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Yeung Sam Hung, Senior Member, IEEE

Abstract—This paper investigates robust consensus for a class
of uncertain multi-agent dynamical systems. Specifically, it is sup-
posed that the system is described by a weighted adjacency ma-
trix whose entries are polynomial functions of an uncertain vector
constrained in a semi-algebraic set. For this uncertain topology,
we provide necessary and sufficient conditions for ensuring ro-
bust first-order consensus and robust second-order consensus, in
both cases of positive and non-positive weighted adjacency ma-
trices. Moreover, we show how these conditions can be investigated
through convex programming by using standard software. Some
numerical examples illustrate the proposed results.

Index Terms—Convex programming,multi-agent system, robust
consensus, uncertain system.

I. INTRODUCTION

T HE model of multi-agent dynamical systems has been
widely applied in the research of sensor networks, neural

networks, and biological networks [1]–[5]. In particular, in
recent years, interests are intensively cast on networked control
and coordinated behavior in multi-agent systems [6]–[12].
Achieving consensus is a key problem in this area and as a
growing number of applications of multi-agent system emerges,
the research on consensus gains an essential importance on var-
ious areas such as complex dynamical network, filter design for
multiple sensors, synchronization, formation, and rendezvous.
Traditional research topics focus on the deterministic system

to establish static model, while a growing number of research
focus attention on the uncertainties of multi-agent system
according to the unexpected link failure, communication delay,
interaction limit, and noise interference in the system [13]–[15].
A simple but compelling mathematic description of a group
of autonomous agents is the Vicsek model, where possible
changing of the nearest neighbor sets over time is an inherent
property. This model is applied to the interaction with direc-
tional information exchange, hence introducing a more general
model where each edge of a weighting matrix has a positive
weighting factor.
In this paper, we investigate robust consensus for uncertain

multi-agent dynamical systems. In particular, it is supposed
that the weighted adjacency matrix of the closed-loop system
is affected by uncertain parameters, reflecting for instance
missing information on the control gains. Each entry of
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the weighted adjacency matrix is allowed to be a generic
polynomial function of an uncertain vector constrained in a
semi-algebraic set. This framework includes typical cases such
as affine linear dependence of the system coefficients on an
uncertain vector constrained in a polytope. For this uncertain
topology, we provide necessary and sufficient conditions for
ensuring robust first-order consensus and robust second-order
consensus, in both cases of positive and nonpositive weighted
adjacency matrices. These conditions are obtained in general by
exploiting the uncertain Laplacian matrices of the system and
by introducing parameter-dependent Lyapunov functions for
a suitably transformed system. Moreover, we show how these
conditions can be investigated through convex programming by
using standard software. Some numerical examples illustrate
the proposed results.
This paper is organized as follows. Section II provides the

problem formulation and some preliminaries. Section III de-
scribes the proposed conditions for robust first-order consensus
and robust second-order consensus. Section IV illustrates
the proposed results with some numerical examples. Finally,
Section V concludes the paper with some final remarks.

II. PRELIMINARIES

A. Problem Formulation

Notation:

natural and real number sets;

transpose of ;

symmetric positive definite
(semidefinite) matrix ;

origin of ;

vector with all the entries equal
to 1;

identity matrix (of size defined by the
context);

image of matrix ;

null space of matrix ;

Kronecker product of matrices and ;

set of eigenvalues of A , i.e.,

Let be a weighted digraph of order with
the set of nodes , set of directed edges
belonging to , and a weighted adjacency matrix
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. If an information can be transmitted from the th
node to the th node, a directed edge is denoted, i.e., a
directed edge if and only if . In particular,
is called positive if for all , otherwise is called
nonpositive.
For distinct nodes , let a sequence of edges

be a directed path from
to . If there is a directed path between any pair of distinct
notes and for graph , then it is denoted as a strongly
connected graph. Provided that, for some node , there is a di-
rected path from to any other node, the node is called a root of
the graph. A directed tree is a direct graph with the property
that there is exactly one root and except the root, every node in
has exactly one parent. For a directed graph of order , a span-

ning tree of a directed graph is a directed tree with edges
which connect all of the nodes of the graph. If any subset of
edges contains or forms a spanning tree, we say that the graph
has a spanning tree.
In this paper, we investigate robustness of consensus to un-

certain parameters. In particular, it is supposed that the weighted
adjacency matrix of the closed-loop system is affected by un-
certain parameters, reflecting for instance missing information
on the control gains. We denote such a matrix as , where

is an uncertain vector constrained as

(1)

where

(2)

for some functions . In the sequel, we will
assume that the entries of and are poly-
nomials. Moreover, we say that is positive if
for all and for all , otherwise is called nonposi-
tive.
For robust first-order consensus, we consider the continuous-

time uncertain multi-agent dynamical system described by

(3)

where is the state of the th node, and is both positive
and nonpositive. The robust first-order consensus problem is as
follows.
Problem 1: To establish if, for any initial state, the uncertain

multi-agent dynamical system (3) achieves robust first-order
consensus, i.e.,

(4)

