
bon nanotubes (CNTs), graphene nanoribbons (GNRs),

and silicon (germanium or III–V material) nanowires (SiNWs),
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have attracted much attention during the past two decades. Due
to their excellent physical properties, they are believed to have
great potential in many applications, including the building
blocks of future electronic devices.

To understand the electrical properties of nanodevices built
upon these small structures, a quantum-mechanical method,
nonequilibrium Green’s function (NEGF) approach [1], has
been widely used to simulate their carrier transport. As the
computational cost of the real space (RS) NEGF approach
is huge, mode space (MS) approaches have been success-
fully developed for simulating nanostructures with strong
confinement in the lateral directions, such as the nanowires
mentioned above [2]–[4]. These approaches expand the device
Hamiltonian in the space spanned by the eigenmodes of the
cross sections. Making use of the fact that usually a few
modes participate in the transport process, the dimension of
the Hamiltonian matrix in the MS can be greatly reduced and
thus the Green’s function in the MS can easily be solved.
This is true for single-band effective mass approximation,
since the eigenmodes for each cross section are wave vector
k-independent. For more accurate multiband models, such
as the tight-binding and k · p models, as pointed out in
[4]–[6], the modes are generally k-dependent and thus the
transformation from the RS to MS does not exist. It is recently
shown that the k-dependent modes also make the contact block
reduction method troublesome when it is combined with tight-
binding model [7].

The exception is the tight-binding model of gate-all-
around (GAA) CNT transistors, which has a rigorous MS
approach [8]. However, to simulate general CNT transistors
which do not possess GAA feature [9] and GNR transistors
[10], some crude approximations have been made so that the
MS approach can still be applied. As a result, the accuracy
is compromised. To improve the accuracy, a criterion of
mode selection for GNR transistors has been suggested [6]
that works pretty well near the conduction band minima
(and valence band maxima). Quite recently, low-dimensional
equivalent transport models have been constructed for tight-
binding Hamiltonians of SiNWs [11], thanks to a spurious
mode elimination process. Another low rank approximation
method has been tried [12], but it involves large eigenvalue
problems requiring much computational cost.

A MS approach has also been proposed for multiband k · p
models [5], which demonstrates great success to simulation
of p-type SiNW transistors and InAs nanowire tunneling

0018-9383/$31.00 © 2013 IEEE
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Fig. 1. P-type GAA SiNW transistor. If the channel is N-type doping, the
device is a classical IM transistor. If the channel has the same doping type and
doping density as the source (or drain) extension region, it is a JL transistor.

transistors. Unfortunately, the modes adopted can only accu-
rately expand the wave function near the � point. Away from
the � point, many modes are actually needed which limits its
performance. Generally, to capture the feature of k-dependent
modes in multiband simulations, as is commonly done in
model order reduction (MOR) methods in electromagnetics
[13] and asymptotic waveform evaluation [14], it is better to
adopt multipoint expansion. This is adopted in this paper. We
will demonstrate this approach by simulation of hole transport
in p-type SiNW field effect transistors using the three-band and
six-band k · p Hamiltonian.

Recently, JL transistors have been proposed [15] and experi-
mentally demonstrated [16]; they show extraordinarily promis-
ing performance but with simpler fabrication. To characterize
the performance and illustrate the physics, many simula-
tions have been carried out, either semi-classically [15]–[22]
or quantum-mechanically [23]–[26]. For quantum-mechanical
study, as far as we know, only n-type ones with large cross
sections have been carried out [24]–[26]. This is because the
single-band effective mass model is enough for the description
of conduction band and it can be done in the MS. Since the
description of the valence band requires computationally more
intensive multiband model, simulation of p-type ones has been
limited to only 1.15-nm diameter [23] and performances of
large cross-section ones remain unexamined. With our MOR
technique, we are able to fill the gap. As a step toward more
sophisticated full NEGF simulation, coherent transport will be
assumed in this paper.

In Section II, we first describe the multiband model and
outline the NEGF approach, then we present the MOR tech-
nique in detail and benchmark it with caution. In Section III,
the method is applied to simulate p-type JL transistors with
different channel materials and geometries. Various device
figures-of-merit are extracted and compared with those of
classical IM transistors. Conclusions are drawn in Section IV.

