The HKU Scholars Hub The University of Hong Kong 杳港大学学術庫

Title	On the Quermassintegrals of Convex Bodies
Author（s）	Cheung，ws；Zhao， \mathbf{C}
Citation	Journal of Inequalities and Applications，2013，v．2013，p． 264
Issued Date	2013
URL	http：／／hdl．handle．net／10722／184540
Rights	Creative Commons：Attribution 3．0 Hong Kong License

On the quermassintegrals of convex bodies

Chang Jian Zhao ${ }^{1 *}$ and Wing Sum Cheung ${ }^{2}$

"Correspondence
chjzhao@163.com;
chjzhao@yahoo.com.cn
${ }^{1}$ Department of Mathematics, China Jiliang University, Hangzhou, 310018, P.R. China
Full list of author information is available at the end of the article

Abstract

The well-known question for quermassintegrals is the following: For which values of $i \in \mathbb{N}$ and every pair of convex bodies K and L, is it true that

$$
\frac{W_{i}(K+L)}{W_{i+1}(K+L)} \geq \frac{W_{i}(K)}{\tilde{W}_{i+1}(K)}+\frac{W_{i}(L)}{W_{i+1}(L)} ?
$$

In 2003, the inequality was proved if and only if $i=n-1$ or $i=n-2$. Following the problem, in the paper, we prove some interrelated results for the quermassintegrals of a convex body.
MSC: 26D15; 52A30
Keywords: symmetric function; convex body; quermassintegral

1 Introduction

The origin of this work is an interesting inequality of Marcus and Lopes [1]. We write $E_{i}(x), 0 \leq i \leq n$, for the i th elementary symmetric function of an n-tuple $x=\left(x_{1}, \ldots, x_{n}\right)$ of positive real numbers. This is defined by $E_{0}(x)=1$ and

$$
E_{i}(x)=\sum_{1 \leq j_{1}<\cdots<j_{i} \leq n} x_{j_{1}} x_{j_{2}} \cdots x_{j_{i}}, \quad 1 \leq i \leq n .
$$

In particular, $E_{1}(x)=x_{1}+\cdots+x_{n}, E_{2}(x)=\sum_{i \neq j} x_{i} x_{j}, \ldots, E_{n}(x)=x_{1} x_{2} \cdots x_{n}$.
The Marcus-Lopes inequality (see also [2, p.33]) states that

$$
\begin{equation*}
\frac{E_{i}(x+y)}{E_{i-1}(x+y)} \geq \frac{E_{i}(x)}{E_{i-1}(x)}+\frac{E_{i}(y)}{E_{i-1}(y)} \tag{1.1}
\end{equation*}
$$

for every pair of positive n-tuples x and y. This is a refinement of a further result concerning the symmetric functions, namely

$$
\begin{equation*}
\left[E_{i}(x+y)\right]^{1 / i} \geq\left[E_{i}(x)\right]^{1 / i}+\left[E_{i}(y)\right]^{1 / i} . \tag{1.2}
\end{equation*}
$$

A discussion of the cases of equality is contained in the reference [1].
A matrix analogue of (1.1) is the following result of Bergstrom [3] (see also the article [4] and [5, p.67] for an interesting proof): If K and L are positive definite matrices, and if K_{i} and L_{i} denote the submatrices obtained by deleting their i th row and column, then

$$
\begin{equation*}
\frac{\operatorname{det}(K+L)}{\operatorname{det}\left(K_{i}+L_{i}\right)} \geq \frac{\operatorname{det}(K)}{\operatorname{det}\left(K_{i}\right)}+\frac{\operatorname{det}(L)}{\operatorname{det}\left(L_{i}\right)} . \tag{1.3}
\end{equation*}
$$

The following generalization of (1.3) was established by Ку Fan [5]:

$$
\begin{equation*}
\left(\frac{\operatorname{det}(K+L)}{\operatorname{det}\left(K_{i}+L_{i}\right)}\right)^{1 / k} \geq\left(\frac{\operatorname{det}(K)}{\operatorname{det}\left(K_{i}\right)}\right)^{1 / k}+\left(\frac{\operatorname{det}(L)}{\operatorname{det}\left(L_{i}\right)}\right)^{1 / k} \tag{1.4}
\end{equation*}
$$

The proof is based on a minimum principle; see also Ky Fan [6] and Mirsky [7].
There is a remarkable similarity between inequalities about symmetric functions (or determinants of symmetric matrices) and inequalities about the mixed volumes of convex bodies. For example, the analogue of (1.2) in the Brunn-Minkowski theory is as follows.
If K and L are convex bodies in \mathbb{R}^{n} and if $0 \leq i \leq n-1$, then

$$
\begin{equation*}
W_{i}(K+L)^{1 /(n-i)} \geq W_{i}(K)^{1 /(n-i)}+W_{i}(L)^{1 /(n-i)} \tag{1.5}
\end{equation*}
$$

with equality if and only if K and L are homothetic, where $W_{i}(K)$ is the i th quermassintegral of K (see Section 2).

