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Abstract: In monolayer group-VI transition metal dichalcogenides (TMDC), charge 

carriers have spin and valley degrees of freedom, both associated with magnetic moments. 

On the other hand, the layer degree of freedom in multilayers is associated with electrical 

polarization. Here, we show that TMDC bilayers offer an unprecedented platform to 

realize a strong coupling between the spin, layer pseudospin, and valley degrees of freedom 

of holes. Such coupling not only gives rise to the spin Hall effect and spin circular 

dichroism in inversion symmetric bilayer, but also leads to a variety of magnetoelectric 

effects permitting quantum manipulation of these electronic degrees of freedom. 

Oscillating electric and magnetic fields can both drive the hole spin resonance where the 

two fields have valley-dependent interference, making possible a prototype interplay 

between the spin and valley as information carriers for potential valley-spintronic 

applications. We show how to realize quantum gates on the spin qubit controlled by the 

valley bit.   
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Introduction 

Device applications exploiting internal degrees of freedom of charge carriers may lead to new 

electronic technologies outperforming their conventional counterparts which rely on charge flow 

only. A seminal example is electron spin, which has been extensively exploited as a carrier of 

classical or quantum information1-3. Recently, the emergence of atomically thin two-dimensional 

(2D) crystals such as graphene and transition metal dichalcogenides (TMDC) have offered new 

playgrounds to explore novel electronic device concepts4-10. In addition to spin, two types of 

internal indices of electrons have been investigated as information carriers, namely the layer11-14 

and valley15-19 degrees of freedom.  

 The Layer degree of freedom exists in bilayer systems and can be described as a 

pseudospin. Pseudospin up (down) refers to the state where the charge carrier is located in the 

upper (lower) layer. Thus, pseudospin polarization directly corresponds to electrical polarization. 

Such layer pesudospin has been proposed in graphene bilayers for pseudospintronics11-14. Valley 

refers to the degenerate extrema of energy bands, which in many hexagonal 2D crystals are 

located at the corners of the hexagonal Brillouin zone (ܭ points). It was predicted that in the 

absence of inversion symmetry valley degree of freedom can be associated with magnetic 

moment and optical circular dichroism18,20, which has made possible the first observations of 

optical pumping of valley polarization in TMDC monolayers21-23 and biased bilayers24. Since the 

spin and valley have magnetic moment which can be controlled by magnetic and optical means, 

while the layer pseudospin corresponds to an electrical polarization subject to electrical 

manipulation, a system allowing interplay of these different degrees of freedom may offer 

unprecedented possibilities to exploit their quantum control for new device concepts. 

 In this letter, we show that in group-VI TMDC bilayers, the spin, the layer pseudospin, 

and the valley degrees of freedom are strongly coupled for the holes in the ܭ valleys, leading to a 

variety of magnetoelectric effects to realize valley-spintronics. Such a coupling suppresses the 

interlayer hopping, making possible the spin Hall effect and spin circular dichroism even in the 

presence of inversion symmetry. A static magnetic field can induce oscillations of the layer 

(electrical) polarization, while spin precession in magnetic field can be electrically controlled.  

The frequencies of the spin and layer dynamics become valley dependent when both the 

magnetic and electric fields are present, giving rise to beating phenomena where a spin 
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polarization can evolve from zero net polarization. An oscillating electric field and magnetic 

field will both drive the hole spin resonance. Interestingly, the two fields can have a valley-

dependent interference through their coupling to the same transition. Such a phenomenon not 

only achieves an effective coupling between the oscillating electric and magnetic fields, but also 

makes possible a prototypical interplay between the spin and valley information carriers where 

quantum gates on the spin qubit are controlled by the valley bit.  