II. METHOD DESCRIPTION

A. Multiband Effective Mass Equation

According to multiband effective mass theory [27], the
wavefunction inside the nanostructures can be found by solv-
ing the following coupled differential equation for envelop
function Fm (m = 1, 2, . . . , N)

N∑

n=1

[
H kp

mn (−i∇) + V (r) δmn

]
Fn (r) = E Fm (r) (1)

where N is the number of bands considered, V (r) is the
slowly varying perturbed potential distribution, and operator
H kp

mn (−i∇) is the element of the k · p Hamiltonian with k
replaced by differential operator −i∇.

The six-band k · p Hamiltonian can be written as (if we
arrange the basis in this order, three spin up p atomic orbital-
like states and three spin down ones) [28]

Hkp =
(

EV B,0 + h̄2k2

2m0

)
I +

(
Hdkk 0

0 Hdkk

)
+ Hso (2)

where EV B,0 is the valence band edge, I is the identity matrix.
The Dresselhaus–Kip–Kittel (DKK) Hamiltonian Hdkk is

Hdkk =
⎛

⎝
L̃k2

x + Mk2 Nkx ky Nkx kz

Nkx ky L̃k2
y + Mk2 Nkykz

Nkx kz Nkykz L̃k2
z + Mk2

⎞

⎠ (3)

where L̃ = L − M , and the parameters L, M , N are related to
the effective masses, which can be found in [29]. The spin–
orbit interaction Hso can be written as

Hso =
(

A B
−B∗ A∗

)
(4)

with

A = �

3

⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ , B = �

3

⎛

⎝
0 0 1
0 0 −i

−1 i 0

⎞

⎠ (5)

where � is the spin–orbit splitting parameter, which can be
set to zero to reduce to three-band model.

To numerically solve (1), we need to discretize the differen-
tial operator, which can be done using finite difference method
(FDM) provided in [30]. Note that for nanowire directions
other than [100], coordinate transformation for (2) should be
performed before the discretization.

B. NEGF Solution

For transport problems, it is required to solve (1) with open
boundary conditions and then get the physical quantities of
interest, such as charge density and current. This can be nicely
formulated with NEGF approach [1].

In this formalism, we need to solve the retarded Green’s
function G of the device region (in RS) defined as

[EI − H0 − � (E)] G (E) = I (6)

where H0 is the discretized k · p Hamiltonian of the isolated
device (with potential term included), and � is the self-
energy matrix due to the semi-infinite leads [31]. For nanowire
structure like Fig. 1, H0 can take a block tridiagonal form,
the diagonal block Hi,i (with size Nt × Nt ) is the on-site
Hamiltonian for the i th layer; the off-diagonal block Hi,i±1
(with size Nt × Nt ) is the coupling Hamiltonian between the
i th and the (i ± 1)th layer. Thus, H0 is of size (Nt Nl )×(Nt Nl )
with Nl being the number of layers. In coherent transport limit,
� just has two nonzero blocks, this first is �1,1 and the last
is �Nl ,Nl .
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−3 −2 −1 0 1 2 3

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Wave Number k [1/nm]

E
ne

rg
y 

[e
V

]

(b) SiNW [110]

−3 −2 −1 0 1 2 3

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Wave Number k [1/nm]

E
ne

rg
y 

[e
V

]

(c) SiNW [111]

Fig. 2. E-k relations for 5 × 5 nm SiNWs in the [100], [110], and [111] directions. Red lines: exact solution. Blue lines: MOR solution.

The charge density n (r) and the current Ji→i+1 flowing
between layer i and layer i + 1 can both be expressed in
terms of G (E) [1], [32]

n (r) = 2
∫

d E

2π
Gn (r, r, E) (7)

Ji→i+1 = 2
ie

h̄

∫
d E

2π
Trace[Hi,i+1Gn

i+1,i (E)

−Hi+1,i Gn
i,i+1 (E)] (8)

where correlation function Gn = G�inG†. Here, �in takes the
same format as �, but with the first and last diagonal blocks
replaced by −2�m

(
�1,1

)
f (E − μL) and −2�m

(
�Nl ,Nl

)

f (E − μR), where f (E) is the Fermi–Dirac distribution
function, μL and μR are the chemical potentials of the left
and right leads.