In order to address this problem, we rewrite the uncertain
multi-agent dynamical system (3) as

(5)

where is the state vector and
is the uncertain Laplacian matrix given by

(6)

It is worth pointing out that the uncertain Laplacian matrix has
the diffusion property that

(7)

For robust second-order consensus problem, we consider the
continuous-time uncertain multi-agent dynamical system de-
scribed by

(8)

where is the position state of the th node, is the
velocity state of the th node, and are constants. Dif-
ferent from first-order consensus, second-order consensus re-
quires that not merely do the position states of agents tend to be
the same, but also the velocity states of agent converge to a con-
sistent value. Based on this we propose the problem of robust
second-order consensus as follows.
Problem 2: We now address the problem of establishing if,

for any initial state, the uncertain multi-agent dynamical system
(8) achieves robust second-order consensus, i.e.,

(9)

In order to address this problem, we rewrite the uncertain
multi-agent dynamical system (8) as

(10)

where is the position state vector and is the
velocity state vector. We define the global state vector as

. Then, system (10) can be rewritten in compact
form as

(11)

where is the uncertain extended Laplacian matrix given by

(12)
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B. SOS Polynomials

Let be a polynomial of degree in . Then,
can be always written as

(13)

where is a vector containing all monomials of degree less
than or equal to in is a symmetric matrix, and is a
linear parametrization of the subspace

The representation (13) is known as Gram matrix method and
square matrix representation (SMR). This representation allows
one to establish whether a polynomial is SOS via LMIs. Indeed,

is SOS if there exist polynomials such that

and this condition holds if and only if there exists such that
the following LMI feasibility test holds:

This technique can also be used in the case of matrix polyno-
mials. Specifically, let be a symmetric matrix polynomial
of size of degree in (this means that all of the
entries of are polynomials whose highest degree in is
). Then, can be written as

(14)

where

and is the identity matrix, is a symmetric matrix, and
is a linear parametrization of the subspace

Similarly to the scalar case, is SOS if there exist matrix
polynomials such that

and this condition holds if and only if there exists such that
the following LMI feasibility test holds:

See, for instance, [16]–[18] and references therein for details
and algorithms about SOS polynomials.

III. CONDITIONS FOR ROBUST CONSENSUS

Here, the robust first-order and second-order consensus con-
ditions are derived, respectively.

A. Robust First-Order Consensus

Lyapunov stability theory is widely used to study the property
of dynamical system. For the first time, we associate the robust

consensus with Lyapunov stability theory, and we provide a new
condition for investigating robust first-order consensus based on
matrix inequalities. Specifically, define a matrix
such that

(15)

Then we get the transformed uncertain Laplacian matrix:

(16)

Theorem 1: Robust first-order consensus for uncertain multi-
agent system (with both positive and non-positive weighted di-
graph) can be achieved if and only if there exists a symmetric
function such that

(17)

In order to investigate the condition of Theorem 1, we can
exploit SOS matrix polynomials introduced in Section II-B. In-
deed, it is easy to verify that (17) holds if there exist matrix
polynomials and a scalar such that

is SOS
is SOS
is SOS

(18)

where

(19)

In fact, whenever the constraints in (18) hold with , for
any it follows that , and

i.e., (17) holds.
The condition (18) can be formulated via a convex optimiza-

tion problem by using the representation of matrix polynomials
reported in Section II. Indeed, it directly follows that (17) holds
if , where is the solution of the convex optimization
problem

(20)

The matrices involved in this problem are defined by



HAN et al.: ROBUST CONSENSUS FOR A CLASS OF UNCERTAIN MULTI-AGENT DYNAMICAL SYSTEMS 309

Here, is the degree of is the degree of ,
and is the degree of .
For an interaction topology with positive weighted interac-

tion topology but without parametric uncertainties, it has been
found that the topological structure determines whether the con-
sensus can be achieved. The following theorem extends to the
case of uncertain multi-agent dynamical systems three existing
conditions found for the case of multi-agent dynamical systems
without uncertainty [19] and provides a further condition in
terms of zeros of a polynomial.
Theorem 2: For a given uncertain Laplacian matrix in

(6) and a network with a positive weighted
digraph, i.e., if and only if , the following
statements are equivalent.
1) Robust first-order consensus can be achieved.
2) has exactly one simple eigenvalue 0 and all
the other eigenvalues have positive parts.