Results 

Strong coupling between spin, valley, and layer pseudospin. Group-VI TMDC bilayers are 

AB stacked: one monolayer sits on another but with 180ל rotation (Fig. 1(a)). Pristine bilayers 

are therefore inversion symmetric. As in monolayers, ab initio calculations show that the valence 

and conduction band edges near ܭ points in bilayers are dominantly contributed by ݀௭మ, ݀௫௬, and 

 ݀௫మି௬మ orbitals of metal atoms. A minimal band model of bilayers in the neighborhood of K 

points can be constructed by adding interlayer hopping to the ݇ ڄ ݌  model of monolayers 

established in Ref. [20],  

ሻݍሺܪ ൌ

ۏ
ێ
ێ
ێ
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0 0 Δ ௫ݍ൫߬௭ݐܽ െ ௬൯ݍ݅

0 ୄݐ ௫ݍ൫߬௭ݐܽ ൅ ௬൯ݍ݅ ߬௭ݏ௭ߣ ے
ۑ
ۑ
ۑ
ې

.    (1) 

The basis is ቄห݀௭మ
௨ ൿ, 1/√2 ቀቚ݀௫మି௬మ

௨ ඀ െ ݅߬௭ห݀௫௬௨ ൿቁ ,  ห݀௭మ
௟ ൿ, 1/√2 ቀቚ݀௫మି௬మ

௟ ඀ ൅ ݅߬௭ห݀௫௬௟ ൿቁቅ , where 

the superscripts “ݑ” and “݈” denote the “upper” and “lower” layer respectively. ݍ is the relative 

wavevector with respect to the K points, Δ the monolayer band gap, ܽ the lattice constant, ݐ the 

nearest-neighbor intra-layer hopping, with ߣ the spin-valley coupling of holes in monolayers. ୄݐ 

is the interlayer hopping for holes, while the interlayer hopping for electrons vanishes at K points 

due to the symmetry of the ݀௭మ  orbital. ߬௭ ൌ േ1 is the valley index of bilayer bands and ݏఓ 

denotes the Pauli matrices for the spin. Similar to monolayers20, the spin up and spin down states 

are still decoupled in bilayers since interlayer hopping conserves spin. Table 1 lists these 

parameters obtained by fitting the ab initio band structures. 
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The Hamiltonian of holes near ܭ points can be obtained through a canonical transformation 

of Eq. (1) eliminating the interband coupling,  

ሻݍ௩ሺܪ  ൌ െߝ௤ ൅ ߣ ቀെ1 ൅
ఌ೜
୼
ቁ ߬௭ߪ௭ݏ௭ ൅ ୄݐ ቀ1 െ

ఌ೜
୼

୼మାఒమ

୼మିఒమ
ቁ  ௫, (2)ߪ

where ߝ௤ ൌ ߂ ௔మ௧మ௤మ

௱మିఒమ
 gives the energy dispersion. The small quantity ߝ௤/Δ ا 1 will be neglected 

hereafter. ߪఓ are Pauli matrices defined in the basis ቄ
ଵ

√ଶ
ቀቚ݀௫మି௬మ

௨ ඀ െ ݅߬௭ห݀௫௬௨ ൿቁ ,
ଵ

√ଶ
ቀቚ݀௫మି௬మ

௟ ඀ ൅

݅߬௭ห݀௫௬௟ ൿቁቅ, which can be regarded as the layer pseudospin. The second term in Eq. (2) represents 

a strong coupling between the layer pseudospin (ߪ௭), the real spin (ݏ௭) and the valley (߬௭), while 

the third term is the interlayer hopping. The coupling between the three indices is the 

manifestation of the monolayer spin-valley coupling in the AB stacking order. This coupling is 

much stronger than (comparable with) the interlayer hopping in WX2 (MoX2) as listed in Table I, 

and it originates from the strong spin-orbit interaction in the d-orbitals of the metal atoms. A 

direct consequence is that the interlayer hopping is virtually suppressed as observed in WX2 

multilayers25.  