The problem is that solving (6) for realistic systems is
very difficult in terms of both CPU and memory require-
ments. Furthermore, we need to solve (6) for different E
as required by (7) and (8), and we need to recalculate (7)
once a new potential is generated by Poisson equation until
self-consistency is achieved. In spite of the popular recursive
Green’s function (RGF) algorithm [32], its CPU and memory
cost are O(N3

t Nl ) and O(N2
t Nl ), respectively, and therefore

is only feasible for small cross-section size.

C. Model Order Reduction

Similar to the MS approach, the first step is to construct a
unitary transformation matrix U of size (Nt Nl ) × (Nm Nl ) in
the following format:

U = diag
(
V1, V2, . . . , Vi , . . . , VNl

)
(9)

where Vi (i = 1, 2, . . . , Nl ) is a Nt × Nm (Nm < Nt ) sub-
matrix that contains reduced basis for layer i .

Then, (6) can be transformed into this reduced basis
[

EI − H̃0 − �̃ (E)
]

G̃ (E) = I (10)

where

H̃0 = U†H0U

�̃ (E) = U†� (E) U

G̃ (E) = U†G (E) U. (11)

Note that H̃0 is still block tridiagonal and �̃ (E) can be
directly calculated from lead Hamiltonian in the reduced space.

Solving (10) instead of (6) presents numerical advantages
since the matrix involved is of reduced size (Nm Nl )×(Nm Nl ),

−0.6 −0.4 −0.2
0

3

6

9

12

15

18

21

V
GS

 [V]

I D
S
 [μ

 A
]

 

 

−0.6 −0.4 −0.2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−0.6 −0.4 −0.2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−0.6 −0.4 −0.2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−0.6 −0.4 −0.2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−0.6 −0.4 −0.2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−0.6 −0.4 −0.2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

[100]
[110]
[111]
[100]
[110]
[111]

−0.6 −0.4 −0.2
0

1

2

3

V
GS

 [V]

R
el

at
iv

e 
E

rr
or

 [%
]

 

 

[100]
[110]
[111]

(a)

(b)

Fig. 3. (a) IDS − VG S characteristics obtained by setting Em = Et −0.3 eV
(lines) and Em = Et − 0.5 eV (symbols). IM SiNW transistors in the [100],
[110], and [111] directions are considered. Doping density Nd in the source
and drain is 1 × 1020 cm−3, while in the channel it is 1 × 1015 cm−3.
Ty = Tz = 5 nm, Lg = 10 nm, To = 1 nm. Drain bias is set to be
VDS = −0.5 V. (b) Relative error of the two sets of currents.

and this can be done efficiently by the standard RGF algorithm
with CPU cost O(N3

m Nl ) and memory cost O(N2
m Nl ). With

G̃(E), we can calculate the physical quantities in the reduced
space with similar expressions as (7) and (8). After that the
physical quantities in the RS can be recovered with inverse
transformation. The accuracy and efficiency of this method
are very much dependent on how we construct the reduced
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Fig. 4. (a) IDS −VG S curves for JL transistors with different doping densities
Nd . The curve for IM device is also plotted. The dimensions of the devices
are all fixed to Ty = Tz = Lg = 5 nm. The Nd for JL devices is linearly
varied from 2 × 1019 cm−3 to 1 × 1020 cm−3. Transport direction [100] is
considered here and VDS = −0.5 V. (b) Extracted �Vth and SS with respect
to doping density. Also shown is the SS for IM device.

basis set (9).

D. Construction of the Reduced Basis

We know that the E − k relation of layer i repeating
along the transport direction x can be obtained by solving
the following eigenvalue problem (EVP):

(
Hi,i + Hi,i+1eikx �x + H†

i,i+1e−ikx �x
)

�i = E�i (12)

where kx is the wavenumber in the transport direction, �x is
the layer thickness, and �i is the eigenmode.