In view of this analogue, Milman asked if there exists a version of (1.1) or (1.3) in the theory of mixed volumes (see $[8,9]$).

Question For which values of $0 \leq i \leq n-1, i \in \mathbb{N}$, is it true that, for every pair of convex bodies K and L in \mathbb{R}^{n}, one has

$$
\begin{equation*}
\frac{W_{i}(K+L)}{W_{i+1}(K+L)} \geq \frac{W_{i}(K)}{W_{i+1}(K)}+\frac{W_{i}(L)}{W_{i+1}(L)} ? \tag{1.6}
\end{equation*}
$$

In 1991, the special case $i=0$ was stated also in [10] as an open question. In the same paper it was also mentioned that (1.6) follows directly from the Aleksandrov-Fenchel inequality when $i=0$ and L is a ball.

In 2002, it was proved in [9] that (1.6) is true for all $i=1, \ldots, n-1$ in the case where L is a ball.

Theorem A If K is a convex body and B is a ball in \mathbb{R}^{n}, then for $0 \leq i \leq n-1, i \in \mathbb{N}$,

$$
\begin{equation*}
\frac{W_{i}(K+B)}{W_{i+1}(K+B)} \geq \frac{W_{i}(K)}{W_{i+1}(K)}+\frac{W_{i}(B)}{W_{i+1}(B)} . \tag{1.7}
\end{equation*}
$$

In 2003, it was proved in [8] that (1.6) holds true for every pair of convex bodies K and L in \mathbb{R}^{n} if and only if $i=n-2$ or $i=n-1$.

Theorem B Let $0 \leq i \leq n-1$, then

$$
\begin{equation*}
\frac{W_{i}(K+L)}{W_{i+1}(K+L)} \geq \frac{W_{i}(K)}{W_{i+1}(K)}+\frac{W_{i}(L)}{W_{i+1}(L)} \tag{1.8}
\end{equation*}
$$

is true for every pair of convex bodies K and L in \mathbb{R}^{n} if and only if $i=n-1$ or $i=n-2$.
In this paper, following the above results, we prove the following interest results.
Theorem 1.1 Let $0 \leq i \leq n-1$ and for every convex body K and L in \mathbb{R}^{n}. Then the function

$$
\begin{equation*}
g(t)=\frac{W_{i}(K+t L)}{W_{i+1}(K+t L)} \tag{1.9}
\end{equation*}
$$

is a convex function on $t \in[0,+\infty)$ if and only if $i=n-1$ or $i=n-2$.

Theorem 1.2 Let $0 \leq i \leq n-1$ and for every convex body K and L in \mathbb{R}^{n}. Then

$$
\begin{align*}
& (n-i) W_{i+2}(K)\left(W_{i+1}(K)^{2}-W_{i}(K) W_{i+2}(K)\right) \\
& \quad \geq(n-i-2) W_{i}(K)\left(W_{i+2}^{2}(K)-W_{i+1}(K) W_{i+3}(K)\right) \tag{1.10}
\end{align*}
$$

if and only if $i=n-1$ or $i=n-2$.

2 Notations and preliminaries

The setting for this paper is an n-dimensional Euclidean space \mathbb{R}^{n}. Let \mathcal{K}^{n} denote the set of convex bodies (compact, convex subsets with non-empty interiors) in \mathbb{R}^{n}. We reserve the letter u for unit vectors, and the letter B for the unit ball centered at the origin. The surface of B is S^{n-1}. The volume of the unit n-ball is denoted by ω_{n}.
We use $V(K)$ for the n-dimensional volume of a convex body K. Let $h(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$ denote the support function of $K \in \mathcal{K}^{n}$; i.e., for $u \in S^{n-1}$,

$$
h(K, u)=\operatorname{Max}\{u \cdot x: x \in K\},
$$

where $u \cdot x$ denotes the usual inner product u and x in \mathbb{R}^{n}.
Let δ denote the Hausdorff metric on \mathcal{K}^{n}, i.e., for $K, L \in \mathcal{K}^{n}, \delta(K, L)=\left|h_{K}-h_{L}\right|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C\left(S^{n-1}\right)$.
Associated with a compact subset K of \mathbb{R}^{n}, which is star-shaped with respect to the origin, is its radial function $\rho(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$, defined for $u \in S^{n-1}$ by

$$
\rho(K, u)=\operatorname{Max}\{\lambda \geq 0: \lambda u \in K\} .
$$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Let \mathcal{S}^{n} denote the set of star bodies in \mathbb{R}^{n}. Let $\tilde{\delta}$ denote the radial Hausdorff metric, as follows, if $K, L \in \mathcal{S}^{n}$, then $\tilde{\delta}(K, L)=\left|\rho_{K}-\rho_{L}\right|_{\infty}$.

