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Abstract
The well-known question for quermassintegrals is the following: For which values of
i ∈N and every pair of convex bodies K and L, is it true that

Wi(K + L)
Wi+1(K + L)

≥ Wi(K )

W̃i+1(K )
+

Wi(L)
Wi+1(L)

?

In 2003, the inequality was proved if and only if i = n – 1 or i = n – 2. Following the
problem, in the paper, we prove some interrelated results for the quermassintegrals of
a convex body.
MSC: 26D15; 52A30
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1 Introduction
The origin of this work is an interesting inequality of Marcus and Lopes []. We write
Ei(x),  ≤ i≤ n, for the ith elementary symmetric function of an n-tuple x = (x, . . . ,xn) of
positive real numbers. This is defined by E(x) =  and

Ei(x) =
∑

≤j<···<ji≤n
xjxj · · ·xji ,  ≤ i≤ n.

In particular, E(x) = x + · · · + xn, E(x) =
∑

i�=j xixj, . . . ,En(x) = xx · · ·xn.
The Marcus-Lopes inequality (see also [, p.]) states that

Ei(x + y)
Ei–(x + y)

≥ Ei(x)
Ei–(x)

+
Ei(y)
Ei–(y)

(.)

for every pair of positive n-tuples x and y. This is a refinement of a further result concern-
ing the symmetric functions, namely

[
Ei(x + y)

]/i ≥ [
Ei(x)

]/i + [
Ei(y)

]/i. (.)

A discussion of the cases of equality is contained in the reference [].
Amatrix analogue of (.) is the following result of Bergstrom [] (see also the article []

and [, p.] for an interesting proof ): If K and L are positive definite matrices, and if Ki

and Li denote the submatrices obtained by deleting their ith row and column, then

det(K + L)
det(Ki + Li)

≥ det(K)
det(Ki)

+
det(L)
det(Li)

. (.)
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The following generalization of (.) was established by Ky Fan []:
(

det(K + L)
det(Ki + Li)

)/k
≥

(
det(K)
det(Ki)

)/k
+

(
det(L)
det(Li)

)/k
. (.)

The proof is based on a minimum principle; see also Ky Fan [] and Mirsky [].
There is a remarkable similarity between inequalities about symmetric functions (or

determinants of symmetric matrices) and inequalities about the mixed volumes of convex
bodies. For example, the analogue of (.) in the Brunn-Minkowski theory is as follows.
If K and L are convex bodies in R

n and if  ≤ i≤ n – , then

Wi(K + L)/(n–i) ≥ Wi(K)/(n–i) +Wi(L)/(n–i), (.)

with equality if and only if K and L are homothetic, whereWi(K) is the ith quermassinte-
gral of K (see Section ).
In view of this analogue, Milman asked if there exists a version of (.) or (.) in the

theory of mixed volumes (see [, ]).

Question For which values of  ≤ i ≤ n – , i ∈ N, is it true that, for every pair of convex
bodies K and L in R

n, one has

Wi(K + L)
Wi+(K + L)

≥ Wi(K)
Wi+(K)

+
Wi(L)
Wi+(L)

? (.)

In , the special case i =  was stated also in [] as an open question. In the same
paper it was also mentioned that (.) follows directly from the Aleksandrov-Fenchel in-
equality when i =  and L is a ball.
In , it was proved in [] that (.) is true for all i = , . . . ,n –  in the case where L is

a ball.

Theorem A If K is a convex body and B is a ball in R
n, then for  ≤ i≤ n – , i ∈N,

Wi(K + B)
Wi+(K + B)

≥ Wi(K)
Wi+(K)

+
Wi(B)
Wi+(B)

. (.)

In , it was proved in [] that (.) holds true for every pair of convex bodies K and
L in R

n if and only if i = n –  or i = n – .

Theorem B Let  ≤ i≤ n – , then

Wi(K + L)
Wi+(K + L)

≥ Wi(K)
Wi+(K)

+
Wi(L)
Wi+(L)

(.)

is true for every pair of convex bodies K and L in R
n if and only if i = n –  or i = n – .

In this paper, following the above results, we prove the following interest results.

Theorem . Let  ≤ i≤ n– and for every convex body K and L inR
n. Then the function

g(t) = Wi(K + tL)
Wi+(K + tL)

(.)

is a convex function on t ∈ [, +∞) if and only if i = n –  or i = n – .
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Theorem . Let  ≤ i≤ n –  and for every convex body K and L in R
n. Then

(n – i)Wi+(K)
(
Wi+(K) –Wi(K)Wi+(K)

)
≥ (n – i – )Wi(K)

(
W 

i+(K) –Wi+(K)Wi+(K)
)

(.)

if and only if i = n –  or i = n – .

2 Notations and preliminaries
The setting for this paper is an n-dimensional Euclidean space Rn. Let Kn denote the set
of convex bodies (compact, convex subsets with non-empty interiors) in R

n. We reserve
the letter u for unit vectors, and the letter B for the unit ball centered at the origin. The
surface of B is Sn–. The volume of the unit n-ball is denoted by ωn.
We use V (K) for the n-dimensional volume of a convex body K . Let h(K , ·) : Sn– → R

denote the support function of K ∈Kn; i.e., for u ∈ Sn–,

h(K ,u) = Max{u · x : x ∈ K},

where u · x denotes the usual inner product u and x in R
n.