At each wavevector ݍ, the eigenstates of Eq. (2) are two spin doublets separated by a large 

energy ඥߣଶ ൅ ୄݐ
ଶ. We focus on the spin doublet at the band edge (enclosed by the dashed box in 

Fig. 1(c)), which in valley ܭ is given by  

,ܭ|  ՛ۧ ൌ
ଵ

√ଶ
ቆsin ߙ ቀቚ݀௫మି௬మ

௨ ඀ െ ݅ห݀௫௬௨ ൿቁ ൅ cos ߙ ቀቚ݀௫మି௬మ
௟ ඀ ൅ ݅ห݀௫௬௟ ൿቁቇ۪|՛ۧ, 

,ܭ|  ՝ۧ ൌ
ଵ

√ଶ
ቆcos ߙ ቀቚ݀௫మି௬మ

௨ ඀ െ ݅ห݀௫௬௨ ൿቁ ൅ sin ߙ ቀቚ݀௫మି௬మ
௟ ඀ ൅ ݅ห݀௫௬௟ ൿቁቇ۪|՝ۧ. (3) 

 
|՛ۧ and |՝ۧ denote the spin up and down states respectively. The spin doublet {|ܭഥ, ՝ۧ, ,ഥܭ| ՛ۧ} in 

valley –K is the time reversal of the above. These energy eigenstates are associated with a spin 

and valley dependent layer (electrical) polarization,  

ۄ௭ߪۃ  ൌ െݏ௭߬௭ cos ߙ2 ,      cos ߙ2 ؠ
ఒ

ටఒమା௧఼
మ
, (4) 

Table 1 lists the computed values of cos ୄݐ using the parameters ߙ2  and ߣ fitted from the ab 

initio band dispersion, which agrees well with the layer polarization directly evaluated from the 
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ab initio wavefunction. This shows that our minimal model gives a good description of the 

electronic states near K points. The large layer polarization means that the spin doublet is 

predominantly localized in (opposite) individual layers, and interlayer hopping of holes is largely 

suppressed.  

An important consequence of the spin dependent layer polarization is that bilayers will 

inherit most of the spin physics of monolayers. In Fig. 1(c), we illustrate the optical interband 

transitions by circularly polarized light between the valence and conduction band edges near K 

points. Spin is conserved here by the optical transition. In both valleys, ߪ ൅ (ߪ െ) polarized light 

predominantly excites spin up (down) photocarriers22. We find the degree of spin polarization 

created upon absorption of a circularly polarized photon to be cos  directly corresponding to ,ߙ2

the layer polarization of the hole states. This spin circular dichroism can be used for optical 

injection and detection of spin polarization near K points. The valley circular dichroism is absent 

in pristine bilayers because of inversion symmetry. Moreover, the Berry curvature of the band 

edge holes at ܭ points is:  

 Ω ൌ ௭ݏ
ଶ௔మ௧మ

ቆ୼ିටఒమା௧఼
మቇ

మ cos 2α, (5) 

which depends only on the spin index. Thus the spin Hall effect of holes is also present in 

inversion symmetric bilayers, while the valley Hall effect vanishes. 

Magnetoelectric effects. While the spin couples to real space magnetic fields, the layer 

(electrical) polarization couples to electric fields in the perpendicular (ݖ) direction. The coupling 

between spin and layer pseudospin therefore gives rise to magnetoelectric effects. The hole 

Hamiltonian in the presence of electromagnetic fields is,  

௩ܪ  ൌ െλ߬௭ߪ௭ݏ௭ ൅ ௫ߪୄݐ ൅ ௫ݏ௫ܤ ൅ ௭ݏ௭ܤ ൅  ௭. (6)ߪ௭ܧ

Without loss of generality, the in-plane component of the magnetic field is taken to be along the 

