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Abstract 

We report a vanadium-MH rechargeable semi-flow battery with an experimental OCV of 

1.93 V and operating voltage of 1.70 V, very high values among rechargeable flow 

batteries with aqueous electrolytes. This hybrid battery consists of a graphite felt positive 

electrode operating in a mixed solution of 0.128 mol dm-3 VOSO4 and 2 mol dm-3 H2SO4, 

and a metal hydride negative electrode in 2 mol dm-3 KOH aqueous solution. The two 

electrolytes of different pH are separated by a bipolar membrane. The system 

demonstrated good reversibility and high efficiencies in coulomb (95%), energy (83.7%), 

and voltage (88.1%).  

Keywords:  Acid alkaline hybrid rechargeable battery, Dual-electrolyte battery, 

Vanadium redox flow battery, Nickel metal hydride battery, Bipolar membrane. 
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Introduction 

Known since 1974, flow batteries 1-9 are actively studied for storing electricity, 

intermittently generated from solar, wind, and other renewable sources 10. During 

charging or discharging of a flow battery, reversible redox reactions occur in the 

electrolyte which can be stored in tanks external to the electrochemical cell. Hence 

energy capacity is proportional to the amount of the electrolyte and scaled independently 

from the cell, when proportional change in power is not required. The all-vanadium redox 

flow (VRF) battery 11, 12 is one of the most promising flow batteries, but still requires 

improvements and development 13-16.  

The theoretical specific energy of VRF battery is not high (60.5 Wh kg-1), and its cell 

voltage is inherently limited by the electrochemical window in aqueous electrolytes. 

Under standard conditions, the 1.23 V limit applies to acidic type cells such as hydrogen-

bromine 17, Fe-Cr or Fe-Ti 1-3 or alkaline type cells such as Zn-air 18, and Ni-hydrogen 19, 

20.  The VRF battery is acidic and has a positive V4+/V5+ electrolyte at a standard 

potential of 1.0 V coupled with a negative electrolyte V2+/V3+ at -0.26 V, giving a 

theoretical cell voltage of 1.26 V. 

In addition to developing alternative stable electrolytes with a higher vanadium salt 

solubility 11, 12, serious attempts were made to improve vanadium flow battery technology 

by alternative pairing of negative and positive electrode/electrolyte reactions  into a 

hybrid cell 21-26. Skyllas-Kazacos et al.21 reported a hybrid Vanadium-O2 redox fuel cell, 

thus eliminating the mass of the positive side as oxygen can be freely stored in air. The 

reported specific energy is higher than 40 Wh kg-1 21, about 1.6 times the practical 

specific energy of conventional VRF battery (25-35 Wh kg-1) 11, 12, whereas the reported 
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open circuit voltage (OCV) was kept in the range of 1.10 to 1.24 V. The four electron 

oxygen reaction is known to be highly irreversible, thus the absence of a good bi-

functional electrocatalyst leads to low voltage efficiency. Another combination was a 

vanadium chloride/polyhalide redox flow battery proposed by the same group 26 to 

increase the specific energy, giving an experimental OCV of 1.3 V. Crossover of ions 

through the membrane was reduced during operation. Both attempts give similar OCV to 

that of the conventional VRF battery, as shown in Table 1. 

The soluble lead system 27 is an attractive candidate with an alternative positive side at 

a higher potential. However, there are concerns of environmental impacts and stability of 

the lead compound. A rechargeable battery coupling V4+/V5+ with a different negative 

electrode/electrolyte, could be a better strategy than replacing the positive electrolyte in 

terms of higher cell voltage. Furthermore, the V2+/V3+ pair is found to be less stable in air 

(as V2+ ions is easily oxidized in air) 11. If an alternative negative component from a 

matured electrochemical system has a potential lower than -0.26 V, a further gain in cell 

voltage and reduction in cost could be achieved. 

