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Quintic derivative nonlinear Schrödinger equations arise in various physical contexts, notably in the study of
hydrodynamic wave packets and media with negative refractive index. A procedure to isolate propagating wave
patterns in such nonlinear Schrödinger equations is proposed which is based on two integrals of motion. As an
illustration of the method, a “gray” solitary pulse, a “dark” localized mode with nonzero minimum in intensity
on a continuous-wave background is identified.
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Background and motivation. Derivative nonlinear
Schrödinger (DNLS) equations occur frequently in
applications, for instance, in models incorporating
self-steepening effects in optical pulses [1,2]. Moreover,
nonlinear Schrödinger (NLS) equations incorporating fifth
order (quintic) nonlinearity are of fundamental interest
in the physics of nonlinear optics [3,4]. It is natural to
consider models in nonlinear dynamics combining these two
features, and indeed such systems likewise have physical
applications [5].

In hydrodynamics, packets of free surface waves are
governed by the nonlinear Schrödinger equation to leading
order. However, in the parameter regime kh ≈ 1.363, where k

is the wave number and h is the water depth, cubic nonlinearity
weakens considerably, and higher order effects need to be
restored. Appropriate rescaling then produces a quintic DNLS
equation [6].

In the study of the behavior of metamaterials and of
media with negative refractive index, the concepts of negative
permittivity and permeability are important. Again, higher
order effects must be incorporated in the nonlinear Schrödinger
equation, if additional physical phenomena such as third order
dispersion are to be described [7]. Wave packets of ultrashort
electromagnetic pulses in left-handed materials can be studied
by the slowly varying approximations, and a DNLS equation
with quintic nonlinearity can also be derived in such contexts
[8]. There the coefficients of the nonlinear terms can be related
to the third order susceptibility of the medium.

The model. Here we consider the evolution of a wave enve-
lope � governed by a quintic derivative nonlinear Schrödinger
equation.

i�t + λ̂�xx + μ̂|�|2� + iα̂|�|2�x + ν̂|�|4� = 0. (1)

The form |�|2�x is chosen instead of (|�|2�)x , also
commonly studied in the literature, purely for the convenience
of the subsequent mathematical manipulations. The two forms
of the DNLS equations can be related by a gauge transfor-
mation [9]. Physically, this term involving the parameter α̂ is
usually associated with the “self-steepening” phenomena in
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optics [10]. In hydrodynamics, the coordinates t and x are
typically slow time and spatial coordinate traveling with the
group velocity. In the context of optical fiber physics, they
denote distance and retarded time, respectively.

Modulation instabilities of continuous waves and localized
solutions on a zero background have recently been investigated
[8,11]. The aim here is to extend the analysis of localized
modes to a configuration with nonvanishing boundary condi-
tions.

Special exact, traveling wave solutions of the quintic DNLS
equation have been obtained by an appropriate ansatz [12,13].
Here, the route to exact solutions is via two “integrals of
motion.” The resulting squared amplitude of the complex
envelope satisfies a generic equation generally associated with
elliptic functions, and thus a large variety of exact solutions
can be generated. As an illustration of the procedure, a “gray”
solitary wave on a continuous-wave background, a “dark”
localized mode with a nonzero minimum in intensity, is
derived.

Analysis and the two integrals of motion. Here, propagating
patterns of the type

� = [φ(x − ct) + iψ(x − ct)] exp[i(kx − �t)] (2)

are sought. Introduction of the representation, Eq. (2), into
Eq. (1) generates two coupled nonlinear ordinary differential
equations for the real (φ) and imaginary (ψ) parts of the
envelope. The coupled nonlinear system turns out to admit
a key pair of “integrals of motion,” namely,

φ̇ψ − ψ̇φ = J +
(

k − c

2λ̂

) ∑
+ α̂

4λ̂

∑
2 (3)

and

φ̇2 + ψ̇2 = 2H +
(

k2 − �

λ̂

) ∑

+
(

α̂k − μ̂

2λ̂

)∑
2 − ν̂

3λ̂

∑
3, (4)

where ∑
= φ2 + ψ2, (5)

with J and H being two integration constants. The constant H
corresponds to the Hamiltonian invariant. The dot denotes the
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derivative with respect to the propagating wave phase variable
x − ct.

Isolation of these two integrals of motion is a crucial step
in the solution procedure. Thus, on use of the identity

(φ2 + ψ2)(φ̇2 + ψ̇2) − (φφ̇ + ψψ̇)2 = (φψ̇ − ψφ̇)2, (6)

it is readily shown that the evolution of squared amplitude 	

is given by

.∑
2 =

∑ {
8H + 4

(
k2 − �

λ̂

) ∑

+ 2

(
α̂k − μ̂

λ̂

)∑
2 −

(
4ν̂

3λ̂

) ∑
3

}

− 4

[
J +

(
k − c

2λ̂

) ∑
+ α̂

4λ̂

∑
2

]2

. (7)

This equation admits a diversity of exact solutions deter-
mined by the physical parameters and the invariants J and H.
In general, the solutions involve elliptic functions.