ݔ -direction. ܤ௫, ௭ܤ  and ܧ௭  are strengths of magnetic and electric fields in units of energy, 

normalized by the magnetic and electric dipole respectively. ܤ௫ and ܤ௭ can be up to ~ meV for 

magnetic fields up to a few Tesla. A moderate electric field is considered where ܧ௭  has 

comparable magnitude to ܤ௫ and ܤ௭, so ߣ, ୄݐ ب ,௫ܤ ,௭ܤ  ௭. We focus on the spin doublet at theܧ
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band edge (c.f. Eq. (3)), and the Hamiltonian in Eq. (6) projected into the subspace of this 

doublet reads,  

஽ܪ  ൌ ൤
െ߬௭ܧ௭ cos ߙ2 ൅ ௭ܤ ௫ܤ sin ߙ2

௫ܤ sin ߙ2 ߬௭ܧ௭ cos ߙ2 െ ௭ܤ
൨. (7) 

where the basis is ሼ|ܭ ՛ۧ, ܭ| ՝ۧሽ at valley K (߬௭ ൌ 1) and ሼ|ܭഥ ՛ۧ, ഥܭ| ՝ۧሽ at valley –K (߬௭ ൌ െ1). 

The effective fields are illustrated in Fig. 2(a) and 2(d) for valley K and –K, respectively. 

As the doublet is associated with spin and valley dependent layer (electrical) polarization, its 

coupling to both the electric and magnetic fields gives rise to various forms of magnetoelectric 

effects. A few examples are given. Fig. 3(a) shows that spin precessions in a magnetic field can 

be controlled by the electric field ܧ௭. Here the initial state is a spin polarized one with no layer 

and valley polarizations: ߩ௦ ൌ ܭ|0.5 ՛ۧܭۦ ՛| ൅ ഥܭ|0.5  ՛ۧܭۦഥ ՛| . Fig. 3(b) shows that static 

magnetic field with finite in-plane component can induce oscillations of the electrical 

polarization ߪۃ௭ۄ. The initial state is a layer polarized one with no spin and valley polarizations: 

ாߩ ൌ ܭ|0.5 ՛ۧܭۦ ՛| ൅ ഥܭ|0.5  ՝ۧܭۦഥ ՝|. We note that spin polarization can be prepared by optical 

pumping with circularly polarized light (cf. Fig. 1(c)), while layer polarization can be prepared 

by tunneling from the lower side of the bilayer as interlayer hopping is virtually suppressed.  

When both ܧ௭ and ܤ௭ are finite, the direction and the magnitude of the total effective field 

become valley dependent (c.f. Eq. (7)), resulting in different oscillation frequencies in the two 

valleys as illustrated in Fig. 2. This gives rise to beating phenomena in the oscillation of spin and 

electrical polarizations when both valleys are populated, as shown in Fig. 3. Remarkably, 

because of the beating, a finite spin polarization can evolve out of an initial state with zero spin 

polarization in all directions (see Fig. 3(c)).  

We note that an arbitrary linear superposition of the doublet is in fact an entangled state 

between the spin and the layer pseudospin as shown in Eq. (3). After tracing out the layer 

degrees of freedom, the magnitude of the in-plane spin component will scale down by a factor of 

sin  .and the spin vector always lies within an elliptical sphere (c.f. Fig. 2(b) and 2(e)) ,ߙ2

Valley controlled quantum gate of spin qubit. When static electric field ܧ௭ or magnetic field 

 ௫ canܤ axis, an oscillating in-plane magnetic field-ݖ ௭ is applied to split the doublet along theܤ

drive the hole spin resonance. The doublet splitting becomes valley dependent when both ܧ௭ and 
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௭ܤ  are finite (c.f. Eq. (7) and Fig. 4(a)). Thus the hole spin resonance can be selectively 

addressed at valley K or –K by choosing the frequency of ܤ௫.  