The criteria for constructing Vi is that, while Nm is kept
as small as possible, when Vi is applied to (12), the reduced
EVP should produce the original E − k relation as accurately
as possible. The reduced EVP is

(
H̃i,i + H̃i,i+1eikx �x + H̃†

i,i+1e−ikx �x
)

�̃i = Ẽ�̃i (13)

where

H̃i,i = V†
i Hi,i Vi

H̃i,i+1 = V†
i Hi,i+1Vi+1

�i = Vi�̃i . (14)

1) K Space Sampling: The reduced basis can be constructed
by solving (12) for each layer i at n judiciously sampled
kx points [instead of solving (12) only at kx = 0, as in
[5]]. Suppose m j eigenmodes are obtained at kx = k j with
eigenvalues inside the window Em ≤ E ≤ 0, where Em is
the minimum energy of interest (usually several hundred meV
below the top of the valence band), from which we construct
a matrix Wi

Wi =
[
�1

i (k1) , . . . , �m1
i (k1) ,�1

i (k2) , . . . ,

�m2
i (k2) , . . . , �1

i (kn) , . . . , �
mn
i (kn)

]
(15)

which is then QR factorized. The unitary matrix Q then serves
as the sub-matrix Vi in (9).

Solving (12) for several lowest eigenmodes can be done
efficiently with iterative solvers since the matrix is highly
sparse as a result of FDM. Moreover, we just need to solve it
at positive kx (or negative kx ) saving half the cost. Suppose
we already have �i and E as the eigenpairs of (12) at kx .
When spin–orbit coupling is not considered, Hi,i and Hi,i+1
are both real matrices. In this case, it is easy to prove that
� ′

i = (�i )
∗ and E are the eigenpairs of (12) at −kx . When

spin–orbit coupling is taken into account, instead, we do the
following transformation to obtain those at −kx [which can
be verified through (4)]

�i =
(

�i ↑
�i ↓

)
⇒ � ′

i =
(

� ′
i ↑

� ′
i ↓

)
(16)

where �i ↑ and �i ↓ are the spin up and spin down compo-
nents, respectively, � ′

i ↑= (�i ↓)∗, and � ′
i ↓= − (�i ↑)∗.

2) E Space Sampling: Alternatively, to obtain the eigen-
mode �i for each layer i , we can solve the following general-
ized eigenvalue problem (GEVP) [31] at n judiciously sampled
E points:
(

0 I
H†

i,i+1 Hi,i − EI

) (
�i

�i+1

)

= λ

(
I 0
0 −Hi,i+1

) (
�i

�i+1

)
(17)

where λ = eikx �x . It is well known that the eigenpairs with
|λ| = 1 correspond to the propagating modes; whereas the
eigenpairs with |λ| < 1 (|λ| > 1) correspond to the decaying
(growing) modes. Here, we only use the propagating modes
to construct Wi as in (15), which is then orthonormalized to
form Vi .

To selectively solve the eigenpairs with |λ| = 1, one can
adopt the Krylov subspace method with some shift-and-invert
strategies [33]. As these eigenvalues distribute in a circle in the
complex plane and for low energy range, they tend to cluster
around 1 (since kx is small), we choose the shift σ = eiθ with
θ = 0. For the two cases mentioned before, we can further
reduce the cost by choosing θ = θ̂ (where θ̂ is a value slightly
larger than 0) and solving the eigenmodes having eigenvalues
in the upper half plane; then the corresponding transformation
of these eigenmodes are those in the lower half plane.

3) Hybrid Sampling: Both of the above sampling schemes
work well but each has its advantages and disadvantages.
Sampling in the k space is fast since we only need to solve
EVP (12) several times, the drawback is that it is not easy
to determine the sampling points. While sampling in the E
space has the advantage that we can easily establish the energy
window to sample, it is slow as it is required to solve interior
GEVPs (17) with matrix dimension twice the layer size.
Therefore, we propose to hybridize the above two methods
to construct Vi .

It turns out that, as will be shown later, sampling at one
particular kx point (kx = 0) and at one E point (E = Em) can
approximate very well the E − k dispersion for energy range
Em ≤ E ≤ 0. The reason is that the modes at kx = 0 can
well produce the band structure near the Brillouin zone center,
while the modes at E = Em are excellent for correcting the
band structure far away from the center. In this simple scheme,
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for each layer, we only need to solve (12) once and solve (17)
once. In addition, the only parameter we need to obtain is Em .
It is expected that a lower Em may improve the accuracy since
a wider energy range is approximated, but it also slows down
the simulation as Nm becomes larger.