Let δ denote the Hausdorff metric on Kn, i.e., for K ,L ∈Kn, δ(K ,L) = |hK – hL|∞, where
| · |∞ denotes the sup-norm on the space of continuous functions C(Sn–).
Associated with a compact subset K of Rn, which is star-shaped with respect to the

origin, is its radial function ρ(K , ·) : Sn– →R, defined for u ∈ Sn– by

ρ(K ,u) = Max{λ ≥  : λu ∈ K}.

If ρ(K , ·) is positive and continuous, K will be called a star body. Let Sn denote the set of
star bodies in R

n. Let δ̃ denote the radial Hausdorff metric, as follows, if K ,L ∈ Sn, then
δ̃(K ,L) = |ρK – ρL|∞.
If Ki ∈Kn (i = , , . . . , r) and λi (i = , , . . . , r) are nonnegative real numbers, then of fun-

damental importance is the fact that the volumeof
∑r

i= λiKi is a homogeneous polynomial
in the λi given by (see, e.g., [] or [])

V (λK + · · · + λnKn) =
∑
i,...,in

λi · · ·λinVi,...,in , (.)

where the sum is taken over all n-tuples (i, . . . , in) of positive integers not exceeding r. The
coefficient Vi,...,in depends only on the bodies Ki , . . . ,Kin and is uniquely determined by
(.). It is called the mixed volume of Ki , . . . ,Kin , and is written as V (Ki , . . . ,Kin ). Let K =
· · · = Kn–i = K and Kn–i+ = · · · = Kn = L, then the mixed volume V (K, . . . ,Kn) is written
as Vi(K ,L). If K = · · · = Kn–i = K , Kn–i+ = · · · = Kn = B, then the mixed volume Vi(K ,B) is
written asWi(K) and is called the quermassintegral of a convex body K .
It is convenient to write relation (.) in the form (see [, p.])

V (λK + · · · + λsKs)

=
∑

p+···+pr=n

∑
≤i<···<ir≤s

n!
p! · · ·pr !λ

p
i · · ·λpr

ir V (Ki , . . . ,Ki︸ ︷︷ ︸
p

, . . . ,Kir , . . . ,Kir︸ ︷︷ ︸
pr

). (.)
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Let s = , λ = , K = K , K = B, we have

V (K + λB) =
n∑
i=

(n
i
)
λiWi(K),

known as formula ‘Steiner decomposition’.
On the other hand, for convex bodies K and L, (.) can show the following special case:

Wi(K + λL) =
n–i∑
j=

(
n – i
j

)
λjV (K , . . . ,K︸ ︷︷ ︸

n–i–j

,B, . . . ,B︸ ︷︷ ︸
i

,L, . . . ,L︸ ︷︷ ︸
j

). (.)

3 Proof of main results
Proof of Theorem . If s, t ∈ [,∞), from (.), if and only if i = n –  or i = n – , we have

g
(
t + s


)
=

Wi(K + t+s
 L)

Wi+(K + t+s
 L)

=
Wi(K+tL

 + K+sL
 )

Wi+(K+tL
 + K+sL

 )

≥ Wi(K+tL
 )

Wi+(K+tL
 )

+
Wi(K+sL

 )
Wi+(K+sL

 )

=



Wi(K + tL)
Wi+(K + tL)

+



Wi(K + sL)
Wi+(K + sL)

=


(
g(t) + g(s)

)
. (.)

Hence the function g(t) is a convex function on [,+∞) for every star body K and L if and
only if i = n –  or i = n – . �

Proof of Theorem . Let K be a convex body in R
n. For every i ≥ , we set

fi(t) =Wi(K + tB),

then from (.)

fi(t + ε) =Wi
(
(K + tB) + εB

)

=
n–i∑
j=

(
n – i
j

)
εjWi+j(K + tB)

= fi(t) + ε(n – i)fi+(t) +O
(
ε

)
.

Therefore

f ′
i (t) = (n – i)fi+(t).

The derivative of the function

gi(t) =
fi(t)
fi+(t)

=
Wi(K + tB)
Wi+(K + tB)
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is thus given by

g ′
i(t) = (n – i) – (n – i – )

fi(t)fi+(t)
f i+(t)

. (.)

Since gi(x) is a convex function if and only if i = n –  or i = n – , hence by differentiating
the both sides of (.), we obtain for t ∈ (, +∞)

(n – i)fi+(t)f i+(t) + (n – i – )fi(t)fi+(t)fi+(t) – (n – i – )fi(t)f i+(t) ≥ 

if and only if i = n –  or i = n – .
This can be equivalently written in the form

(n – i)fi+(t)
(
f i+(t) – fi(t)fi+(t)

) ≥ (n – i – )fi(t)
(
f i+(t) – fi+(t)fi+(t)

)

if and only if i = n –  or i = n – .
Letting t → +, we conclude Theorem .. �
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