Exploiting the pH differential between an alkaline negative electrode and acidic 

positive electrode, a higher cell voltage has been demonstrated for H2-O2 fuel cells 28-30 

and PbO2/PbSO4-MHx/MHx-1 rechargeable batteries 30-33. The latter system reported a 

stable operating voltage with repeated charge/discharge cycles at 2.6 V (corresponding to 

30% and 86% increase in voltage from individual lead-acid and NiMHx batteries, 

respectively). The higher voltage and higher capacity achieved is a result of the extra 

energy store/released in acid-alkaline neutralization30, 31, 34 corresponding to =-79.85 

kJ mol-1.  
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A bipolar membrane, synthesized by laminating a cation membrane and an anion 

membrane together, has been applied to the separation of acids and bases.35, 36 It was used 

here to provide the ionic contact as well as a barrier for proton and hydroxide ions 

transport in the pH differential cells.29, 30, 32-34 In principle, only uncharged species can 

penetrate both membranes and water enters and splits to H+ and OH- to provide the ionic 

transport. However, at very low current, due to imperfect exclusion of co-ions, leakage 

current occurs.36 Therefore, K+ and HSO4
- can serve as charge carriers when a bipolar 

membrane separates KOH and H2SO4 solutions and operates at low current density.  

Membrane-less systems28, 37 with flowing electrolytes have been reported to function by 

maintaining laminar flows in parallel without convective mixing and to prevent ionic 

conduction across the interface. The maximum reported operating voltage of a 

membrane-less all-vanadium redox flow battery is about 1.5 V 37, and varies accordingly 

with  state of charge, cell design and flow rate. Practical application of these membrane-

less systems is still limited by the poor utilization of fuel, limitation of mass transport, 

and the need of microfluidic flows 38.  

It is conceptually attractive to increase the voltage of vanadium flow battery by 

introducing a pH differential through coupling the positive V4+/V5+ acidic compartment 

with a negative alkaline electrode/electrolyte. Additional neutralization energy can be 

stored in the electrolyte while liquid flow minimizes fouling and enhances the function of 

the ionic interfaces.  In this paper, we apply the high voltage advantage of the 

acid/alkaline dual electrolyte concept to a flow battery system. Here, we investigate the 

feasibility of hybridizing an alkaline hydrogen cell with an acidic vanadium V4+/V5+ 

redox couple. Though not a full flow system, the alkaline metal hydride electrode has 
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almost the same potential as alkaline hydrogen electrode and can be used here to 

demonstrate the technological principle. We report this high voltage semi-flow 

vanadium-metal hydride (V-MH) hybrid rechargeable battery with a setup as shown in 

Fig. 1. The electrochemical reactions of this V-MH semi-flow battery are illustrated in 

2nd last row of Table 1.  

 

 

Experimental 

Vanadium-MH semi-flow battery (V-MH) design.―The hybrid battery had two 

compartments as shown in Fig. 1. The acid chamber had a graphite-felt positive electrode 

immersed in a 20 cm3 solution containing 0.128 mol dm-3 VOSO4 and 2 mol dm-3 H2SO4. 

The alkaline chamber had a MHx negative plate immersed in a 20 cm3 2 mol dm-3 KOH 

aqueous solution. The two chambers were separated by a 0.1 cm thick bipolar membrane 

CMI7000/AMI7001 from Membrane International Inc., USA. The active area of the 

bipolar membrane is 20 cm2 and the predicted electrical resistance is around 70 ohm cm2 

in 0.5 mol dm-3 NaCl solution. The bipolar membrane was immersed in 5% NaCl 

aqueous solution overnight before use. The dimension of each acid and alkaline 

electrolyte chamber was about 46 mm (L) ×68 mm (H) × 10 mm (W). The inter-electrode 

gap is 2 cm and there is no flow distributor to control the flow pattern. The volumetric 

flow rate was fixed at 10 cm3 min-1 corresponding to a linear flow rate of 79.6 cm min-1 

for the VOSO4/H2SO4 electrolyte in the positive chamber of Vanadium-MH system. 

Individual VRF and NiMHx batteries were assembled with same electrolyte concentration 

and operated at the same condition for comparison. Here, M represents a mischmetal (an 
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alloy of rare eartg elements) that reversibly adsorbs hydrogen in the electrochemical 

reaction. Details of the metal are described below. 

 

Electrodes and electrolytes preparation. 

