
Title Visual servoing path planning for cameras obeying the unified
model

Author(s) Shen, T; Chesi, G

Citation Advanced Robotics, 2012, v. 26 n. 8-9, p. 843-860

Issued Date 2012

URL http://hdl.handle.net/10722/184504

Rights

This is an electronic version of an article published in Advanced
Robotics, 2012, v. 26 n. 8-9, p. 843-860. The Journal article is
available online at:
http://www.tandfonline.com/doi/abs/10.1163/156855312X632904



Visual Servoing Path-Planning for Cameras

Obeying the Unified Model

Tiantian Shen, Graziano Chesi

Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong

tiantianshen@gmail.com, chesi@eee.hku.hk

Abstract

This paper proposes a path-planning visual servoing strategy for a class of cameras that includes conven-

tional perspective cameras, fisheye cameras, and catadioptric cameras as special cases. Specifically, these cam-

eras are modeled by adopting a unified model recently proposed in the literature, and the strategy consists of

designing image trajectories for eye-in-hand robotic systems that allow the robot to reach a desired location

while satisfying typical visual servoing constraints. To this end, the proposed strategy introduces the projection

of the available image features onto a virtual plane and the computation of a feasible image trajectory through

polynomial programming. Then, the computed image trajectory is tracked by using an image-based visual ser-

voing controller. Experimental results with a fisheye camera mounted on a 6-DOF robot arm are presented in

order to illustrate the proposed strategy.

keywords: visual servoing, path planning, unified model,

1 INTRODUCTION

Visual servoing is a control technique to guide the motion of a robot with respect to a target by exploiting visual

information obtained by a camera. Various visual servoing methods have been proposed and are classified accord-

ing to the error function as position-based visual servoing (PBVS) [1] and image-based visual servoing (IBVS)

[2]. PBVS approaches regulate pose error and has no control in the image plane, while IBVS methods directly

transfer image feature errors into camera velocities. The strengths and weaknesses of PBVS and IBVS techniques

are discussed in [3]. A lot of work have been done for the combination of PBVS and IBVS techniques to avoid

respective drawbacks. These methods include partition of the degrees of freedom [4], 2.5 D visual servoing [5]

and hybrid switched-system [6]. Navigation functions [7] and circular-like trajectories [8] are proposed to enlarge

the convergence domain. Optimal object configurations are explored to minimize the positioning error [9]. How-

ever, it is still a difficult problem to consider constraints, such as maintaining all the features in the field of view

of the camera while the camera displacement is very large, keeping the robot endpoint and its joints within their

physical limits, and etc. Constraints in both the image and pose domain motivate the integration of path-planning

into visual servoing [10, 11]. Existing path-planning techniques for visual servoing have been divided into four
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categories, the benefits and drawbacks of which are discussed in a review [12]. For other advanced approaches,

see the surveys [13, 14] and the collection [15].

These approaches and techniques are mainly proposed for conventional perspective cameras. On the other

hand, cameras with large field of view, such as fisheye cameras (which combine perspective cameras and fisheye

lens) and catadioptric cameras (which consist of perspective cameras and mirrors) are promising sensors to be

used in robotic tasks. These cameras can be modeled by adopting a unified model recently proposed in the litera-

ture, see for instance [16]. A visual servoing and pose estimation method has recently been proposed for cameras

obeying the unified model (which includes non-perspective and conventional perspective cameras), where a vir-

tual servoing process is performed [17]. However, visual servoing path-planning for such cameras has not yet

been proposed in the literature. This paper makes the first attempt to perform path-planning to take into account

multiple constraints for non-perspective cameras.

In this paper, a visual servoing path-planning strategy for multi-constraint satisfaction is proposed for cameras

obeying the unified model. In particular, the proposed strategy considers typical constraints such as keeping the

object features in the field of view of the camera and keeping the robot away from collision with the obstacle.

The methodology consists of the following steps. First, the available image features are reprojected onto a virtual

plane independently on the type of camera used to acquire them. Second, a feasible image trajectory is computed

by exploiting the obtained virtual image features through polynomial programming. Lastly, the computed image

trajectory is tracked by using an IBVS controller. The proposed strategy is illustrated and validated through

experimental results with a fisheye camera mounted on a 6-DOF robot arm. A preliminary version of this paper

appeared in [18].

The paper is organized as follows. Section 2 introduces the unified camera model and the problem formu-

lation. Section 3 describes the proposed strategy for visual servoing path-planning with cameras obeying the

unified model. Section 4 reports the experimental results. Lastly, Section 5 concludes the paper with some final

remarks.

2 PRELIMINARIES

Let us introduce the following notation. R is the real number set, In is the n× n identity matrix, ei is the i-th

column of I3, 0n is the n× 1 null vector, 1n is the n× 1 vector with all elements equal to 1, SO(3) is the set of

3×3 rotation matrices, [t]× is the skew-symmetric matrix of vector t ∈R3, ‖w‖ is the Euclidean norm of vector

w.

Let F ◦ = {R◦, t◦}, F ∗ = {R∗, t∗} be two camera frames in the 3D space, their relative camera pose {R, t}
expressed in the first camera frame F ◦ is:





R = R◦>R∗

t = R◦> (t∗− t◦) ,
(1)

where R ∈ SO(3) and t ∈R3 define respectively the relative orientation and translation. In the sequel, we call

F ◦ the initial camera frame and let it be the reference frame {I3,03}, while F ∗ the desired one {R, t}.
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Figure 1: The unified model and the virtual plane.

