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Rational Lyapunov Functions for Estimating and

Controlling the Robust Domain of Attraction

Graziano Chesi

Department of Electrical and Electronic Engineering

The University of Hong Kong

Contact: http://www.eee.hku.hk/~chesi

Abstract

This paper addresses the estimation and control of the robust do-
main of attraction (RDA) of equilibrium points through rational Lya-
punov functions (LFs) and sum of squares (SOS) techniques. Specif-
ically, continuous-time uncertain polynomial systems are considered,
where the uncertainty is represented by a vector that affects polyno-
mially the system and is constrained into a semialgebraic set. The
estimation problem consists of computing the largest estimate of the
RDA (LERDA) provided by a given rational LF. The control problem
consists of computing a polynomial static output controller of given
degree for maximizing such a LERDA. In particular, the paper shows
that the computation of the best lower bound of the LERDA for chosen
degrees of the SOS polynomials, which requires the solution of a non-
convex optimization problem with bilinear matrix inequalities (BMIs),
can be reformulated as a quasi-convex optimization problem under
some conditions. Moreover, the paper provides a necessary and suffi-
cient condition for establishing tightness of this lower bound. Lastly,
the paper discusses the search for optimal rational LFs using the pro-
posed strategy.

1 Introduction

Studying the RDA of equilibrium points is a key problem in uncertain non-
linear systems. In fact, the RDA is the set of initial conditions for which
the state of the system asymptotically converges to the equilibrium point
under consideration for all admissible uncertainties. Hence, when dealing
with uncertain nonlinear systems, it is not sufficient to establish that the
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desired equilibrium point is robustly locally asymptotically stable, but one
has also to make sure that the initial condition lies inside the RDA.

It is well-known that studying the RDA is a nontrivial task. Indeed, for
the case of uncertainty-free nonlinear systems, numerous methods have been
proposed for computing inner estimates, see e.g. [1,2] where classic methods
such as Zubov equation and La Salle theorem are discussed, and recent works
such as [3, 4] based e.g. on the computation of reachable sets and logical
composition of LFs. A common strategy of computing these estimates is
based on linear matrix inequality (LMI) techniques and polynomial LFs, see
e.g. [5–8] and references therein. Some of these methods have been extended
to address controller synthesis for enlarging the domain of attraction, see
e.g. [9], and the estimation of the RDA, see e.g. [10–12].

Clearly, it would be useful to enlarge the class of LFs that can be used
with LMI techniques. Indeed, the use of maximal LFs was proposed in [13]
for obtaining exact estimates of the domain of attraction. In particular, a
procedure was developed, which allows one to approximate maximal LFs
via rational functions. See also [14] where these functions are used in the
case of uncertainty-free nonlinear systems, and [15] where a decomposition
based on rational functions is introduced to model uncertainty in nonlinear
systems.

This paper addresses the estimation and control of the RDA of equilib-
rium points through rational LFs and SOS techniques. Specifically, continuous-
time uncertain polynomial systems are considered, where the uncertainty is
represented by a vector that affects polynomially the system and is con-
strained into a semialgebraic set. The estimation problem consists of com-
puting the LERDA provided by a given rational LF. The control problem
consists of computing a polynomial static output controller of given degree
for maximizing such a LERDA. In particular, the paper shows that the com-
putation of the best lower bound of the LERDA for chosen degrees of the
SOS polynomials, which requires the solution of a nonconvex optimization
problem with BMIs, can be reformulated as a quasi-convex optimization
problem under some conditions. Moreover, the paper provides a neces-
sary and sufficient condition for establishing tightness of this lower bound.
Lastly, the paper discusses the search for initial and optimal rational LFs
using the proposed strategy. A numerical example suggesting that rational
LFs outperform polynomial LFs of the same total degree is also provided.
A preliminary version of this paper1 appeared in [16].

