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A Gram-SOS Approach for Robust Stability Analysis of Discrete-Time

Systems with Time-Varying Uncertainty

Graziano Chesi

Abstract— This paper addresses the problem of establishing
robust asymptotical stability of discrete-time systems affected
by time-varying parametric uncertainty. Specifically, it is sup-
posed that the coefficients of the system depend linearly on the
uncertainty, and that the uncertainty is confined into a polytope.
In the continuous-time case, the problem can be addressed
by imposing that the system admits a common homogeneous
polynomial Lyapunov function (HPLF) at the vertices of the
polytope. Unfortunately, such a strategy cannot be used in
the discrete-time case since the derivative of the HPLF is
nonlinear in the uncertainty. The problem is addressed in this
paper through linear matrix inequalities (LMIs) by proposing
a novel method for establishing decrease of the HPLF. This
method consists, firstly, of introducing a Gram matrix built
with respect to the state and parametrized by an arbitrary
vector function of the uncertainty, and secondly, of requiring
that a transformation of the introduced Gram matrix is a
sum of squares (SOS) of matrix polynomials. The proposed
method provides a condition for robust asymptotical stability
that is sufficient for any degree of the HPLF candidate and
that includes quadratic robust stability as special case.

I. INTRODUCTION

A fundamental and notoriously difficult problem in sys-

tems with uncertainty amounts to establishing whether a

linear system affected by uncertain parameters is asymptot-

ically stable for all the admissible values of the parameters.

Various works have been proposed in the literature for

addressing this problem, which can be classified according to

different criteria, e.g. based on the nature of the system (such

as continuous-time or discrete-time), type of uncertainty

(such as time-invariant or time-varying), dependence of the

coefficients of the system on the uncertainty (such as linear

or rational), and shape of the set of admissible uncertainty

(such as multi-interval or polytopic). See e.g. [1], [10] and

references therein.

For continuous-time systems, numerous methods have

been developed, typically focusing on systems where the

coefficients depend linearly on the uncertainty and the un-

certainty is confined into a polytope. These methods are

generally based on the search for a suitable Lyapunov

function that might prove robust asymptotical stability of the

system, and the type of uncertainty characterizes the type of

Lyapunov function that is searched for. Specifically, in the

case of time-invariant uncertainty, pioneering methods have

searched for a quadratic Lyapunov function, see e.g. [5],

and more recent ones have proposed the use of parameter-

dependent quadratic Lyapunov functions in order to reduce
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the conservatism, see e.g. [10] and references therein. Then,

in the case of time-varying uncertainty, results obtained

with quadratic Lyapunov functions have been improved by

considering nonquadratic Lyapunov functions. See e.g. [14],

[16], [19] where piecewise quadratic Lyapunov functions are

searched for, [3], [4], [6] where the use of polyhedral and

smoothed polyhedral Lyapunov functions is investigated, and

[8], [10], [20] which address the construction of homoge-

neous polynomial Lyapunov functions (HPLFs).

For discrete-time systems, analogous methods have been

developed in the case of time-invariant uncertainty, see e.g.

[10], [13], [15], [17] and references therein. However, the

case of time-varying uncertainty has been less investigated.

Indeed, contrary to continuous-time systems where the time

derivative of a (quadratic or nonquadratic) common Lya-

punov function candidate is linear in the uncertainty and

conditions can be derived by checking the vertices of the

polytope, one has that the time difference of such a candidate

is nonlinear in the uncertainty for discrete-time systems

and checking the vertices does not suffice to ensure robust

stability. Existing works include [2], [12], [18] where robust

stability and robust stabilization are investigated through

quadratic Lyapunov functions, set-induced Lyapunov func-

tions, and parameter-dependent quadratic Lyapunov func-

tions, respectively.