Commercial graphite felt from Shenhe Carbon Fiber Materials Co. Ltd., Liaoning, 

China, was used as positive electrode, with an active geometric area of around 9 cm2 and 

a thickness of 5 mm. This graphite felt was pre-treated before use with the following 

steps. 1) Acid Pretreatment: The graphite felt (GF) was soaked in 95% (wt%) H2SO4 at 

50 oC for 4 hours. It was rinsed with DI water until the effluent pH is near 7 and then heat 

treated at 60 oC for 2 hours to improve its electrochemical activity and hydrophilicity. 2) 

Electrochemical Pretreatment: The GF was electrochemically oxidized in 1 mol dm-3 

H2SO4 aqueous solution at 30 mA cm-2 for 4 minutes. The counter electrode was a 

graphite plate and the reference electrode was a Ag/AgCl electrode with 3 mol dm-3 NaCl 

filling solution.  This step improved the reversibility of redox reaction in the positive 

chamber. The use of a Hg/HgSO4 reference electrode is preferred and was tested later to 

give the same results of pretreatment. 3) After anodic polarization in step 2, the GF 

electrode was again rinsed with DI water until the effluent pH was near 7. It was then 

dried at 60 oC for 2 hours and stored for later use. This pretreatment process can reduce 

activation polarization and improve reversibility as evident from the cyclic 

voltammograms in Fig. 2. The voltammogram for the pretreated GF electrode was for the 

3rd cycle, after which there was no further improvement in the overpotential.  

The negative metal hydride (MHx) electrode was prepared by 1 g of LaNi5 based 

metal-hydride alloy powder extracted from a commercial GP-2700 AA battery. The 
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LaNi5 based powder was mixed with 50 mg XC-72 vulcan carbon (4.5 wt%), pasted and 

pressed onto a piece of nickel foam. The active area of MHx electrode was around 9 cm2. 

The initial 0.128 mol dm-3 positive VOSO4 electrolyte was prepared by dissolving 

0.547 g VOSO4∙nH2O (Dieckmann Chemical Industrial Co. Ltd., Hong Kong, n=2.85 

according to thermogravimetric analysis) in 2 mol dm-3 H2SO4 solution (total volume is 

20 cm3).  

 

All Vanadium redox flow battery (VRF) setup.  

An all vanadium redox flow battery was setup as the benchmark for comparison. GF 

electrodes of 9 cm2 active area were pretreated as above and used as positive and 

negative electrodes. The positive electrolyte for VRF was a 20 cm3 solution of 0.128 mol 

dm-3 VOSO4 and 2 mol dm-3 H2SO4, whereas the negative electrolyte was a 20 cm3 

solution of 0.5 mol dm-3 V2(SO4)3/VSO4 (~1:1 volume ratio) and 2 mol dm-3 H2SO4 . A 

higher concentration of negative electrolyte was used so that VRF capacity was limited 

by the positive side. An anion-exchange membrane with active surface area of 13 cm2 

(Fumasep FAB, Fumatech) was pre-treated in electrolyte solution overnight, then used as 

the ionic conductor and barrier for VRF battery39. Nitrogen was purged into the negative 

electrolyte for 10 minutes before pumping into the closed experimental setup. The flow 

rate of the VRF battery was fixed at 10 cm3 min-1. 

 

Nickel metal hydride battery (NiMHx) setup. 
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 A NiMHx cell was setup as another benchmark for comparison. The MHx electrode 

was prepared as above and coupled with a positive electrode with excess Ni(OH)2 in 2 

mol dm-3 KOH aqueous solution. No separator was used in this cell for simplicity. 

 

Electrochemical tests.  