1Without the necessary and sufficient condition for tightness of the lower bound and
the search for optimal LFs.
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2 Preliminaries

Notation: R: space of real numbers; 0n: n× 1 null vector; Rn
0 : R

n \ {0n}; I:
identity matrix (of size specified by the context); A′: transpose of matrix A;
A > 0, A ≥ 0, A = 0: positive definite, positive semidefinite and null matrix
A; a > 0, a ≥ 0, a = 0: entrywise positive, entrywise nonnegative and null
vector a; ‖a‖: Euclidean norm of vector a; A ⊗ B: Kronecker product of
matrices A and B; (...)′: symmetric term, e.g. (...)′A(B) = (B)′A(B); s.t.:
subject to.

2.1 SOS Polynomials

A polynomial is said SOS if it is the sum of squares of polynomials. It turns
out that establishing whether a polynomial is SOS amounts to checking
feasibility of an LMI, see e.g. [17, 8] and references therein.

Indeed, let p(x) be a polynomial of even degree with x ∈ R
n. We can

express p(x) as
p(x) = mp(x)

′ (P + L(α))mp(x) (1)

where mp(x) (called power vector) is a vector containing all the monomials
of degree not greater than half the degree of p(x), P is a symmetric matrix,
L(α) is a linear parametrization of the linear subspace

L =
{

L = L′ : mp(x)
′Lmp(x) = 0

}

, (2)

and α is a free vector. This representation is known as Gram matrix method
and square matrix representation (SMR). The polynomial p(x) is SOS if and
only if there exists α such that P + L(α) ≥ 0.

Parameter-dependent polynomials can be similarly expressed. Indeed, if
p(x, θ) is a polynomial with coefficients depending polynomially on θ ∈ R

nθ ,
one can write

p(x, θ) = (...)′ (P + L(α)) (mpθ(θ)⊗mpx(x)) (3)

where L(α) is a linear parametrization of the linear subspace

L = {L = L′ : (...)′L (mpθ(θ)⊗mpx(x)) = 0}. (4)

As in the previous case, p(x, θ) is SOS if and only if there exists α such that
P + L(α) ≥ 0.
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2.2 Problem Formulation

Let us consider the system














ẋ(t) = f(x(t), θ) +G(x(t), θ)u(t)
y(t) = h(x(t), θ)
x(0) = xinit

θ ∈ Θ

(5)

where x(t) ∈ R
n is the state, xinit ∈ R

n is the initial condition, u(t) ∈ R
nu

is the input, y(t) ∈ R
ny is the output, and θ ∈ R

nθ is the uncertainty. The
functions f(x(t), θ), G(x(t), θ) and h(x(t), θ) are polynomial. The uncer-
tainty θ is constrained in the semialgebraic set

Θ = {θ ∈ R
nθ : a(θ) ≥ 0, b(θ) = 0} (6)

where a : Rnθ → R
na and b : Rnθ → R

nb are polynomial functions. In the
sequel the dependence on the time t will be omitted for ease of notation
unless specified otherwise.

We consider that the system is controlled via

u = k(y) (7)

where k : Rny → R
nu is a polynomial function of chosen degree, either given

or to determine. The controller k(y) is constrained by

f(0n, θ) +G(0n, θ)k(h(0n, θ)) = 0 ∀θ ∈ R
nθ (8)

which imposes that the origin is an equilibrium point for all the uncertainties,
and by

kij ∈ [k−ij , k
+

ij ] ∀i = 1, . . . , nu ∀j = 1, 2, . . . (9)

for some k−ij , k
+

ij ∈ R, which imposes bounds on the coefficients kij of k(y).
We denote the set of polynomial functions k(y) just defined with K. Such a
set is either a singleton (estimation problem) or a convex polytope (control
problem).

The RDA of the origin is the set of initial conditions for which the state
converges to the origin, i.e.