3) , the directed graph has a spanning tree.
4) , where

(21)

(22)

One way of checking the condition of Theorem 2 consists
of using SOS polynomials and amounts to solving an LMI
problem. Specifically, statement d) in Theorem 2 holds if there
exist polynomials and a scalar such that

is SOS

is SOS
(23)

where is defined by

if
otherwise

and is any vector in which can be freely chosen.

B. Robust Second-Order Consensus

Let us consider the problem of establishing robust second-
order consensus. For this problem, we exploit the uncertain ex-
panded Laplacian matrix . Extending the results given in
[12] for the case of multi-agent dynamical systems without un-
certainty, one has that robust second-order consensus for the
uncertain multi-agent dynamical system (11) can be obtained
if and only if has only one zero eigenvalue of algebraic
multiplicity two and all the other eigenvalues are in the open
right half plane.
Starting from this result, we provide a new condition for in-

vestigating robust second-order consensus based on matrix in-
equalities. Specifically, define vectors as

(24)

Let and be matrices such
that

(25)

Let us define the transformed uncertain expanded Laplacian ma-
trix:

(26)

Theorem 3: Robust second-order consensus for uncer-
tain multi-agent system with both positive and non-positive
weighted digraph can be achieved if and only if there exists a
symmetric function such that

(27)

In order to investigate the existence of a function satis-
fying condition (27), we can exploit SOS matrix polynomials. It
is easy to verify that (27) holds if there exist matrix polynomials

and a scalar such that

is SOS
is SOS
is SOS

(28)

where

Before concluding this section, let us remark that the pro-
posed results for establishing robust consensus in uncertain
multi-agent systems require the solution of optimization
problems, in contrast to existing conditions for establishing
consensus in uncertainty-free multi-agent systems where one
just needs to check the eigenvalues of the Laplacian matrices.
Unfortunately, this is unavoidable, as it happens also for the
simpler problem of establishing robust stability of uncertain
linear systems, see for instance [17].

IV. NUMERICAL EXAMPLES

Here, we present some illustrative examples where robust
first-order and second-order consensus are investigated for un-
certain multi-agent dynamical systems. The optimization prob-
lems are solved with the standard MATLAB toolbox SeDuMi.
The SMR matrices are built using the algorithms reported in
[17] and references therein.

A. Example 1

In this example, we consider the uncertain four-agent system
shown in Fig. 1. It is assumed that the network is affected by an
uncertain parameter, specifically

where is constrained in the set chosen as . Hence,
we have and . Moreover, can be described as in
(2) with
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Fig. 1. Digraph of a four-agent system.

According to (6), the Laplacian matrix is given by

We observe that is positive since all its entries are non-
negative for all . This implies that we can use either
condition (17) or statement 4) of Theorem 2 to investigate robust
first-order consensus.
First, we use condition (17) by looking for a constant ma-

trix function . By solving (20), we can find .
Therefore, robust first-order consensus is achieved.
Then, let us use statement 4) of Theorem 2. In particular, the

polynomial is given by

According to statement 4) of Theorem 2, robust first-order con-
sensus is achieved if and only if for all . In
this case, it is easy to see that satisfies this property since

is an univariate polynomial with roots 2.79, and
which are all lying outside . Nevertheless, let us

use condition (23). In this case, and by simply choosing
a multiplier of degree 2 we find that this condition holds
with , which proves that statement 4) of Theorem 2 is sat-
isfied. Fig. 2 shows the process of robust first-order consensus
with the initial states and randomly chosen in for five
times.
Next, let us consider the problem of establishing whether this

uncertain network is able to achieve robust second-order con-
sensus with in the system (8), and we look for a
constant matrix function satisfying (27). Nevertheless, let
us use the condition (28), and we can find . There-
fore, robust second-order consensus is achieved with chosen
and . In this case, the uncertain extended Laplacian matrix is
given by

Fig. 2. Trajectories of robust first-order consensus.

where
and .