This paper addresses the problem of establishing robust

asymptotical stability of discrete-time systems affected by

time-varying structured uncertainty. Specifically, it is sup-

posed that the coefficients of the system depend linearly

on the uncertainty, and that the uncertainty is confined into

a polytope. For this problem, a condition based on linear

matrix inequalities (LMIs) is presented by proposing a novel

method for establishing decrease of the HPLF. This method

consists, firstly, of introducing a Gram matrix built with

respect to the state and parametrized by an arbitrary vector

function of the uncertainty, and secondly, of requiring that

a transformation of the introduced Gram matrix is a sum of

squares (SOS) of matrix polynomials. The proposed method

provides a condition for robust asymptotical stability that

is sufficient for any degree of the HPLF candidate and

that includes quadratic robust stability as special case. A

numerical example illustrates the proposed condition.

The paper is organized as follows. Section II introduces

the problem formulation and some preliminaries about SOS

polynomials. Section III describes the proposed method for

establishing robust asymptotical stability. Section IV presents

an illustrative example. Lastly, Section V concludes the paper

with some final remarks.
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II. PRELIMINARIES

A. Problem Formulation

The notation used throughout the paper is as follows:

N,R: natural and real number sets; 0n: origin of R
n; R

n
0 :

R
n\{0n}; In: n×n identity matrix; A′: transpose of A; A >

0, A ≥ 0: symmetric positive definite and symmetric positive

semidefinite matrix A; he(A) = A + A′; conv{a, b, . . .}:

convex hull of vectors a, b, . . .; diag{A,B, . . .}: block diag-

onal matrix with blocks A,B, . . .; ∗: corresponding block in

symmetric matrices.

We consider the system






x(t+ 1) = A(s(t))x(t)
s(t) ∈ S
t ≥ 0

(1)

where x(t) ∈ R
n is the state vector, t ∈ N is the discrete

time, s(t) ∈ R
r is the time-varying uncertain vector, A :

R
q → R

n×n is a linear matrix function expresses as

A(s(t)) =
r

∑

i=1

si(t)Ai (2)

for some given matrices A1, . . . , Ar ∈ R
n×n, and S is the

simplex of dimension r, i.e.

S =

{

s ∈ R
r :

r
∑

i=1

si = 1, si ≥ 0

}

. (3)

Throughout the paper we assume that p(t) ensures the

existence of the solution x(t) of the system (1).

Problem. The problem considered in this paper is to

establish whether the origin of the system (1) is a robustly

asymptotically stable equilibrium point, i.e.











∀ε > 0 ∃δ > 0 : ‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε

∀t ≥ 0 ∀s(·) ∈ S
lim
t→∞

x(t) = 0n ∀x(0) ∈ R
n ∀s(·) ∈ S.

(4)

B. SOS Polynomials

Here we briefly introduce some preliminaries about SOS

polynomials and SOS matrix polynomials, see e.g. [7] and

references therein for details.

Let h : Rn → R be a homogeneous polynomial of degree

2m. Then, h(x) can be expressed as

h(x) = x{m}′

(H + L(α))x{m} (5)

where x{m} ∈ R
σ(n,m) is a vector whose entries are the

monomials of degree m in x, where σ(n,m) is the total

number of such monomials given by

σ(n,m) =
(n+m− 1)!

(n− 1)!m!
, (6)

H ∈ R
σ(n,m)×σ(n,m) is a symmetric matrix such that

h(x) = x{m}′

Hx{m}, (7)

L : Rω(n,m) → R
σ(n,m)×σ(n,m) is a linear parametrization

of the linear subspace

L(n,m) = {L = L′ : x{m}′

Lx{m} = 0}, (8)

and α ∈ R
ω(n,m) is a free vector, where ω(n,m) is the

dimension of L(n,m) given by

ω(n,m) =
1

2
σ(n,m)(σ(n,m) + 1)− σ(n, 2m). (9)

The representation (5) is known as Gram matrix method and

square matricial representation (SMR). This representation

was introduced in [11] to establish whether a polynomial is

SOS via an LMI feasibility test. Indeed, h(x) is said SOS if

there exist polynomials h1(x), . . . , hk(x) such that

h(x) =

k
∑

i=1

hi(x)
2 (10)

and this condition holds if and only if there exists α

satisfying the LMI

H + L(α) ≥ 0. (11)

These definitions and results have been extended to the

case of matrix polynomials. Specifically, let H : Rn → R
d×d

be a symmetric matrix homogeneous polynomial of degree

2m. Then, H(x) can be expressed as

H(x) =
(

x{m} ⊗ I
)′

(J + L(α))
(

x{m} ⊗ I
)