R =

{

xinit ∈ R
n : lim

t→+∞

x(t) = 0 ∀θ ∈ Θ

}

. (10)

We consider the estimation and control of the RDA via rational functions
of the form

v(x) =
vnum(x)

vden(x)
(11)
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where vnum(x) and vden(x) are polynomials satisfying
{

vnum(0n) = 0, vnum(x) > 0 ∀x ∈ Ω \ {0n}
vden(x) > 0 ∀x ∈ Ω

(12)

and Ω is a subset of Rn including the origin. If Ω is unbounded we also
suppose that v(x) is radially unbounded. We denote the sublevel sets of
v(x) as

V(c) = {x ∈ R
n : v(x) ≤ c} (13)

where c ∈ R. The function v(x) is a LF for the origin if

∃δ > 0 : v̇(x, θ) < 0 ∀x ∈ Ω \ {0n}, ‖x‖ < δ, ∀θ ∈ Θ. (14)

The problems considered in this paper amount to computing (estima-
tion problem) and to enlarging via controller design (control problem) the
LERDA provided by v(x), i.e. V(γ∗) where

γ∗ = sup
c,k

c

s.t.







v̇(x, θ) < 0 ∀x ∈ V(c) \ {0n} ∀θ ∈ Θ
k ∈ K
V(c) ⊂ Ω.

(15)

3 Proposed Results

3.1 Establishing Estimates

Theorem 1 Let v : Rn → R be a rational function satisfying (11)–(12) and
let c ∈ R, c > 0, be such that V(c) ⊂ Ω. Suppose that there exist k ∈ K
and polynomial functions q : R

n × R
nθ → R, r : R

n × R
nθ → R

na and

s : Rn ×R
nθ → R

nb such that

p(x, θ) > 0
q(x, θ) > 0
r(x, θ) ≥ 0







∀x ∈ R
n
0 ∀θ ∈ R

nθ (16)

where
p(x, θ) = −w(x, θ)− q(x, θ) (cvden(x)− vnum(x))

−r(x, θ)′a(θ)− s(x, θ)′b(θ)
(17)

and
w(x, θ) = (vden(x)∇vnum(x)− vnum(x)∇vden(x))

′

· (f(x, θ) +G(x, θ)Kbk(h(x, θ))) .
(18)

Then, v(x) is a LF for the origin and c < γ∗.
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Proof. Suppose that (16) holds, and let x ∈ V(c) \ {0n} and θ ∈ Θ. Then,
the definition of Θ and the third inequality in (16) imply that

{

r(x, θ)′a(θ) ≥ 0
s(x, θ)′b(θ) = 0.

From this and the first inequality in (16) it follows that

0 < −w(x, θ)− q(x, θ)(cvden(x)− vnum(x))
−r(x, θ)′a(θ)− s(x, θ)′b(θ)

≤ −w(x, θ)

since q(x, θ) > 0 from the second inequality in (16) and since v(x) ≤ c. This
implies that

0 > w(x, θ) = vden(x)
2v̇(x, θ).

Hence, it follows that
v̇(x, θ) < 0

i.e. v(x) is a LF for the origin and c < γ∗. �

Theorem 1 provides the condition (16) for establishing whether the sub-
level set V(c) of v(x) is included in the RDA for an admissible controller.
This condition is based on the introduction of the auxiliary polynomial func-
tions q(x, θ), r(x, θ) and s(x, θ), which act as multipliers. Also, this condition
does not require a priori knowledge of the fact whether v(x) is a LF for the
origin.

The condition (16) can be checked through an LMI feasibility test by
exploiting SOS polynomials. Indeed, since any SOS polynomial is nonneg-
ative, one has the following: (16) holds if there exist k(y), q(x, θ), r(x, θ),
s(x, θ) and ε such that























p(x, θ)− εϕ1(x, θ) is SOS
q(x, θ)− εϕ2(x, θ) is SOS
ri(x, θ) is SOS ∀i = 1, . . . , na

k ∈ K
ε > 0

(19)

where ϕi(x, θ), i = 1, 2, are positive definite polynomials in x for all θ. For
instance, one can simply choose ϕi(x, θ) = ‖x‖2 if the linearized system of
(5) is asymptotically stable, which is the standard case. If the linearized
system is only marginally stable, one can replace εϕi(x, θ) with

∑

j,l εj,lx
2l
j

constrained by εj,l ≥ 0 for all j, l and
∑

l εj,l = ε for all j.
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3.2 LERDA: from Nonconvex to Quasi-Convex BMI Prob-

lem

Theorem 1 can be exploited to estimate and control the LERDA, i.e. to solve
problem (15). Indeed, from the LMI feasibility test (19) one can define a
natural lower bound of γ∗ as

γ̂ = sup
c,k,q,r,s,ε

c

s.t.