If $K_{i} \in \mathcal{K}^{n}(i=1,2, \ldots, r)$ and $\lambda_{i}(i=1,2, \ldots, r)$ are nonnegative real numbers, then of fundamental importance is the fact that the volume of $\sum_{i=1}^{r} \lambda_{i} K_{i}$ is a homogeneous polynomial in the λ_{i} given by (see, e.g., [11] or [12])

$$
\begin{equation*}
V\left(\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}\right)=\sum_{i_{1}, \ldots, i_{n}} \lambda_{i_{1}} \cdots \lambda_{i_{n}} V_{i_{1}, \ldots, i_{n}} \tag{2.1}
\end{equation*}
$$

where the sum is taken over all n-tuples (i_{1}, \ldots, i_{n}) of positive integers not exceeding r. The coefficient $V_{i_{1}, \ldots, i_{n}}$ depends only on the bodies $K_{i_{1}}, \ldots, K_{i_{n}}$ and is uniquely determined by (2.1). It is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$, and is written as $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$. Let $K_{1}=$ $\cdots=K_{n-i}=K$ and $K_{n-i+1}=\cdots=K_{n}=L$, then the mixed volume $V\left(K_{1}, \ldots, K_{n}\right)$ is written as $V_{i}(K, L)$. If $K_{1}=\cdots=K_{n-i}=K, K_{n-i+1}=\cdots=K_{n}=B$, then the mixed volume $V_{i}(K, B)$ is written as $W_{i}(K)$ and is called the quermassintegral of a convex body K.
It is convenient to write relation (2.1) in the form (see [12, p.137])

$$
\begin{align*}
V & \left(\lambda_{1} K_{1}+\cdots+\lambda_{s} K_{s}\right) \\
& =\sum_{p_{1}+\cdots+p_{r}=n} \sum_{1 \leq i_{1}<\cdots<i_{r} \leq s} \frac{n!}{p_{1}!\cdots p_{r}!} \lambda_{i_{1}}^{p_{1}} \cdots \lambda_{i_{r}}^{p_{r}} V(\underbrace{K_{i_{1}}, \ldots, K_{i_{1}}}_{p_{1}}, \ldots, \underbrace{K_{i_{r}}, \ldots, K_{i_{r}}}_{p_{r}}) . \tag{2.2}
\end{align*}
$$

Let $s=2, \lambda_{1}=1, K_{1}=K, K_{2}=B$, we have

$$
V(K+\lambda B)=\sum_{i=0}^{n}\binom{n}{i} \lambda^{i} W_{i}(K),
$$

known as formula 'Steiner decomposition'.
On the other hand, for convex bodies K and L, (2.2) can show the following special case:

$$
\begin{equation*}
W_{i}(K+\lambda L)=\sum_{j=0}^{n-i}\binom{n-i}{j} \lambda^{j} V(\underbrace{K, \ldots, K}_{n-i-j}, \underbrace{B, \ldots, B}_{i}, \underbrace{L, \ldots, L}_{j}) . \tag{2.3}
\end{equation*}
$$

3 Proof of main results

Proof of Theorem 1.1 If $s, t \in[0, \infty)$, from (1.8), if and only if $i=n-1$ or $i=n-2$, we have

$$
\begin{align*}
g\left(\frac{t+s}{2}\right) & =\frac{W_{i}\left(K+\frac{t+s}{2} L\right)}{W_{i+1}\left(K+\frac{t+s}{2} L\right)} \\
& =\frac{W_{i}\left(\frac{K+t L}{2}+\frac{K+s L}{2}\right)}{W_{i+1}\left(\frac{K+t L}{2}+\frac{K+s L}{2}\right)} \\
& \geq \frac{W_{i}\left(\frac{K+t L}{2}\right)}{W_{i+1}\left(\frac{K+t L}{2}\right)}+\frac{W_{i}\left(\frac{K+s L}{2}\right)}{W_{i+1}\left(\frac{K+s L}{2}\right)} \\
& =\frac{1}{2} \frac{W_{i}(K+t L)}{W_{i+1}(K+t L)}+\frac{1}{2} \frac{W_{i}(K+s L)}{W_{i+1}(K+s L)} \\
& =\frac{1}{2}(g(t)+g(s)) . \tag{3.1}
\end{align*}
$$

Hence the function $g(t)$ is a convex function on $[0,+\infty)$ for every star body K and L if and only if $i=n-1$ or $i=n-2$.