(12)

where the identity matrix has size d × d, J ∈
R

dσ(n,m)×dσ(n,m) is a symmetric matrix such that

H(x) =
(

x{m} ⊗ I
)′

J
(

x{m} ⊗ I
)

, (13)

L : Rω(n,m,d) → R
dσ(n,m)×dσ(n,m) is a linear parametriza-

tion of the linear subspace

L(n,m, d) = {L = L′ :
(

x{m} ⊗ I
)′

L
(

x{m} ⊗ I
)

= 0},
(14)

and α ∈ R
ω(n,m,d) is a free vector, where ω(n,m, d) is the

dimension of L(n,m, d) given by

ω(n,m, d) =
1

2
d (σ(n,m) (dσ(n,m) + 1)− (d+ 1)σ(n, 2m)) .

(15)

The representation (12) was introduced in [9] to establish

whether a symmetric matrix polynomial is SOS via an LMI

feasibility test. Indeed, H(x) is said SOS if there exist matrix

polynomials H1(x), . . . , Hk(x) such that

H(x) =

k
∑

i=1

Hi(x)
′Hi(x) (16)

and this condition holds if and only if there exists α

satisfying the LMI

J + L(α) ≥ 0. (17)
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III. PROPOSED RESULTS

Let us search for a Lyapunov function proving that the

origin of the system (1) is a robustly asymptotically stable

equilibrium point. This can be done by searching for a

function v : Rn → R such that

v(x) > 0
∆v(x, s) < 0

}

∀x ∈ R
n
0 ∀s ∈ S (18)

where

∆v(x, s) = v (A(s)x)− v(x). (19)

If such a function exists, then v(x) is a Lyapunov function

for the origin of the system (1) common to all admissible

uncertainties, i.e., a common Lyapunov function. In such

a case, the origin of the system (1) is, hence, a robustly

asymptotically stable equilibrium point.

We consider a common Lyapunov function candidate v(x)
in the class of homogeneous polynomials, i.e. a common

HPLF. We can express such a v(x) as

v(x) = x{m}′

V x{m} (20)

where m ∈ N defines the degree of v(x), which is equal

to 2m, and V = V ′ ∈ R
σ(n,m)×σ(n,m) is a symmetric

matrix that contains the coefficients of v(x) with respect

to the basis defined by the chosen vector x{m} (i.e., V is

a Gram matrix of v(x)). In order to determine ∆v(x, s)
for v(x) as in (20), let us introduce the matrix function

Γm : R
n×n → R

σ(n,m)×σ(n,m) as the matrix function

satisfying the relationship

(Y x){m} = Γm(Y )x{m} (21)

where Y ∈ R
n×n. The matrix function Γm(Y ) can be

computed with the formula

Γm(Y ) = (K ′
mKm)−1K ′

mY ⊗mKm (22)

where Y ⊗m denotes the m-th Kronecker power of Y , i.e.

Y ⊗m =

{

Y ⊗m−1 ⊗ Y if m ≥ 1
1 if m = 0.

(23)

and Km is the matrix satisfying

x⊗m = Kmx{m}. (24)

It follows that

∆v(x, s) = x{m}′

(Bm(s)′V Bm(s)− V )x{m} (25)

where

Bm(s) = Γm(A(s)). (26)

Let us observe that Bm(s) is a homogeneous matrix polyno-

mial of degree m in s since A(s) is a linear matrix function.

The matrix function Bm(s)′V Bm(s) − V is a Gram

matrix of ∆v(x, s). It turns out that this Gram matrix is

not unique. Indeed, let L : Rω(n,m) → R
σ(n,m)×σ(n,m) be

a linear parametrization of the set L(n,m) in (8), and let

β : Rr → R
ω(n,m) be any vector function. It follows that

∆v(x, s) = x{m}′

(Bm(s)′V Bm(s)− V − L(β(s))) x{m}.