{

(19) holds
V(c) ⊂ Ω

(20)

where the constraint V(c) ⊂ Ω can be ensured via a condition similar to
(19) whenever Ω is a semialgebraic set. However, a difficulty arises: the
computation of γ̂ is not straightforward because the first constraint in (19)
is a BMI: in fact, the Gram matrix of p(x, θ) is a bilinear function of c

and the coefficients of q(x, θ), which are variables in (20). Unfortunately,
optimization problems with BMIs are generally nonconvex.

Let us observe that one might think to overcome this difficulty by moving
the multiplier q(x, θ) in front of w(x, θ), i.e. replacing p(x, θ) with

p̃(x, θ) = −q(x, θ)w(x, θ)− (cvden(x)− vnum(x))

−r(x, θ)′a(θ)− s(x, θ)′b(θ).
(21)

One of the drawbacks of this solution is that the degree of p̃(x, θ) is larger
than that of p(x, θ), since the degree of w(x, θ) is larger than that of cvden(x)−
vnum(x): this can easily lead to huge increases in the number of the LMI
scalar variables in (19).

One way to tackle (20) is through a one-parameter sweep on c where
the LMI feasibility test (19) is performed for fixed values of c. However,
this solution has the drawback that the LMI feasibility test (19) has to be
repeated numerous times.

Hereafter, we propose a method to solve (20) through a generalized
eigenvalue problem (GEVP), which is a quasi-convex optimization problem.
Specifically, for µ ∈ R let us define the polynomials















p1(x, θ) = −w(x, θ) + q(x, θ)vnum(x)
−r(x, θ)′a(θ)− s(x, θ)′b(θ)

p2(x, θ) = q(x, θ)v̄(x)
v̄(x) = vden(x) + µvnum(x).

(22)

Let P2 and Q be Gram matrices of p2(x, θ) and q(x, θ) according to (3),
and let V̄ be a Gram matrix of v̄(x) according to (1). Let T be the matrix
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satisfying

mqθ(θ)⊗mqx(x)⊗mv(x) = T (mpθ(θ)⊗mpx(x)) (23)

where mqθ(θ)⊗mqx(x), mv(x) and mpθ(θ)⊗mpx(x) are the power vectors
for the Gram matrices Q, V̄ and P2. Observe that this matrix exists and
is unique because mpθ(θ)⊗mpx(x) contains all the monomials in mqθ(θ)⊗
mqx(x)⊗mv(x) without repetitions.

Lemma 1 Let v : Rn → R be a rational function satisfying (11)–(12), and
let µ ∈ R. Then, P2 can be chosen as

P2 = T ′
(

Q⊗ V̄
)

T. (24)

Moreover,

Q > 0 and V̄ > 0 ⇒ P2 > 0. (25)

Proof. Let us pre- and post-multiply P2 in (24) by (mpθ(θ)⊗mpx(x))
′ and

its transpose. We get:

0 < (...)′P2 (mpθ(θ)⊗mpx(x))
= (...)′

(

Q⊗ V̄
)

(mqθ(θ)⊗mqx(x)⊗mv(x))
= (...)′Q (mqθ(θ)⊗mqx(x))mv(x)

′V̄ mv(x)
= p2(x, θ)

i.e. P2 can be chosen as in (24). Then, (25) follows due to the fact that
Q⊗ V̄ > 0 if Q > 0 and V̄ > 0 and due to the fact that T has full column
rank. �

Lemma 1 provides a formula for P2, in particular showing that this
matrix can be chosen positive definite whenever Q > 0 and V̄ > 0. We will
discuss these conditions after the following result.

Theorem 2 Let us suppose that Ω = R
n, and let v : Rn → R be a rational

function satisfying (11)–(12). Then, for any µ ∈ R, µ > 0, one has that

γ̂ = −
z∗

1 + µz∗
(26)
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where z∗ is the solution of

z∗ = inf
z,k,q,r,s,ε

z

s.t.































zp2(x, θ) + p1(x, θ)− εϕ1(x, θ) is SOS

q(x, θ)− εϕ2(x, θ) is SOS

ri(x, θ) is SOS ∀i = 1, . . . , na

k ∈ K
ε > 0
1 + µz > 0.