All electrochemical performance tests were carried out at room temperature. Charge 

and discharge experiments were carried out galvanostatically with a Voltalab PGZ301 

potentiostat. For the V-MH system, a Hg/Hg2SO4 electrode filled with 2 mol dm-3 H2SO4 

and a Hg/HgO electrode filled with 2 mol dm-3 KOH were employed as reference 

electrodes in acid and alkaline chambers, respectively. The positive electrolyte was 

circulated by a peristaltic pump (Watson-Marlow Bredel 323) at 10 cm3 min-1 in the 

positive chamber through a Phar-Med NSF-51 tubing (Inner diameter is 1.6 mm). The 

hybrid system was left idle for 1 hour initially with the positive electrolyte flowing, and 

then repeatedly charged and discharged at 9 mA. The corresponding current density is 1 

mA per cm2 of active electrode area. The cut-off voltage is 2.0 V for charging and 1.6 V 

for discharge. The voltages across individual components monitored and recorded by a 

National Instrument PCI-6221 Data Acquisition Unit were V1: between the positive GF 

electrode and the Hg/Hg2SO4 reference; V2: between the negative MH electrode and the 

Hg/HgO reference; V3: between the reference electrodes across the membrane; and V4: 

between the positive and negative electrodes, with polarities of the connections shown in 

Fig. 1.  

The conventional VRF and NiMHx batteries were charged and discharged at 9 mA, the 

same as the V-MH semi-flow system. The cutoff voltages for VRF were 1.46 V and 0.8 
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V. The NiMHx battery was charged for 5 hours and then discharged until reaching a 

cutoff of 0.8 V. 

 

Results and Discussion 

Charge/discharge characteristics. 

Fig. 3 compares the charge and discharge performance of the V-MH semi-flow hybrid 

battery with the two conventional batteries of acidic VRF and alkaline NiMHx. At 1 mA 

cm-2, a typical charging of the V-MH system takes 4.8 hours reaching the cut-off of 2.0 V 

and a discharge of 4.7 hours to 1.6 V. The discharge capacity of the V-MH cell is 42.3 

mAh. As shown in Fig. 3, the measured OCV of V-MH after fully charged is 1.93 V. The 

measured OCV of the V-MH cell was slightly higher than its theoretical value 1.80 V 

since the acid and alkaline concentrations were both higher than the standard state 

concentrations. This OCV value is significantly higher than the theoretical OCVs of the 

VRF battery and the NiMHx battery, which are 1.4 V and 1.35 V, respectively. These 

theoretical OCVs are similar to those reported for VRF11,12 and NiMHx batteries.30  In a 

typical cycle, V-MH semi-flow hybrid system has higher discharge voltage (1.7 V) than 

that of individual VRF (~1.2 V) and NiMHx (~1.28 V) batteries with the same acid or 

alkaline electrolyte concentration. This coupling of V4+/V5+ and MHx/MH electrodes 

increases the overall cell voltage by almost 36%. However, the current density used is 

much lower than the typical current densities of the order of hundreds of mA/cm2 in 

conventional VRF batteries. 

 

Cycle performance. 
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The breakdown of voltage losses in the V-MH cell and performance of individual 

components can be determined by examining the four voltage profiles V1-V4 in Fig. 4. 

The typical ten charge-discharge cycles are shown which lasted approximately 90 hours. 

For the overall cell voltage, V4, the charge and discharge plateaus are stable throughout 

the typical 10 cycles at c.a. 1.93 V, and 1.70 V, respectively. This stability is also 

reflected in the curves of V1 and V2 with corresponding steady positive and negative 

electrode reactions. The charge and discharge cycles of V-MH cell demonstrate good 

reversibility. The voltage difference between charge and discharge is small relative to the 

average operating voltage. 

The present setup of V-MH system is positive-limited as the negative MH capacity is 

larger with more active material than that of positive V4+/V5+. This is confirmed by the 

larger polarization in V1 compared to V2; and the V1 overshoot at the end of charging 

resembles that of V4, the overall cell voltage. The voltage loss between charge and 

discharge of the MH negative electrode (V2) remains small at ~0.03 V. The voltage 

across the membrane, V3 remains stable at 0.4 to 0.6 V, indicating steady and reversible 

ionic transport across the membrane. V3 is measured between two different types of 

reference electrodes, without corrected for their difference in standard potentials. The 

difference between Hg/Hg2SO4 (filled with 2 molar H2SO4) and Hg/HgO (filled with 2 

molar KOH) is theoretically estimated to be 0.518 V. With contribution of junction 

potentials, the V3 was measured to be 0.541 V during idling without any current passage.   

After corrected for difference of reference electrodes, the averaged voltage drops across 

the membrane, was +0.014V and -0.016V, during the charge and discharge of first cycle, 
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respectively. The areal resistance of the membrane was estimated to be 30 to 40 ohms 

cm2.  