As a quantum two-level system, the doublet can be used as a spin qubit for information 

processing. The valley index of the doublet, on the other hand, represents another bit of 

information. A prototype interplay between the two types of information carriers for potential 

valley-spintronic applications can be made possible. For example, as shown in Fig. 4(a), we 

consider the application of a pulsed ܤ௫ with central frequency on resonance with the splitting in 

valley -K. If the valley bit is in state -K, the spin qubit is coherently rotated about the ݔ-axis by 

the pulse. If the valley bit is in state K, the spin qubit is unchanged because of the large detuning. 

This valley dependent rotation represents a quantum gate on the spin qubit controlled by the 

valley bit. If the rotation is , a valley controlled NOT gate on the spin qubit is realized. We note 

that this controlled NOT gate can be used for deterministic conversion between an electrical 

polarization and a spin polarization (e.g. between ߩா and ߩ௦).  

Interference between oscillating electric and magnetic fields. If a static ܤ௫ is applied to split 

the doublet along the ݔ -axis, both the oscillating electric field and magnetic field in the z-

direction can drive the hole spin resonance26-30. Pulsed oscillating ܧ௭ or ܤ௭ can therefore realize 

coherent rotations of the spin qubit about the ݖ-axis. Interestingly, interference between the 

oscillating electric field and magnetic field can now be realized through their coupling to the 

same transition. The interference is valley dependent as the coupling of the spin qubit to ܧ௭ has a 

valley-dependent sign. If ܧ௭ሺݐሻ  and ܤ௭ሺݐሻ  are in phase with the same frequency, their 

interference is destructive in valley K and constructive in valley -K. Such a phenomenon induces 

an effective coupling between the oscillating electric field and magnetic field in the presence of 

valley polarization. The valley-dependent interference can also be utilized for valley-controlled 

spin qubit rotations about the ݖ-axis, as shown in Fig. 4(b). 

Discussions  

The phenomena above are predicted for holes in the K valleys. Holes can be optically 

injected into K valleys in group-VI TMDC bilayers by pumping the direct transition between the 

higher lying valence band and the conduction band. The strong PL peak associated with this 

transition suggests high efficiency of the injection21,22,24,25. Interestingly, ab initio calculations 
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show that although WSe2 bilayer has an indirect gap, the valence band maxima are at the K 

points (see supplementary information). For MoSe2 and WS2 bilayers, hole pockets are also 

expected to appear at K points at low doping. Thus lightly p-doped WSe2, MoSe2 and WS2 

bilayers could be ideal platforms to explore these phenomena. 

Long lifetimes of the polarizations are also essential for valley-spintronic applications. Spin 

and valley relaxations in TMDC bilayers can be qualitatively different from those in 

monolayers31, and remain open questions. Notably, for holes near K points, spin flip (|ܭ ՛ۧ ՞

ܭ| ՝ۧ) and valley flip (|ܭ ՛ۧ ՞ ഥܭ| ՛ۧ) are suppressed by the spin and valley dependent layer 

polarization from the coupling of the three indices. Since |ܭ ՝ۧ and |ܭഥ ՛ۧ are located on the layer 

opposite to |ܭ ՛ۧ, the spatial overlap of the initial and final state wavefunctions of spin and 

valley flips is small, which is given by sin2  in WX2 (MoX2) bilayers. This small (0.3 ~) 0.1 ~ ߙ2

factor helps to reduce both spin and the valley relaxations. Moreover, long valley lifetime has 

also been suggested by the observation of valley polarization in biased MoS2 bilayers24. 
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 ܽ(Å) Δ 2 ୄݐ2 ݐλ cos  ௄՝ۄ௭ߪۃ ߙ2

MoS2 3.160 1.766 1.137 0.086 0.147 0.863 0.863 

WS2 3.153 1.961 1.436 0.109 0.421 0.968 0.962 

MoSe2 3.288 1.541 0.951 0.106 0.182 0.864 0.855 

WSe2 3.280 1.698 1.233 0.134 0.456 0.959 0.944 

 