(27)

This implies that Bm(s)′V Bm(s)−V −L(β(s)) is a Gram

matrix of ∆v(x, s) for any choice of the vector function

β(s).
Let us introduce the notation

s2 =
(

s21, . . . , s
2
r

)′
(28)

and √
s = (

√
s1, . . . ,

√
sr)

′
. (29)

Hereafter we choose β(s) so that β(s2) is a vector homoge-

neous polynomial of degree 2mβ , i.e.

β(s2) =
∑

i1+...+ir=2mβi1≥0,...,ir≥0

ci1···irs
i1
1 · · · sirr (30)

where ci1···ir ∈ R
ω(n,m). In other words, β(s) is a vector

homogeneous polynomial of degree 2mβ in the irrational

variable
√
s.

Let us define the integer

w = 2σ(n,m) (31)

and the linear function

o(s) =
r

∑

i=1

si. (32)

Let us define the function W = W ′ : Rr → R
w×w as

W (s) =

(

o(s)aV + o(s)a−mβL(β(s)) o(s)a−mBm(s)′V
∗ o(s)aV

)

(33)

where

a = max{m,mβ}. (34)

Let us observe that W (s) is a symmetric matrix function

of size w × w. Also, W (s) satisfies the homogeneousness

property

W (δs) = δaW (s) ∀δ ≥ 0 ∀s ∈ S. (35)

For simplicity, we will assume in the sequel that mβ = m,

i.e. the degree of β(s2) in s is equal to the degree of v(x)
in m.

The following theorem provides a condition for establish-

ing robust stability of the origin of the system (1) in terms

of an LMI feasibility test.

Theorem 1: Let m ∈ N, m ≥ 1. Suppose that there exist

a symmetric matrix V = V ′ ∈ R
σ(n,m)×σ(n,m), a vector

function β : Rr → R
ω(n,m) as in (30) and a scalar c ∈ R

satisfying the LMI feasibility test
{

W (s2)− c‖s‖2mIw is SOS

c > 0.
(36)

Then, the origin of the system (1) is a robustly asymptotically

stable equilibrium point.

Proof. First of all, let us observe that W (s2) is a symmetric

matrix homogeneous polynomial of degree 2m. This means

that W (s2)−c‖s‖2mIw is a symmetric matrix homogeneous

polynomial as well, and, hence, the SOS condition in (36)

can be defined.
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Next, let us suppose that (36) holds, and let us show that

(36) implies that W (s) is positive definite over the simplex,

i.e.

W (s) > 0 ∀s ∈ S.
For definition of SOS matrix polynomial in Section II-B,

(36) implies that

W (s2)− c‖s‖2mIw ≥ 0 ∀s ∈ R
r.

Since c > 0, one obtains

W (s2) > 0 ∀s ∈ R
r
0.

The positive definiteness of W (s2) over R
r
0 implies the

positive definiteness of W (s) over the simplex. Indeed,

suppose for contradiction that there exists s̄ ∈ S such that

W (s̄) 6> 0. Since s̄i ∈ [0, 1] for all i = 1, . . . , r, we can

define the vector

ŝ =
√
s̄.

We have that
{

ŝ 6= 0
ŝ2 = s̄

which implies that there exists ŝ ∈ R
r
0 such that W (s2) 6> 0.

But this contradicts the positive definiteness of W (s2) over

R
r
0.

In order to complete the proof, let us show that the

positive definiteness of W (s) over the simplex implies that

the origin of the system (1) is a robustly asymptotically stable

equilibrium point. From the definition of W (s) and Schur

lemma, it follows that the positive definiteness of W (s) over

the simplex is equivalent to the condition






o(s)aV > 0
o(s)aV + o(s)a−mβL(β(s))

− o(s)2(a−m)Bm(s)′V (o(s)aV )−1
V Bm(s) > 0

for all s ∈ S. Since o(s) = 1 for all s ∈ S, this condition

can be rewritten as
{

V > 0
D(s) < 0 ∀s ∈ S

where

D(s) = Bm(s)′V Bm(s)− V − L(β(s)).

Let x be any vector in R
n
0 , and let us pre- and post-multiply

these inequalities by x{m}′

and x{m}, respectively. From the

first inequality we obtain

x{m}′

V x{m} > x{m}′

0x{m} ∀x ∈ R
n
0

i.e.

v(x) > 0 ∀x ∈ R
n
0 .