 

Battery evaluation. 

Efficiencies of the V-MH battery are derived from the voltage profiles in Fig. 4 and 

summarized in Table 2 in terms of coulomb, energy, and voltage efficiencies. In the first 

cycle, the cell voltage, V4 takes c.a. 4.8 hours to reach 2 V. Then it discharges with a 

plateau of 1.7 V for c.a. 4 hours until the cutoff of 1.6 V, yielding 82% charge or 

coulomb efficiency. After a 90-hour test with an operating voltage ~1.7 V, the coulomb 

efficiency reaches 95% in the 10th cycle. The increase in coulomb efficiency from its 

initial state can be attributed to reduced crossover of vanadium ions through the 

membrane.40, 41 It can also be attributed to improved kinetics in the positive reaction over 

time when concentration overpotential becomes more evenly distributed with less oxygen 

evolution.42  

The calculated average voltage efficiency, defined as (average discharge 

voltage)/(average charge voltage), is 88%, among the best reported values of 

conventional VRF batteries,13, 15, 16 as shown in Table 2. Coupled with high coulomb 

efficiency, the corresponding energy efficiency is 84%, slightly higher than the best 

reported values of VRF, as shown in Table 2.  In additional to high operating voltage and 

high energy efficiency, the V-MH system eliminates the problem arises from air 

oxidation of V2+.  From the present V-MH hybrid semi-flow system, the experienced 
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energy density1, specific energy and power are 1.8 Wh L-1, 46.5 Wh kg-1 and 9.89 W kg-1, 

respectively.  

 

Theoretical cell voltage, cell capacity and specific energy of V-MH. 

One factor which currently limits the widespread application of VRF is its low specific 

energy when compared to other types of batteries. With this semi-flow V-MH battery, the 

theoretical specific energy can be increased up to 200 Wh kg-1, 3.5 times that of VRF 

battery, as shown in Table. 1.  

 

The dependence of specific energy on theoretical cell voltage and cell capacity can be 

graphically illustrated in Fig. 5. Values of theoretical specific energy of VRF, NiMHx, 

proposed V-MH and V-H2 hybrid batteries can be compared by the their rectangular 

areas in Fig. 5. The height of the rectangle is proportional to cell voltage. The width of 

the rectangle is related to theoretical cell capacity in coulombs/mass of the 

electrode/electrolyte material. The overall cell capacity is less than a theoretical capacity 

scaled only to either the positive side or negative side material by Faraday’s law.31, 43 

They obey a reciprocal sum relationship, as shown in Fig. 5 with the top arrow indicating 

the positive side capacity, C+ and the bottom arrow representing the negative side 

capacity, C- . The theoretical electrode capacity of VRF battery in Fig. 5 is 165 mAh g-1 

when scaled to the V4+/V5+ positive electrolyte; 68.5 mAh g-1, scaled to the V2+/V3+ 

negative component; and 48.4 mAh g-1 for the whole cell.31, 43 Replacing the negative side 

                                                 
1 Energy density is defined as discharge energy divided by the total electrolyte volume (20 cm3 positive 
electrolyte + 20 cm3 negative electrolyte). The calculation of specific energy and power is based on the 
weight of active material (1 g MH + 0.5471 g VOSO4) used in the electrochemical battery, excluding the 
sulfuric acid solution. 
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with MH/MHx-1 or H2/OH- can improve the cell voltage, and the negative capacity, hence 

the overall cell capacity, and the specific energy, as geometrically shown in Fig. 5.  In 

principle, this hybrid battery system (V-MH) of V4+/V5+ and metal hydride can deliver an 

overall cell capacity of 111 mAh g-1, cell voltage of 1.8 V, and specific energy of 200 Wh 

kg-1, much higher than 60.5 Wh kg-1 of conventional VRF battery in Fig. 5. 