E. Validation of the Method

To validate our MOR method, which is essentially a new
method of constructing the reduced basis, we follow two steps.
First, we check if the reduced EVP can accurately capture
the E − k diagram. We examined SiNWs with cross-section
size 5 × 5 nm in the [100], [110], and [111] directions.
Six-band k · p model is used and the parameters are chosen
to tune to tight-binding model provided in [34]. We choose
Em = Et − 0.3 eV, where Et is the top of the valence band,
which results in Nm equal to 96, 102, and 126, respectively.
Here, we use θ̂ = π/12 as the eigenvalues fall within a very
narrow region with −π/6 < θ < π/6. As can be seen from
Fig. 2, the E − k diagrams obtained by our MOR method

are very close to the exact solutions in all three cases. The
reduction is tremendous, compared with the original matrix
size Nt = 9126 as a result of 0.125-nm mesh size.

Then, one may wonder if the NEGF results are also
correctly produced. A p-type IM SiNW transistor as shown
in Fig. 1 is simulated, with NEGF and Poisson equations
solved self-consistently. Again, we choose Em = Et − 0.3 eV
and compare the drain currents to those obtained by setting
Em = Et − 0.5 eV, which can be regarded as a more accurate
solution. Three-band k · p model is used as spin–orbit coupling
plays negligible role [34], which leads to Nm values that are
roughly half of the values in six-band model. For simplicity,
hard-wall boundary condition at the silicon-oxide interface is
implemented, which is valid for large cross-section nanowires.
The Poisson equation is solved with the same method and
boundary conditions as in [14]. As can be seen in Fig. 3(a),
the two solutions almost overlap with each other. The relative
errors of the two solutions are further manifested in Fig. 3(b),
which shows that errors of [110] and [111] directions for
the whole bias range are within 0.5%, whereas the errors
of [100] direction below threshold are larger, but still within
2.5%. Therefore, to be consistent with the E − k calculation,
Em = Et − 0.3 eV is justified. The relatively larger errors of
[100] direction below threshold are due to the larger errors
of the band structure approximation, as can be observed from
Fig. 2(a). In particular, the subband edges near the middle
of the energy window are not aligned, which may induce a
small threshold voltage shift. To improve the accuracy, one
can sample one more energy point at (Et + Em) /2. Note that
for SiNWs with large cross sections (≥ 4 × 4 nm), we
have adopted 0.2-nm mesh size as this leads to negligible
errors in the I-V curves (compared with 0.125-nm mesh
size).

Although not shown here, we also examined the nanowires
with different cross sections. It is found that for nanowires
larger than 5 × 5 nm, choosing Em = Et − 0.3 eV is
enough, while for cross sections smaller than 5 × 5nm, a
slightly lower Em is recommended to ensure that enough basis
functions are included (for example, Em = Et − 0.35 eV for
4 × 4 nm nanowires). It should be mentioned that to achieve
the same accuracy, Nm required in our MOR is expected to
be less than that reported in [5] as our band structures are
better approximated. In addition, thanks to the sparse solvers,
construction of the reduced basis and the basis transformations
do not occupy much CPU time, and most of the CPU time is
spent on solving the reduced transport problem. As a result,
simulation of an IDS − VGS curve with ten bias points for
a SiNW transistor with 5 × 5 nm channel cross-section size
and 30 nm device length is within 10 h using single PC (Intel
i5-2400 CPU at 3.10 GHz).

III. p-TYPE JUNCTIONLESS TRANSISTORS

By applying the MOR method above, we are able to study
hole transport in p-type JL SiNW FETs and compare them to
similar IM ones. The impacts of various device structures and
parameters on their performances will be examined. The gate
oxide layer is assumed to be 1 nm, the channel length is varied
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Fig. 7. (a) DIBL for different channel aspect ratio, the channel thickness
is fixed to T = 5 nm. (b) DIBL for different channel thickness, the channel
aspect ratio is fixed to L/T = 2.

from 15 to 5 nm, and the channel cross-section size is varied
from 6 ×6 nm to 4 ×4 nm. Channel orientations [100], [110],
and [111] are considered. For IM FETs, the source and drain
junctions are assumed to be abrupt, with Nd in the source/drain
equal to 1×1020 cm−3 and in the channel it is 1×1015 cm−3.
The temperature is set to 300 K.