(27)

Proof. Let us consider zp2(x, θ)+p1(x, θ) in the first constraint of (27). One
has that

zp2(x, θ) + p1(x, θ)
= zq(x, θ)(vden(x) + µvnum(x)) −w(x)

+q(x, θ)vnum(x)− r(x, θ)′a(θ)− s(x, θ)′b(θ)
= −w(x, θ)− q(x, θ)(−zvden(x)− zµvnum(x)

−vnum(x))− r(x, θ)′a(θ)− s(x, θ)′b(θ)
= −w(x)− r(x, θ)′a(θ)− s(x, θ)′b(θ)− (1 + µz)q(x, θ)

·

(

−z

1 + µz
vden(x)− vnum(x)

)

.

Hence, the first inequality in (19) coincides with the first inequality in (27)
whenever Q and c are replaced by

Q → Q(1 + µz)

c →
−z

1 + µz
.

Since 1 + µz is positive, the constraints in (19) are equivalent to those in
(27), and hence (26) holds. �

Theorem 2 states that the solution of (20) can be found by solving the
equivalent optimization problem (27). The advantage of this transformation
is that (27) is a GEVP whenever the Gram matrices Q and V̄ of q(x, θ) and
v̄(x) are positive definite. In fact, in such a case, the bilinear part of the
Gram matrix of the first constraint in (27) has the form zP2, where the
condition P2 > 0 required by (27) to be a GEVP is ensured by Lemma
1. GEVPs have the nice property to belong to the class of quasi-convex
optimization problems, which can be systematically solved since they are
free of local minima, see e.g. [18].
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Let us discuss the requirements on Q and V̄ for (27) being a GEVP.
First, one can simply ensure that Q > 0 by not including the unnecessary
constant monomial in the power vector mqx(x) and by choosing ϕ2(x, θ) =
‖mqθ(θ)⊗mqx(x)‖

2: in fact, with this choice, the second constraint in (27) is
equivalent to Q ≥ εI. Second, one can simply ensure that V̄ > 0 by choosing
any µ > 0 if vnum(x) and vden(x) have positive definite Gram matrices (the
Gram matrix of vnum(x) is built with a power vector mvnum(x) that does
not include the unnecessary constant monomial). If vnum(x) or vden(x) have
not positive definite Gram matrices, one can attempt to find µ > 0 such
that V̄ > 0 through an LMI feasibility test (since V̄ is linear in µ), and, if
such a µ does not exist, γ̂ has to be found as explained under (20).

3.3 LERDA: Tightness of the Lower Bound

Once that γ̂ has been found, a natural question arises: is this lower bound
tight?

Theorem 3 Let us consider the estimation problem, and let us suppose that

Ω = R
n and 0 < γ̂ < ∞. Let us define

M = {(x, θ) ∈ R
n
0 × R

nθ : p∗(x, θ) = 0} (28)

where p∗(x, θ) is either zp2(x, θ) + p1(x, θ), evaluated for the optimal values

of the variables in (27), or p(x, θ), evaluated for the optimal values of the

variables in (20). Define also

N = {(x, θ) ∈ M : θ ∈ Θ, v(x) = γ̂, v̇(x, θ) = 0} . (29)

Then,

γ̂ = γ∗ ⇐⇒ N 6= ∅. (30)

Proof. “⇒” Suppose that γ̂ = γ∗, and let (x∗, θ∗) be the tangent point
between the surface v̇(x, θ) = 0 and the sublevel set V(γ∗), i.e.







v̇(x∗, θ∗) = 0
v(x∗) = γ∗

θ∗ ∈ Θ.