 

Using metal hydride as the negative electrode in alkaline, we have successfully 

demonstrated the viability of the acid/alkaline concept in a high voltage vanadium hybrid 

semi-flow battery with performance summarized in Table 2. The next stage would be to 

apply this pH differential concept to full-flow batteries by replacing the metal-hydride 

electrode with an alkaline negative electrode/electrolyte that can scale independent of 

electrode and cell. Specifically, the alkaline hydrogen electrode (-0.83 V vs SHE), a close 

equivalent of MH (-0.8 V vs SHE), can be demonstrated as a full-flow pH differential 

battery. This vanadium-hydrogen battery is compared with other batteries in Table 1. The 

alkaline hydrogen electrode has a standard potential of -0.83 V, slightly lower than that of 

MH and leading to a higher overall cell voltage of 1.83 V. The hydrogen electrode has an 

extremely high cell capacity and favorable reversible electrochemical kinetics. Both the 

theoretical specific energy and power of Vanadium-H2 full flow battery are attractively 

higher than those of V-MH system. This is illustrated in Fig. 5 with the largest rectangle 

with high voltage (1.83 V) and high cell capacity (164 mAh g-1). The Vanadium-H2 

battery system holds the best prospect of a flow battery with a theoretical specific energy 

of 300 Wh kg-1, 1.5 times and 5 times that of V-MH and VRF batteries, respectively. In 
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terms of costs, both V-MH and V-H2 hybrid systems would be not more expensive than 

VRF, since metal hydride and/or hydrogen in alkaline are matured systems. 

 

At this stage, the reported high voltage and energy efficiencies of this hybrid semi-flow 

V-MH battery is demonstrated only at low current density, and far below the level for 

practical applications. The main bottleneck preventing high current operation is 

performance of membrane that maintains the pH barrier and transport of preferred ions.  

Further improvement over the preliminary results of the V-MH system are expected with 

optimization in electrolyte flow rates, concentrations, distance between electrodes, 

membrane thickness, or other cell and operation parameters. The power and specific 

energy of the V-MH hybrid battery may be further increased with scale-up, while the 

costs reduced, if the marginal increase in pumping energy and loss of ion selectivity at 

high current can be offset by the higher voltage advantage. Depending on the application, 

the hybrid system can provide further specific improvement and options over existing 

options of VRF, lead acid, or NiMHx systems. For example, the battery life can be longer 

than that of lead acid-MH system31, 32 since no solid-solid phase change occurs in the 

positive side of V-MH system. 

 

Conclusions 

    A novel semi-flow Vanadium-Metal Hydride (V-MH) system (200 Wh kg-1) with 3.5 

times higher theoretical specific energy than that of the conventional all vanadium redox 

flow battery (60.5 Wh kg-1) was reported. Hybridizing the V4+/V5+ couple with metal 

hydride eliminates the problem of V2+ oxidation as in VRF battery. The average voltage 
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of the Vanadium-MH battery system during discharge is around 1.70 V, which is higher 

than that of individual all vanadium redox flow battery (1.2 – 1.4 V) and NiMHx battery 

(1.25 – 1.35 V). The Vanadium-MH battery system has good reversibility and efficiency 

in voltage (88.1%), coulombic (95%) and energy (83.7%), which is critical for its 

potential application. The best estimate of the present experienced practical energy and 

power density of this rechargeable semi-flow battery are 46.5 Wh kg-1 and 9.89 W kg-1, 

respectively (based on the lab-scale cell and low current density).  
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Figure Captions 

Figure 1. Schematic drawing of the V-MH hybrid system with positive electrolyte flow.  

2 4positive Hg/Hg SOV1 φ φ= −  is the potential difference between graphite felt (GF) electrode 

(positive electrode) and reference electrode (Hg/Hg2SO4). negative Hg/HgOV2= -φ φ  is the 

potential difference between MHx/MHx-1 electrode (negative electrode) and reference 

electrode (Hg/HgO). 
2 4Hg/Hg SO Hg/HgOV3= -φ φ  is the potential or potential difference between 

reference electrodes Hg/Hg2SO4 and Hg/HgO across the bipolar membrane. 

positive negativeV4= -φ φ  is the potential difference between GF electrode and MHx/MHx-1 

electrode or overall cell voltage. 