To recover �, it is convenient to introduce the auxiliary
variables 
 and � given by


 = φ

ψ
, � = tan−1 
 = tan−1

(
φ

ψ

)
, (8)

whence

� =
∫ x−ct J + (

k − c

2λ̂

) ∑+(
α̂

4λ̂

)∑ 2∑ dξ, (9)

where ξ is a dummy variable of integration. The corresponding
class of exact solutions of the DNLS equations [Eq. (1)] is then
given by

� =
∑

1/2 exp[−i� + i(kx − �t)], (10)

where 	 [Eq. (5)], � are determined by Eqs. (7) and (9), re-
spectively. Localized solutions obtained earlier in the literature
can be readily recovered through the present mechanism.

In the long-wave limit, elliptic functions degenerate to
hyperbolic functions. Here, to illustrate the procedure, we
consider such a case with nonzero background, namely,∑

= a − b sech2[r(x − ct)], a > b > 0, r > 0, (11)

which satisfies

·∑
2 = 4r2

b

[
−a2(a − b) + a(3a − 2b)

∑

− (3a − b)
∑

2 +
∑

3

]
. (12)

Physically, Eq. (11) describes a gray pulse with a and b

measuring the background intensity and the local minimum,
respectively. On alignment of the expressions in Eqs. (7) and
(12), one arrives at defining equations for the angular frequency
� and phase speed c, where the width of the pulse r , wave
number k, and background and intensity defect parameters

a,b are given by

α̂c

2λ̂2
− μ̂

λ̂
= 2r2

b
,

kc

λ̂
− c2

4λ̂2
− �

λ̂
− α̂J

2λ̂
= − r2(3a − b)

b
,

J 2 = a2r2(a − b)

b
. (13)

It is noted that, the Hamiltonian H can be expressed in terms
of the physical parameters subject to the constraint:

ν̂ = −3α̂2

16λ̂
. (14)

Analytically, there are four free parameters (a,b,k,r), if λ̂,μ̂,ν̂,α̂
are known.

The phase, as defined by Eqs. (8) and (9), can also be
evaluated explicitly in the present case as

� = J

ra

{
1

2
log

∣∣∣∣1 + tanh r(x − ct)

1 − tanh r(x − ct)

∣∣∣∣
+

√
b

a − b
tan−1

[√
b

a − b
tanh r(x − ct)

]}

+
(

k − c

2λ̂
+ α̂a

4λ̂

)
(x − ct) − α̂b tanh r(x − ct)

4rλ̂
.

(15)

Equation (10), together with the relations (11), (13), (14), and
(15), determine a gray solitary pulse for the quintic DNLS
equation (1). A typical pattern is illustrated in Fig. 1.

Modulation instability. Finally, a remark on modulation in-
stability is in order, as there is a continuous-wave background.
Starting from Eq. (1) directly, one continuous wave is given
by (A0 real)

� = A0 exp
[
i
(
μ̂A2

0 + ν̂A4
0

)
t
]
.

Standard modulation instability analysis [14,15] involving
modes of the form exp[i(Kx − ζ t)] leads to a dispersion
relation(

ζ − α̂KA2
0

)2 = λ̂K2
(
λ̂K2 − 2μ̂A2

0 − 4ν̂A4
0

)
.

FIG. 1. (Color online) The motion of the “wave intensity” |�|2
of the wave envelope � for λ̂ = μ̂ = ν̂ = α̂ = 1, a = 2, b = 1, k = 1,
r = 1, and c = 6.
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For the special quintic nonlinearity given by Eq. (14), this
simplifies to

(
ζ − α̂KA2

0

)2 = λ̂K2

(
λ̂K2 − 2μ̂A2

0 + 3α̂2A4
0

4λ̂

)
.

Hence, in the language of optical physics, in the normal
dispersion regime (λ̂ < 0), the plane wave is always stable
(ζ being real) if the cubic nonlinearity μ̂ is positive. In
the anomalous dispersion regime (λ̂ > 0), stability (ζ real)
can be accomplished in the present case of negative quintic
nonlinearity [Eq. (14)], provided that the amplitude A0 is
sufficiently large, namely,

A2
0 >

8μ̂λ̂

3α̂2
.

Conclusion. A representation for traveling wave patterns
for a quintic derivative nonlinear Schrödinger model admits

two key integrals of motion. The squared modulus of the
complex envelope is thereby shown to satisfy a nonlinear
equation, which can in general be solved in terms of elliptic
and hyperbolic functions. “Bright” and dark pulses described
previously in recent literature are readily retrieved as special
cases of the formalism presented here. A gray solitary
pulse (dark modes with nonzero minimum intensity) on a
continuous-wave background is derived as an illustration of
the formalism. Regimes for the modulation instability of the
plane wave background are investigated. In particular, this
continuous wave is stable in the normal dispersion regime if
the cubic nonlinearity is positive. In the anomalous dispersion
regime, stability regime is identified. Hence such localized
modes should be observable in practice, and will be valuable
in future studies of hydrodynamic wave packets, physics of
metamaterials, and media with negative refractive index.
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