Such a point exists from the definition of γ∗ in (15) since v̇(x, θ) is continu-
ous. Let us observe that

{

w(x∗, θ∗) = 0
γ∗vden(x

∗)− vnum(x∗) = 0

10



Let us also observe that p∗(x, θ) and r∗i (x, θ) are SOS for all i = 1, . . . , na

due to the constraints in (27) and (20), and hence they are nonnegative.
Moreover, since a(θ∗) ≥ 0 and b(θ∗) = 0, it follows that

0 ≤ p∗(x∗, θ∗)
= −w(x∗, θ∗)− ζq∗(x∗, θ∗)(γ∗vden(x

∗)− vnum(x∗))
−r∗(x∗, θ∗)′a(θ∗)− s(x∗, θ∗)′b(θ∗)

≤ −w(x∗, θ∗)− ζq∗(x∗, θ∗)(γ∗vden(x
∗)− vnum(x∗))

= 0

where ζ = 1 + µz∗ if p∗(x, θ) has been obtained from zp2(x, θ) + p1(x, θ) or
ζ = 1 if p∗(x, θ) has been obtained from p(x, θ). Hence, p∗(x∗, θ∗) = 0, i.e.
(x∗, θ∗) ∈ M. Therefore, (x∗, θ∗) ∈ N , and N 6= ∅.

“⇐” Suppose that N 6= ∅ and let (x, θ) be a point of N . It follows that
v(x) = γ̂ and v̇(x, θ) = 0. Since γ̂ is a lower bound of γ∗, this implies that
(x, θ) is a tangent point between the surface v̇(x, θ) = 0 and the sublevel set
V(γ̂). Hence, γ̂ = γ∗. �

Theorem 3 provides a condition for establishing whether the lower bound
γ̂ is tight for the estimation problem. In particular, this occurs if N in (29)
is nonempty, which can be found via trivial substitution from M in (28).
Regarding the computation of M, let us observe that

M = {(x, θ) ∈ R
n
0 × R

nθ : mpθ(θ)⊗mpx(x) ∈ ker(M)} (31)

where M is a positive semidefinite Gram matrix M of p∗(x, θ), which exists
since p∗(x, θ) is SOS due to the constraints in (27) and (20). The construc-
tion of M in (31), which consists of looking for power vectors into a linear
subspace, can be obtained through linear algebra operations in standard
cases, see e.g. [8] and references therein.

3.4 Searching for the LF

First of all, an initial LF can be typically obtained by analyzing the linearized
system of (5). Indeed, define the matrix

A(θ) =
df(x, θ)

dx

∣

∣

∣

∣

x=0n

(32)

and let P be a symmetric matrix satisfying (if any)

P > 0
PA(θ) +A(θ)′P < 0

}

∀θ ∈ Θ. (33)
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The condition (33) is equivalent to the existence of a quadratic LF for the
linearized system, and can be investigated through LMIs by exploiting SOS
matrix polynomials, see e.g. [8]. Then,

v0(x) = x′Px (34)

is a quadratic LF for the origin, and a rational LF can be simply obtained
as

v(x) =
v0(x) + v1(x)

vden(x)
(35)

for any polynomials v1(x) and vden(x) such that v(x) satisfies (11)–(12) and

{

∇v1(0n) = 0
∇2v1(0n) = 0.

(36)

Observe that such a LF is guaranteed to provide nonempty estimates of the
RDA since (33) holds.

At this point, one can conduct a search for a LF providing less conser-
vative estimates of the RDA. In the literature, two main criteria have been
proposed in the case of polynomial LFs. The first criterion attempts to
maximize the volume of the estimate, while the second criterion attempts
to maximize the size of a set with simple shape (generally fixed) included in
the estimate, see e.g. [8].

In the present framework, the first criterion can be formulated as

τ∗ = sup
v

τ(V(γ∗))

s.t. v(x) satisfies (11)–(12)
(37)

where τ(V(γ∗)) denotes an approximation of the volume of the sublevel set
V(γ∗), while the second criterion can be formulated as

ρ∗ = sup
v,ρ

ρ

s.t.