To characterize the device, we will extract from the
I − V curves the device metrics, such as sub-threshold slope
(SS), doping density, or geometry induced threshold voltage
change (�Vth), and drain-induced-barrier-lowering (DIBL).
SS is expressed as millivolts of gate voltage needed for a
decade change of drain current. Threshold voltage Vth is
extracted using constant current method at 100 nA. DIBL is
expressed as millivolts of �Vth induced by one volt change
of drain voltage.

A. Doping Densities

For JL transistors, the first thing need to be ascertained
is the doping density to use. Unlike the IM devices (which
is lightly doped in the channel), the doping density actually
affects the device performance greatly. In Fig. 4(a), we plot
the I − V curves of some short-channel JL devices, it is
seen that SS increases as Nd increases. The SS values have
been extracted and plotted in Fig. 4(b), which shows that
for Nd = 1 × 1020 cm−3, the SS can exceed 100 mV/dec.
On the other hand, as seen from 4(a), the ON current for
low Nd is very limited and it increases as Nd increases,
as expected. Note that here we define the ON current as
the current at flat band condition, which means no further
increase of current is observed if the gate voltage is further
increased. Therefore, one may suggest an Nd value based on
a compromise between SS and ON current. It is also seen
from 4(a) that as Nd increases, the I − V curve shifts toward
the positive direction, which means that more positive gate
voltage is needed to turn the device off. In other words, Vth

is shifted and �Vth is positive. As shown in 4(b), �Vth

is almost linearly proportional to the change of Nd , say
around 0.2V per 2 × 1019 cm−3 change of Nd , indicating
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Fig. 9. (a) Ion/W for different channel aspect ratio, the channel thickness
is fixed to T = 5 nm. (b) Ion/W for different channel thickness, the channel
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that JL transistors are very sensitive to doping density vari-
ations.

To explain why SS degrades as doping density increases,
we plot in Fig. 5 the potential distributions along the transport
direction and their corresponding current spectra for three
different doping densities. Those of IM transistor are also
plotted in the same figure for comparison. We then roughly
divide the current spectrum into two parts based on the peak
of the potential barrier, the part below it can be attributed
to thermionic current, while the part above it is largely
due to tunneling contribution. It is clearly seen that as the
doping density increases, the width of the potential barrier
decreases, which results in larger source-to-drain tunneling
current contribution that is known to degrade the SS. As this
is due to electrostatics, similar behavior should be observed
in n-type JL transistors as well. It is also obvious that
the IM transistor has the thinnest potential barrier and the
largest tunneling current, and thus the worst SS as shown in
Fig. 4(b).
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B. Channel Orientations and Scaling

In order to study the impacts of channel orientations and
channel sizes, we fix Nd of JL transistors to be 8×1019 cm−3.
Note that different results may be obtained by choosing a
different doping density, but the trends can be inferred based
on the above analysis.

1) SS and DIBL: The SS as functions of channel aspect
ratio and channel thickness are plotted in Fig. 6. From 6(a),
it is observed that when channel length is long, the SS is
very close to the 60 mV/dec limit. As the channel length is
scaled down (with fixed channel thickness), the SS degrades
as anticipated, for all nanowire directions and for both IM
and JL cases. However, the JL devices degrade much slower
than IM ones, which makes them very attractive for ultrascaled
applications. The excellent SSs of JL devices are very much
related to the effective gate length (EGL) concept that has
been used to explain n-type JL transistors [26]. In fact, the
EGL of JL device in the sub-threshold range is longer than
that of IM device, which results in wider potential barrier
that greatly helps the suppression of source-to-drain tunneling
current. Our plots (for example, as shown in Fig. 5) confirm
that this is also true for p-type devices. It is also observed that
direction [100] has better SS although directions [110] and
[111] do not differ too much, and this is more obvious when
the channel becomes very short, indicating that [100] direction
is more immune to short channel effect. The [100] direction’s
superior short channel performances can be explained by
the fact that its larger effective mass of the first subband
(as can be seen from Fig. 2) reduces the tunneling current
contribution, as was first discovered in p-type double-gate
transistors [35].