Proof of Theorem 1.2 Let K be a convex body in \mathbb{R}^{n}. For every $i \geq 0$, we set

$$
f_{i}(t)=W_{i}(K+t B),
$$

then from (2.3)

$$
\begin{aligned}
f_{i}(t+\varepsilon) & =W_{i}((K+t B)+\varepsilon B) \\
& =\sum_{j=0}^{n-i}\binom{n-i}{j} \varepsilon^{j} W_{i+j}(K+t B) \\
& =f_{i}(t)+\varepsilon(n-i) f_{i+1}(t)+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Therefore

$$
f_{i}^{\prime}(t)=(n-i) f_{i+1}(t) .
$$

The derivative of the function

$$
g_{i}(t)=\frac{f_{i}(t)}{f_{i+1}(t)}=\frac{W_{i}(K+t B)}{W_{i+1}(K+t B)}
$$

is thus given by

$$
\begin{equation*}
g_{i}^{\prime}(t)=(n-i)-(n-i-1) \frac{f_{i}(t) f_{i+2}(t)}{f_{i+1}^{2}(t)} . \tag{3.2}
\end{equation*}
$$

Since $g_{i}(x)$ is a convex function if and only if $i=n-1$ or $i=n-2$, hence by differentiating the both sides of (3.2), we obtain for $t \in(0,+\infty)$

$$
(n-i) f_{i+2}(t) f_{i+1}^{2}(t)+(n-i-2) f_{i}(t) f_{i+1}(t) f_{i+3}(t)-2(n-i-1) f_{i}(t) f_{i+2}^{2}(t) \geq 0
$$

if and only if $i=n-1$ or $i=n-2$.
This can be equivalently written in the form

$$
(n-i) f_{i+2}(t)\left(f_{i+1}^{2}(t)-f_{i}(t) f_{i+2}(t)\right) \geq(n-i-2) f_{i}(t)\left(f_{i+2}^{2}(t)-f_{i+1}(t) f_{i+3}(t)\right)
$$

if and only if $i=n-1$ or $i=n-2$.
Letting $t \rightarrow 0^{+}$, we conclude Theorem 1.2.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

CJZ and WSC jointly contributed to the main results Theorems 1.1-1.2. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, China Jiliang University, Hangzhou, 310018, P.R. China. ${ }^{2}$ Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.

Acknowledgements

First author is supported by the National Natural Science Foundation of China (10971205). Second author is partially supported by a HKU URG grant

Received: 18 March 2013 Accepted: 9 May 2013 Published: 27 May 2013

References

1. Marcus, M, Lopes, I: Inequalities for symmetric functions and Hermitian matrices. Can. J. Math. 8, 524-531 (1956)
2. Bechenbach, EF, Bellman, R: Inequalities. Springer, Berlin (1961)
3. Bergstrom, H: A triangle inequality for matrices. In: Den Elfte Skandinaviski Matematiker-kongress, Trondheim, 1949 John Grundt Tanums Forlag, Oslo (1952)
4. Bellman, R: Notes on matrix theory - IV: an inequality due to Bergstrom. Am. Math. Mon. 62, 172-173 (1955)
5. Fan, K: Some inequalities concerning positive-definite Hermitian matrices. Proc. Camb. Philos. Soc. 51, 414-421 (1955)
6. Fan, K: Problem 4786. Am. Math. Mon. 65, 289 (1958)
7. Mirsky, L: Maximum principles in matrix theory. Proc. Glasg. Math. Assoc. 4, 34-37 (1958)
8. Fradelizi, M, Giannopoulos, A, Meyer, M: Some inequalities about mixed volumes. Isr. J. Math. 135, 157-179 (2003)
9. Giannopoulos, A, Hartzoulaki, M, Paouris, G: On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body. Proc. Am. Math. Soc. 130, 2403-2412 (2002)
10. Dembo, A, Cover, TM, Thomas, JA: Information theoretic inequalities. IEEE Trans. Inf. Theory 37, 1501-1518 (1991)
11. Schneider, R: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)
12. Burago, YD, Zalgaller, VA: Geometric Inequalities. Springer, Berlin (1988)
[^0]
[^0]: doi:10.1186/1029-242X-2013-264
 Cite this article as: Zhao and Cheung: On the quermassintegrals of convex bodies. Journal of Inequalities and Applications 2013 2013:264.