{

v(x) satisfies (11)–(12)
B(ρ) ⊆ V(γ∗)

(38)

where B(ρ) is the sublevel set

B(ρ) = {x ∈ R
n : b(x) ≤ ρ} (39)

and b(x) is a chosen positive definite polynomial (e.g., B(ρ) is a sphere
by choosing b(x) = ‖x‖2). In these criteria, the conditions (11), (12) and
B(ρ) ⊆ V(γ∗) can be ensured through SOS polynomials analogously to (19).
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Unfortunately, both criteria unavoidably lead to nonconvex optimization
problems, as it happens also in the case of quadratic or polynomial LFs [8].
This is due to the product of the LF v(x) with the multiplier q(x, θ) in
the first constraint of (16): indeed, such a product makes this constraint
a BMI. These nonconvex optimization problems can be solved locally in
various ways, e.g. by alternatively fixing the LF and the multiplier as done
in Example 1 in the next section. Let us observe that Theorem 2 can be
used when the LF is fixed in order to estimate γ∗.

4 Examples

In these examples the degree in x and the degree in θ of the multipliers
q(x, θ) and r(x, θ) are chosen equal to the respective maximum values for
which the degrees of p(x, θ) are equal to those of w(x, θ) times a quadratic
polynomial in x. The polynomials ϕ1(x, θ) and ϕ2(x, θ) are chosen equal
to ‖mpθ(θ) ⊗ mpx(x)‖

2 and ‖mqθ(θ) ⊗ mqx(x)‖
2, respectively, where the

power vectors mpx(x) and mqx(x) do not include the unnecessary constant
monomial.

4.1 Example 1

Let us consider the system described by







ẋ1 = −(1 + 2θ)x1 + x2 − θx1x
2
2

ẋ2 = −3x1 − 2x2 + θx21 + (2θ − 1)x31
θ ∈ [0, 1].

We consider the problem of determining the LERDA of the origin provided
by the LF

v(x) =
(x21 + x22)(x

2
1 + x1x2 + x22 + 1)

1 + x1 + x2
1
+ 2x2

2

,

i.e. computing γ∗ in (15). This LF is simply built according to (32)–(36).
Hence, we compute the lower bound γ̂ in (26). It is easy to see that

vnum(x) and vden(x) are SOS and have positive definite Gram matrices, and
we can choose any µ > 0 to achieve V̄ > 0 according to the discussion
under Theorem 2, in particular we use µ = 1. We find γ̂ = 1.145. Next, we
investigate the tightness of the found lower bound. We compute the set N
in (29), hence finding

N =
{

(x, θ) : x = (1.135,−1.362)′ , θ = 0
}
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and from Theorem 3 we conclude that γ̂ is tight since N is nonempty, i.e.
γ̂ = γ∗. Figure 1 shows the curve v̇(x, θ) = 0 for some admissible values of
θ, the boundary of the LERDA, and the x-part of the point in N .

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x1

x
2

Figure 1: Example 1. Curve v̇(x, θ) = 0 for some admissible θ (dashed),
boundary of the LERDA V(γ∗) (solid line), and x-part of the point in N
(“�” mark).

Lastly, we compare the estimates provided by rational LFs and polyno-
mial LFs. We consider the search for optimal LFs enlarging the estimate of
the RDA according to the criterion (38) with the simple choice b(x) = ‖x‖2.
For the case of rational LFs, we search over the LFs with numerator and
denominator of degree 4 and 2, while, for the case of polynomial LFs, we
search over the LFs of degree 6. The BMI problem (38) is solved with the
initialization v(x) = (x21 + x22)(x

2
1 + x1x2 + x22 + 1) in both cases, which is

the numerator of the LF previously considered, and which is a special case
of the considered rational LFs and polynomial LFs.

The found solutions of the BMI problem are as follows: with rational
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LFs, the lower bound of ρ∗ is ρ̂r = 31.346 provided by

vr(x) = (18.301x2

1 + 3.321x1x2 + 3.198x2

2 − 0.204x3

1

−0.032x2

1x2 − 0.031x1x
2

2 − 0.002x3

2 + 0.017x4

1 − 0.039x3

1x2

+0.024x2

1x
2

2 + 0.002x1x
3

2 + 0.003x4

2)/(113.297 − 1.262x1

+0.294x2 + 0.123x2

1 + 0.515x1x2 + 0.570x2

2)