By observing that

x{m}′

Bm(s)′V Bm(s)x{m} = A(s)x{m}′

V A(s)x{m}

= v (A(s)x)

and that

x{m}′

L(β(s))x{m} = 0,

from the second inequality we obtain

x{m}′

D(s)x{m} < x{m}′

0x{m} ∀x ∈ R
n
0 ∀s ∈ S

i.e.

∆v(x, s) < 0 ∀x ∈ R
n
0 ∀s ∈ S.

Consequently, v(x) is a HPLF for the origin of the system

(1) common to all admissible uncertainties, and therefore the

theorem holds. �

Theorem 1 provides a condition for establishing whether

the origin of the system (1) is a robustly asymptotically

stable equilibrium point. This condition requires to check the

existence of a symmetric matrix V , a vector function β(s)
as in (30) and a scalar c satisfying the condition (36). Let us

observe that this condition is indeed an LMI feasibility test

since W (s2) is a symmetric matrix homogeneous polynomial

depending linearly on V and β(s2), and since the SOS

condition for a symmetric matrix polynomial is equivalent to

an LMI according to Section II-B. The condition provided

by Theorem 1 is sufficient for any chosen integer m, which

defines the degree of the HPLF candidate (equal to 2m).

Let us observe that the case m = 1 corresponds to a

quadratic Lyapunov function v(x) since x{1} = x in (20).

In such a case, the vector function β(s) is not needed in the

condition provided by Theorem 1 because for m = 1 one

has

L = ∅ (37)

and, hence, L(β(s)) = 0. This means that W (s) does not

depend on β(s) for m = 1.

It is useful to clarify whether the condition provided by

Theorem 1 covers the case of quadratic robust stability. In

particular, the origin of the system (1) is said quadratically

robustly asymptotically stable if (18) holds with a quadratic

function v(x). By expressing such a v(x) as

v(x) = x′V x (38)

where V = V ′ ∈ R
n×n, it follows that (18) with a quadratic

function v(x) is equivalent to the condition

{

V > 0
A(s)′V A(s)− V < 0

∀s ∈ S. (39)

The next result states that the condition provided by Theorem

1 with m = 1 is sufficient and necessary for quadratic robust

stability.

Theorem 2: The origin of the system (1) is a quadratically

robustly asymptotically stable equilibrium point if and only if

the condition provided by Theorem 1 is satisfied with m = 1.

Proof. “⇐” Suppose that the origin of the system (1) is

a quadratically robustly asymptotically stable equilibrium

point. Hence, there exists V satisfying (39), and (39) can

be rewritten as
(

V A(s)′V
∗ V

)

> 0 ∀s ∈ S.
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Since o(s) = 1 over S, this implies that
(

o(s)V A(s)′V
∗ o(s)V

)

> 0 ∀s ∈ S.

Let us observe that the left hand side of the previous

condition coincides with W (s) for m = 1 since, in such

a case, one has that
{

B1(s) = A(s)
L(β(s)) = 0.

Since W (s) is linear in s in this case, it follows that W (s)
can be expressed as

W (s) =
r

∑

i=1

siW (s(i))

where s(1), . . . , s(r) ∈ R
r are the vertices of S. Hence, the

positive definiteness of W (s) over S is equivalent to

W (s(i)) > 0 ∀i = 1, . . . , r.

This implies that W (s(i)) admits a Cholesky factorization

W (s(i)) = W ′
iWi

for some real matrix Wi, and, hence,

W (s2) =

r
∑

i=1

(siWi)
′
(siWi)

i.e. W (s2) is SOS. Moreover, since W (s(i)) is positive

definite for all i = 1, . . . , r, it follows that there exists c

satisfying (36), in particular such a c can be chosen according

to

0 < c < min
i=1,...,r

λmin

(

W (s(i))
)

.