Table 1. Fitting result from ab initio band structure calculations. Δ, 
 .and λ (in units of eV) are fitted from the monolayer band structures ,ݐ
Interlayer hopping ୄݐ  is read out from the valence band splitting at K 
points of bilayers in the absence of spin-orbit coupling. The structural 
constants use the bulk values. The column cos ߙ2  is evaluated using 
Eq. (4) with the listed values of ୄݐ  and  λ, and according to our band 
model it gives the layer polarization of the Bloch state |ܭ ՝ۧ. The last 
column is the layer polarization directly evaluated from the ab initio 
wavefunction of |ܭ ՝ۧ. See also supplementary information. 
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Figure 1. Group-VI TMDC bilayer. a, Coordination structure of AB-
stacked bilayer. b, Optical transition selection rules in decoupled 
monolayers. Dashed arrows indicate interlayer hopping. c, Bilayer 
optical transition selection rules in the K and -K valleys in the 
presence of interlayer hopping. Thickness of the arrows represents 
the transition strength. The layer polarization of the Bloch states is 
schematically illustrated with the rectangular blocks where darker 
color denotes more occupation.  
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Figure 2. Valley dependent oscillations of spin and layer 
polarizations. a, Bloch sphere spanned by superposition states of the 
doublet ሼ|ܭ ՛ۧ, ܭ| ՝ۧሽ. Dark and light blue arrows denote the effective 
fields from the magnetic field components ܤ௭ and ܤ௫ respectively, and 
green arrow denotes that from the electric field ܧ௭. Yellow arrow is the 
total effective field. b, Anomalous precessions of the spin vector ۄ࢙ۃ 
when layer is traced out. c, Oscillations of the spin (ݏۃ௭ۄ) and layer 
,௫ܤpolarizations in magnetic field ሺ (ۄ௭ߪۃ) ௭ሻܤ ൌ ሺܤ଴ cos 10° , ଴ܤ sin 10°ሻ, 
from the initial state |ܭ ՛ۧ. The oscillations are electrically tunable. d-f, 
Same plots in valley -K. The unit of time is 1/ܤ଴. 
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Figure 3. Magnetoelectric effects. a, Spin precession in magnetic 
field along ߠ ൌ 10°  (c.f. inset), from initial state ߩ௦ ൌ ܭ|0.5 ՛ۧܭۦ ՛| ൅
ഥܭ|0.5  ՛ۧܭۦഥ ՛|. Oscillation in ݏۃ௭ۄ is tunable by the electric field ܧ௭  as 
shown by the contour plot. The dashed curves on the contour image 
denote the time when the spin precessions at K and –K acquire a 
phase difference of ሺ2݊ ൅ 1ሻߨ. A horizontal cut of the contour image at 
௭ܧ ൌ  ଴ is shown as the black solid curve atop, while the red andܤ0.2
blue curves denote ݏۃ௭ۄ at K and –K respectively. b, Oscillation of the 
layer polarization ߪۃ௭ۄ in a magnetic field, with a pattern tunable by ܧ௭. 
The initial state is ߩா ൌ ܭ|0.5 ՛ۧܭۦ ՛| ൅ ഥܭ|0.5  ՝ۧܭۦഥ ՝| . c, Finite spin 
polarization can evolve out of the initial state ߩா  of zero spin 
polarization. In all calculations, we assumed the doublet has a spin 
relaxation rate of 0.01ܤ଴. The unit of time is 1/ܤ଴. 
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Figure 4. Valley controlled quantum gates of a spin qubit. a, 
Static electric ( ௭ܧ ) and magnetic ( ௭ܤ ) fields induce a valley 
dependent splitting of the spin qubit. A pulse of oscillating magnetic 
field ܤ௫ can rotate the spin qubit conditional upon the valley state. b, 
When a static ܤ௫ splits the spin qubit, both oscillating ܧ௭ and ܤ௭ can 
drive the spin resonance, and the two fields constructively 
(destructively) interfere in valley -K (K), which realize valley 
controlled rotation of the spin qubit about the ݖ-axis. 