B. Example 2

In this example, we consider the uncertain matrix given
by

where is constrained in the set chosen as
. Hence, we have and . Moreover, can

be described as in (2) with

In this case, is not positive, hence let us use condition
(17) to investigate robust first-order consensus. We look for a
constant matrix function satisfying (17), and, by solving
(20), we find . Therefore, robust first-order con-
sensus is achieved.
Next, let us consider the problem of establishing whether this

uncertain network is able to achieve robust second-order con-
sensus with in the system (8). We look for a
constant matrix function satisfying (27). Let us use the
condition (28), and we find , which does not
prove (28). We repeat the procedure by looking for a matrix
function of degree 2, and we find a positive . There-
fore, robust second-order consensus is achieved.

C. Example 3

With a topology shown in Fig. 3, an uncertain six-agent
system is considered in this example. It is assumed that the
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Fig. 3. Digraph of a six-agent system.

network is affected by two uncertain parameters, i.e., and
. Specifically the uncertain matrix is given by

where is constrained in the set chosen as
. Hence, we have and . Moreover, can

be described as in (2) with

Also, in this case, is not positive, hence let us use condi-
tion (17) to investigate robust first-order consensus. We look for
a constant matrix function satisfying (17), and, by solving
(20), we find , i.e., robust first-order consensus is
achieved.
Next, let us consider the problem of establishing whether this

uncertain network is able to achieve robust second-order con-
sensus with in the system (8). We look for a
constant matrix function satisfying (27). Let us use the
condition (28), and we find , which does not prove (28).
We repeat the procedure by looking for a matrix function
of degree 1, and we find , i.e., robust second-order
consensus is achieved.

V. CONCLUSION

In this paper, we have addressed robust first-order consensus
and robust second-order consensus for a class of uncertain
multi-agent dynamical systems. Specifically, we have consid-
ered a generic framework where the system is described by
a weighted adjacency matrix whose entries are polynomial
functions of an uncertain vector constrained in a semialgebraic
set. For this uncertain topology, we have provided necessary
and sufficient conditions for ensuring robust consensus in both
cases of positive and non-positive weighted adjacency matrices.
Moreover, we have shown how these conditions can be easily
investigated through convex programming by using standard
software. Various future directions can be taken starting from
the results proposed in this paper, for instance one can consider
switching topology adopting the frameworks introduced in

[20], [21] and LMI techniques for switching systems as the one
introduced in [22]. Also, multi-agent dynamical systems with
rational dependence on the uncertainty and/or time-varying
uncertainty can be considered adopting the methodology pro-
posed in [23].

APPENDIX

A. Proof of Theorem 1

We observe that is an eigenvector of corresponding
to the eigenvalue zero. Moreover, observe that has
the same eigenvalues of except that the algebraic multi-
plicity of the eigenvalue zero has been decreased by one, i.e.,

(29)

Let us define a dynamical system

(30)

We observe that is the equilibrium point of (30),
. Hence, the robust first-order consensus can be achieved

is equivalent to the statement that (30) is asymptotically stable.
According to (29) and the Lyapunov stability theorem, (30) is
asymptotically stable for all if and only if has ex-
actly one simple eigenvalue 0 and all the other eigenvalues have
positive parts. From Lyapunov stability theorem for linear sys-
tems, this is equivalent to say that there exists such that
(17) holds for all . Therefore, the theorem holds.

B. Proof of Theorem 2

Assume the Laplacian matrix is constructed by (6).
Then, the first three statements are equivalent and follow di-
rectly from the analogous ones found for the case of multi-agent
dynamical systems without uncertainty [19]. From [19, Lemma
3.3], one has that .
Moreover, statement d) implies that has exactly one zero
eigenvalue, . Thus, statements 2) and 4) are equivalent.
Therefore, the theorem holds.

C. Proof of Theorem 3

Observe that is an eigenvector of corresponding to
the eigenvalue zero. Moreover, observe that has the
same eigenvalues of except that the algebraic multiplicity
of the eigenvalue zero has been decreased of one. Similarly, it
follows that has the same eigenvalues of
except that the algebraic multiplicity of the eigenvalue zero has
been decreased of two. Hence, it follows that robust second-
order consensus can be achieved if and only if has all of
the eigenvalues in the open right half plane for all . From
Lyapunov stability theorem for linear systems, this is equivalent
to say that there exists such that (27) holds for all .
Therefore, the theorem holds.
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