 



 19 

Figure 2. Cyclic voltammetry at 20 mV s-1 for different graphite felt electrodes in 

solution of 0.026 mol dm-3 VOSO4 and 2 mol dm-3 H2SO4. The working electrode is 

graphite felt with or without pretreatment. The counter electrode is a graphite plate and 

the reference electrode is Ag/AgCl in 3 mol dm-3 NaCl. 

 

Figure 3. Typical charge/discharge curves at 1 mA cm-2 for NiMHx, VRF, and hybrid 

semi-flow V-MH batteries. 

 

Figure 4. Ten charge/discharge cycles of the V-MH battery. V1 is the potential 

difference between the positive graphite felt (GF) electrode and the Hg/Hg2SO4 

reference: 
2 4positive Hg/Hg SOV1 φ φ= − ; V2 is the potential difference between the negative 

MHx/MHx-1 electrode and the Hg/HgO reference electrode: negative Hg/HgOV2= -φ φ ; V3 is the 

voltage across the bipolar membrane measured by the Hg/Hg2SO4 reference electrode 

and the Hg/HgO reference electrode: 
2 4Hg/Hg SO Hg/HgOV3= -φ φ ; V4 is the cell voltage which 

is the potential difference between the GF electrode and MHx/MHx-1 electrode: 

positive negativeV4= -φ φ . 

 

 

Figure 5. Theoretical cell voltage, cell capacity, and specific energy of selected pairing 

of positive and negative electrodes/electrolytes. (The theoretical cell capacity is 

calculated by C=C+/(1+C+/C-), where C+ and C-  represent the theoretical capacity of 

positive electrode/electrolyte material (width of bar at the top) and negative electrode 
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material (width of bar at the bottom), respectively 31, 43. C+ and C- are scaled by Faraday’s 

law to their individual active material. In VRF battery, VOSO4 and V2(SO4)3 are the 

active material for V4+/V5+ and V2+/V3+ redox couples, respectively. The specific energy 

is calculated as C× Cell voltage.) 
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Figure 1. Schematic drawing of the V-MH hybrid system with positive electrolyte flow.  

2 4positive Hg/Hg SOV1 φ φ= −  is the potential difference between graphite felt (GF) electrode 
(positive electrode) and reference electrode (Hg/Hg2SO4). negative Hg/HgOV2= -φ φ  is the 
potential difference between MHx/MHx-1 electrode (negative electrode) and reference 
electrode (Hg/HgO). 

2 4Hg/Hg SO Hg/HgOV3= -φ φ  is the potential or potential difference between 
reference electrodes Hg/Hg2SO4 and Hg/HgO across the bipolar membrane. 

positive negativeV4= -φ φ  is the potential difference between GF electrode and MHx/MHx-1 
electrode or overall cell voltage. 
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Figure 2. Cyclic voltammetry at 20 mV s-1 for different graphite felt electrodes in 
solution of 0.026 mol dm-3 VOSO4 and 2 mol dm-3 H2SO4. The working electrode is 
graphite felt with or without pretreatment. The counter electrode is a graphite plate and 
the reference electrode is Ag/AgCl in 3 mol dm-3 NaCl.   
 

 
 
 
 
 
 
 
 



 23 

 

Figure 3. Typical charge/discharge curves at 1 mA cm-2 for NiMHx, VRF, and hybrid 
semi-flow V-MH batteries.    
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Figure 4. Ten charge/discharge cycles of the V-MH battery. V1 is the potential 
difference between the positive graphite felt (GF) electrode and the Hg/Hg2SO4 
reference: 

2 4positive Hg/Hg SOV1 φ φ= − ; V2 is the potential difference between the negative 
MHx/MHx-1 electrode and the Hg/HgO reference electrode: negative Hg/HgOV2= -φ φ ; V3 is the 
voltage across the bipolar membrane measured by the Hg/Hg2SO4 reference electrode 
and the Hg/HgO reference electrode: 