From Fig. 6(b), it is seen that, for IM devices, the SSs
of [110] and [111] directions degrade when the channel is
narrowed (with fixed aspect ratio), although SS of [100]
direction does not degrade much. This is because the light
hole effective mass of [100] direction grows much faster
as the cross section becomes smaller, which suppresses the
tunneling current and consequently compensates the otherwise
faster increase of SS [34]. What we want to emphasize and
is observed from 6(b) is that, unlike IM devices, SSs of JL
ones change very little when the channel thickness is reduced,
regardless of channel direction. Again, this is due to the longer
EGL of JL devices, which makes the tunneling current less
important.

The DIBL as functions of channel aspect ratio and channel
thickness are plotted in Fig. 7. Similar trends as SS plotted
in Fig. 6 are observed, as SS and DIBL are closely related
quantities.

2) �Vth: The �Vth as functions of channel aspect ratio
and channel thickness are plotted in Fig. 8. From 8(a), it
is found that as the channel length is scaled down (with
fixed channel thickness), more positive Vth is required to
maintain the threshold current. The reason is twofold, one
is that the negative drain voltage tends to raise the channel
potential and the other is that tunneling current contribution
becomes larger due to the narrower barrier. Direction [100] is
again the most robust. In all cases, the JL devices outperform

IM ones, particularly for ultrashort devices. These trends are
similar to SSs in Fig. 6 and can be supported with similar
arguments.

From Fig. 8(b), it is seen that while �Vth is very small
for IM devices as the channel thickness is narrowed (with
fixed aspect ratio), it is significantly larger for JL ones. This is
consistent with the semi-classical studies [18], [19]. Regarding
channel orientations, on the contrary, [100] is more sensitive
to the channel thickness scaling and [111] turns out to be the
most robust for both kinds of devices, although the distinction
is less pronounced for JL ones. This has been attributed to the
larger subband modulation in the [100] direction [36].

3) ION: The ION/W (where W = 4T is nanowire perime-
ter) as functions of channel aspect ratio and channel thick-
ness are plotted in Fig. 9. The ION are obtained by setting
VGS = VDS = −0.5 V after adjusting the gate work functions
such that the IOFF are all equal to 10 nA/μm [21]. From
9(a), it is found that JL devices have better ION/W only when
the channel length is short, mainly due to their better short-
channel SSs. However, when the channel length is long, the JL
cases lose their advantages as the SSs become similar for both
devices. In Fig. 9(b), it is seen that the JL devices have better
ION/W only when the channel thickness is small, especially in
the [110] and [111] directions, as a result of their better thin-
channel SSs. Overall, [110] and [111] directions have similar
ION/W and they are greater than those of [100] direction. The
only exception is when L/T = 1 as shown in Fig. 9(a), where
[100] direction provides the largest ION/W . This is due to
[100] direction’s excellent short channel SS mentioned before.
We have also lowered the IOFF to examine their performances
in low standby power applications, similar trends have been
observed that JL devices have better ION/W only when the
channel is short or thin, although they do have more margin
to perform better.

C. Discussions

Our code is based on continuum k · p method and the
dopants are modeled through doping concentration in the
Poisson equation, which is valid when the devices are large.
As the devices are aggressively scaled, the atomistic effects
become crucial, calling for atomistic simulator. For example,
just a few discrete dopants in the JL devices can result in a
large doping density and there will be a doping density limit.
Besides, the positions of these dopants matter, which may
induce large performance variabilities, as reported recently
by studying n-type JL transistors [25]. There is also an issue
related to the dopant de-activation and dielectric screening at
very small nanowires [37]. Such studies are outside of the
scope of this paper and will be published elsewhere.

IV. CONCLUSION

In summary, an MOR technique was presented for effi-
cient simulations of nanowire transistors based on the multi-
band k · p Hamiltonian and NEGF method. Numerical results
showed that our method can correctly produce the band
structures of SiNWs and I-V curves of p-type SiNW transis-
tors, meanwhile significant reduction was achieved. With this



2118 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 7, JULY 2013

method, we then studied, for the first time, the influences of
various device parameters on the performances of p-type JL
transistors and compared them to IM devices.

Our method not only applies to GAA structures, but also
applies to tri-gate structures, such as FinFETs. Alternative
channels using Germanium or III–V materials could also be
simulated in this framework. Moreover, strain effects can
easily be incorporated into the k · p Hamiltonian. Further
studies will be devoted to eight-band models, which enable
us to simulate band-to-band tunneling devices.
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