and, with polynomial LFs, the lower bound of ρ∗ is ρ̂p = 19.842 provided
by

vp(x) = 38.242x2

1 + 0.486x1x2 + 3.786x2

2 − 0.004x3

1

−0.012x2

1x2 − 0.004x1x
2

2 − 0.000x3

2 − 2.272x4

1 + 0.001x3

1x2

−0.472x2

1x
2

2 − 0.033x1x
3

2 − 0.043x4

2 + 0.000x5

1 + 0.001x4

1x2

+0.000x3

1x
2

2 + 0.000x2

1x
3

2 − 0.000x1x
4

2 − 0.000x5

2 + 0.046x6

1

−0.002x5

1x2 + 0.015x4

1x
2

2 + 0.002x3

1x
3

2 + 0.003x2

1x
4

2

+0.001x1x
5

2 + 0.000x6

2.

Figure 2 shows the estimates V(γ∗) provided by vr(x) (first largest closed
curve), vp(x) (second largest closed curve) and v(x) (fourth largest closed
curve). In order to show the importance of the denominator in vr(x), this
figure also shows the estimate V(γ∗) provided by the numerator of vr(x)
(third largest closed curve).

Although the found solutions might be affected by the presence of local
optima in the BMI problems, they suggest that rational LFs can provide
larger estimates than polynomial LFs. This is especially true by observing
that the considered polynomial LFs have more degrees of freedom than the
considered rational LFs. In fact, in the considered polynomial LFs there are
24 free coefficients (locally quadratic polynomial of degree 6 normalized up
to a scale factor), while in the considered rational LFs there are only 16 free
coefficients (the numerator is a locally quadratic polynomial of degree 4 and
the denominator is a polynomial of degree 2, both normalized up to a scale
factor).

4.2 Example 2

Let us consider the system described by














ẋ1 = x2 + θx32
ẋ2 = −x1 − x2 + 2(1 − θ2)x21 + x1u

y = x1 − x2
θ ∈ [−1, 1].

We consider the design of a polynomial output controller for enlarging the
RDA of the origin by using the LF

v(x) =
4x21 + 2x1x2 + 2x22 + x41 + x42

1 + x2
1
+ x2

2
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Figure 2: Example 1. Curve v̇1(x, θ) = 0 for some admissible θ (dashed),
boundary of the LERDA V(γ∗) for vr(x), vp(x), the numerator of vr(x), and
v(x) (solid line, from the largest to the smallest).

(as in Example 1, the LF is simply found according to (32)–(36)). The
control structure is chosen as







u = k(y)
k(y) = k11 + k12y + k13y

2

k11, k12, k13 ∈ [−1, 1]

where k11, k12, k13 are the coefficients to determine. Observe that, in the
closed-loop system, the origin is an equilibrium point for all possible values
of k11, k12, k13.

We compute the lower bound γ̂ in (26) (as in Example 1, any µ > 0
can be chosen, and we use µ = 1). Firstly, we consider k(y) constant (i.e.,
k12 = k13 = 0), finding

γ̂ = 0.960, k(y) = −0.718.
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For k(y) linear (i.e. k13 = 0) we obtain

γ̂ = 1.058, k(y) = −0.778 − 0.151y.

Lastly, we suppose that k(y) is quadratic, finding

γ̂ = 1.392, k(y) = −1.000 − 0.961y + 0.805y2.

Next, we investigate the tightness of the lower bound for the quadratic
controller. The set N in (29) is given by

N =
{

(x, θ) : x = (0.494, 0.494)′ , θ = 0.241
}

and hence from Theorem 3 we conclude that γ̂ is tight. Figure 3 shows the
boundaries of the LERDA provided by the three found controllers, the curve
v̇(x, θ) = 0 corresponding to the quadratic controller for some admissible
values of θ, and the x-part of the point in N .

5 Conclusion

It has been shown that the best lower bound of the LERDA for chosen
degrees of the SOS polynomials, which requires the solution of a nonconvex
optimization problem with BMIs, can be obtained by solving a quasi-convex
optimization problem under some conditions. Moreover, a necessary and
sufficient condition for establishing tightness of this lower bound has been
provided. As discussed and shown in the paper, the proposed results can
readily be exploited in the search for optimal LFs.
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