2 4Hg/Hg SO Hg/HgOV3= -φ φ ; V4 is the cell voltage which 
is the potential difference between the GF electrode and MHx/MHx-1 electrode: 

positive negativeV4= -φ φ .  
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Figure 5. Theoretical cell voltage, cell capacity, and specific energy of selected pairing 
of positive and negative electrodes/electrolytes. (The theoretical cell capacity is 
calculated by C=C+/(1+C+/C-), where C+ and C-  represent the theoretical capacity of 
positive electrode/electrolyte material (width of bar at the top) and negative electrode 
material (width of bar at the bottom), respectively 31, 43. C+ and C- are scaled by Faraday’s 
law to their individual active material. In VRF battery, VOSO4 and V2(SO4)3 are the 
active material for V4+/V5+ and V2+/V3+ redox couples, respectively. The specific energy 
is calculated as C× Cell voltage.) 
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Table 1. Characteristics of some rechargeable storage batteries. (a Operating voltage) 
 

System 
 

Reference Electrochemistry Electrolyte  
(+/-) 

 
(V) 

a  
(V) 

Specific energy (Wh kg-1) 

Theoretical Reported 

Fe-Cr 1, 2 
 Positive:  Fe3+ + e-        Fe2+                        (E° =  0.77 V) 

 Negative:  Cr2+   Cr3+ + e-                               (E° = -0.41V) 
HCl/HCl 1.18 － 99 － 

VRF11, 12 11, 12 
 Positive: VO2

+ +2H+ + e-  VO2+ + H2O          (E° = 1.00 V)  

 Negative: V2+ V3+ + e-                                  (E° = -0.25 V) 
H2SO4/H2SO4 1.26 1.3 60.5 25-35 

O2-V 21 
 Positive: O2 + 4H+ + 2e-  2H2O                      (E° = 1.23 V)  

 Negative: V2+  V3+ + e-                                 (E° = -0.25 V) 
H2SO4/H2SO4 1.48 1.41 97 >40 

Polyhalide-
VCl3 

26 
 Positive: BrCl2

- + 2e-  Br- + 2Cl-                    (E° = 1.04 V)  

 Negative: V2+  V3+ + e-                                 (E° = -0.25 V) 
HCl/HCl 1.29 c.a.1.2 78 － 

Ni-H2
19, 20 19, 20 

 Positive: NiOOH +H2O + e- Ni(OH)2 + OH- (E° = 0.45 V)  

 Negative: H2 + 2OH-  2H2O + 2e-                 (E° = -0.83 V) 
KOH/KOH 1.28 c.a.1.2 366 40-96 

V-MH 

  Positive: VO2
+ + 2H+ + e-

 
VO2+ + H2O         (E° = 1.00 V)  

 Negative: MHx + OH- 
 
MHx-1 + H2O + e-     (E° = -0.80 V) 

H2SO4/KOH 1.80 1.70 200 46.5 

Proposed V-
H2 full flow 

  Positive: VO2
+ + 2H+ + e-  VO2+ + H2O        (E° = 1.00 V)  

 Negative: H2 + 2OH-   2H2O + 2e-                (E° = -0.83 V) 
H2SO4/KOH 1.83 － 300 － 
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Table 2. Comparison of V-MH and VRF batteries in terms of voltage, coulombic, and 

energy efficiencies.  
 

 VRF 
(this work) 

VRF 
 [ref. 13, 15, 16] V-MH 

Typical discharge 
voltage, V 1.23 1.26-1.4 1.70 with a cutoff at 1.6 V 

   
 

  
Average voltage  

Efficiency(eq. 1), % 85.3§ 
62-73[ref.13], 

85[ref. 15], 
91.2[ref. 16], 

88.1† 

Average coulombic 
efficiency(eq. 2), % 81.6§ 

        80-98[ref. 13], 
95[ref. 15], 

82.6-98.7[ref. 16], 
95† 

Average energy  
Efficiency(eq. 3), % 69.6§ 

66-75[ref. 13], 
77-83[ref. 15], 
75.3[ref. 16], 

83.7† 

Voltage efficiency:  ηV = Vdischarge /Vcharge        (eq. 1) 
Coulomb/charge efficiency:  ηc = Qdischarge / Qcharge = (I tdischarge)/(I tcharge)   (eq. 2) 
Energy efficiency: ηP =Edischarge/Echarge = (Vdischarge I tdischarge)/(Vcharge I tcharge)  (eq. 3) 
§Average over 2 cycles 
†Average over 10 cycles 
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