“⇒” Suppose that there exists V and c satisfying the

condition provided by Theorem 1 with m = 1 (in this

case, L(β(s)) = 0 and hence β(s) is not needed). Since

W (s2) is a symmetric matrix homogeneous polynomial of

degree 2 in s, without products among the entries of s,

(36) implies that W (s2) can be expressed as in the equation

above. Moreover, since c > 0 in (36), the matrices Wi have

full rank, hence implying that W ′
iWi is positive definite. The

proof is completed by evaluating W (s) at the vertices of

S and observing that, as done in the previous part of the

proof, the positive definiteness of W (s) at the vertices of S
is equivalent in this case to (39). �

Theorem 2 states that the condition provided by Theorem

1 can be used to check quadratic robust stability by choosing

m = 1, moreover this condition is not only sufficient but also

necessary in such a case.

IV. ILLUSTRATIVE EXAMPLE

Let us consider the system

x(t+ 1) =

(

0 1
−0.8 p(t)

)

x(t)

where x(t) ∈ R
2 is the state vector and p(t) ∈ R is the

time-varying uncertain scalar confined into the interval

P = [0, ζ].

The problem consists of determining the largest value of ζ,

denoted by ζ∗, such that the system is robustly asymptoti-

cally stable for all time-varying p(t) in P .

This system can be written as in (1) with r = 2 and

A1 =

(

0 1
−0.8 0

)

, A2 =

(

0 1
−0.8 ζ

)

by expressing p(t) as p(t) = ζs2(t).
In order to estimate ζ∗, let us use the condition provided

by Theorem 1. For any chosen value of m this condition

allows one to establish a lower bound of ζ∗.

For m = 1 (HPLF of degree 2) we have B1(s) = A(s).
By using the condition provided by Theorem 1 we find the

lower bound ζ1 = 0.397 of ζ∗. The HPLF ensuring ζ1 is

given by

v(x) = 4.444x2
1 − 1.104x2x1 + 5.556x2

2.

Figure 1 shows a level set of v(x) (inner curve). Let us

observe that the vector function β(s) is not needed for m = 1
since the set L(2, 1) in (8) is empty and, hence, L(β(s)) = 0.

Let us also observe that ζ1 is the lower bound of ζ∗ ensured

by quadratic stability according to Theorem 2.

For m = 2 (HPLF of degree 4) we have

B2(s) =





0 0 o(s)2

0 −0.8o(s)2 ζ(s1s2 + s22)
0.64o(s)2 −1.6ζs2o(s) ζ2s22



 .

By using the condition provided by Theorem 1 we find the

lower bound ζ2 = 0.471 of ζ∗. The HPLF ensuring ζ2 is

given by

v(x) = 2.619x4
1 + 1.198x3

1x2 + 6.907x2
2x

2
1 − 4.788x3

2x1

+4.442x4
2.

Figure 1 shows a level set of v(x) (central curve). Figure 2

shows the vector function β(s) (consisting of one entry in

this case) ensuring ζ2.

For m = 3 (HPLF of degree 6) we find the lower bound

ζ3 = 0.523 of ζ∗. The HPLF ensuring ζ3 is given by

v(x) = 0.982x6
1 + 0.632x5

1x2 + 4.162x4
1x

2
2 + 0.142x3

2x
3
1

+6.457x4
2x

2
1 − 6.059x5

2x1 + 2.802x6
2.

Figure 1 shows a level set of v(x) (outer curve). Figure 3

shows the vector function β(s) (consisting of three entries

in this case) ensuring ζ3.

V. CONCLUSIONS

This paper has proposed a novel method based on HPLFs

and LMIs for establishing robust asymptotical stability of

discrete-time systems depending linearly on a time-varying

uncertain vector constrained into a polytope. This method

consists, firstly, of introducing a Gram matrix built with

respect to the state and parametrized by a free function of the

uncertainty, and secondly, of requiring that a transformation

of the introduced Gram matrix is a SOS matrix polynomial.

It has been shown that the proposed method provides a

condition for robust asymptotical stability that is sufficient

for any degree of the HPLF candidate and that includes

quadratic robust stability as special case.
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Fig. 1. Example 1: a level set of the HPLF found for m = 1 (inner curve),
m = 2 (central curve), and m = 3 (outer curve).
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Fig. 2. Example 1: vector function β(s) found for m = 2.
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