In cameras obeying the unified model, image projection of a target point H is formulated as p̄ = Km̄, where

K is the camera intrinsic parameters matrix, and

m̄ =
(

X
Z +ξ‖H‖ ,

Y
Z +ξ‖H‖ ,1

)>
. (2)

To fully explain it, see the unified model in Fig. 1. There is an unitary sphere centered at M. Coordinates

[X ,Y,Z]> of point H is expressed with respect to the sphere center, coefficient ξ denotes the distance between

optical center C and sphere center along the z-axis. Expression (2) is built by two projections: the first one is

projection of H on the unitary sphere at Hm, followed by a second projection from optical center on the normalized

image plane at m̄.

Problem. The problem considered in this paper is how to motivate a robot mounted with camera obeying the

unified model from the initial pose to the desired one while satisfying multiple constraints.

3 PROPOSED STRATEGY

A path-planning strategy is proposed for robot with non-perspective cameras to satisfy multiple constraints such

as collision avoidance and visibility preservation during the servo. To this end, we introduce a virtual plane and

conduct path-planning on this virtual plane. Afterwards, the planned path is followed by an image-based visual

servoing controller.
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3.1 Introduction of Virtual Plane

As shown in Fig. 1, the virtual plane is located tangent with the unitary sphere, therefore it has a displacement of

1 from sphere center along the z-axis. Projection on the virtual plane, which we denote as m, may be developed

from m̄ as follows:

m̄ = (m̄1, m̄2,1)>, (3)

m = (γm̄1,γm̄2,1)>, (4)

γ =
1+ξ δ

1−ξ 2(m̄2
1 + m̄2

2)
, (5)

δ =
√

1+(1−ξ 2)(m̄2
1 + m̄2

2). (6)

When the model coefficient ξ draws to zero, the normalized image plane and the virtual plane overlap, m̄ and

m coincide with each other, and the unified model boils down to the perspective camera model.

Suppose a set of 3D points are projected onto a camera obeying the unified model, and h j, j = 1, . . .n are their

coordinates in the initial reference camera frame. In that case, their projections in the initial and desired cameras

are respectively expressed as follows:

p̄◦j =
(

e>1 Kh j

e>3 h j +ξ‖h j‖
,

e>2 Kh j

e>3 h j +ξ‖h j‖
,1

)>
, (7)

p̄∗j =
(

e>1 KR>(h j− t)
e>3 R>(h j− t)+ξ‖h j− t‖ ,

e>2 KR>(h j− t)
e>3 R>(h j− t)+ξ‖h j− t‖ ,1

)>
. (8)

Their values on the normalized image plane are:

m̄◦
j = K−1p̄◦j , (9)

m̄∗
j = K−1p̄∗j . (10)

Through development (3)∼(6), their projections on the virtual plane: m◦
j and m∗

j are obtained. Accordingly,

virtual image projections:

p◦j = Km◦
j , (11)

p∗j = Km∗
j (12)

are computed for subsequent motion and structure estimation.

3.2 Motion and Structure Estimation

Virtual image projections of the target in the initial and desired cameras are used to estimate the camera motion

and target structure. Eight-point algorithm by exploiting the essential matrix [19] is first applied to estimate the

camera pose, in the case of which we need at least eight non-planar points as the target. After that, target structure

is estimated via minimization of algebraic error. In order to improve the estimation results, further minimization

of 2D reprojection error on the virtual plane is performed.
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A possible way for error minimization is to solve one while fixing the others among three variables: cam-

era rotation, translation and target structure. These variables are updated alternatively to approach a possible

minimum point of the 2D reprojection error.

In this paper, we propose to integrate camera rotation, translation and 3D coordinates of all the target points

into one vector variable:

s =
(

s>R ,s>t ,s>h1
,s>h2

, . . . ,s>hn

)>
, (13)

where sR is vector representation of the rotation matrix.

Initial value of variable s comes from the solution of essential matrix algorithm and minimization of algebraic

error: camera motion {R, t} and target coordinates h j, j = 1, . . .n:

sR = q1(R) ∈R4 or q2(R) ∈R3, (14)

st = t, (15)

sh j = h j, j = 1, . . . ,n. (16)

In the above equations, q1(R), q2(R) are respectively quaternion and Cayley [20] representation of the rota-

tion matrix:

q1(R) =
(

sin
θ
2

v>,cos
θ
2

)>
, (17)

q2(R) =
[
(R− I3) · (R+ I3)

−1
]
⊗

, (18)

where θ ∈ (0,π) and v ∈R3 : ‖v‖ = 1 are rotation angle and axis such that R = eθ [v]× , [M]⊗ is a 3× 1 vector

(M32,M13,M21)> generated from the 3× 3 skew symmetric matrix M, the entry of which at the i-th row and

the j-th column is symbolized as Mi j. Despite of the degenerating case when θ = π in Cayley representation,

it is tolerable since the target is always required to be kept in front of the camera in teaching-by-showing visual

servoing.

Starting from the initial value of variable s, it is refreshed through multidimensional unconstrained nonlinear

minimization of the 2D reprojection error:

min
s

n

∑
j=1

(∥∥∥∥p◦j −K
h j

e>3 h j

∥∥∥∥
2

+
∥∥∥∥p∗j −

KR>(h j− t)
e>3 R>(h j− t)

∥∥∥∥
2)

. (19)

With newly obtained variable s, camera rotation is retrieved as follows:

q1(R) =
sR

‖sR‖ = (a1,a2,a3,a4)
> ,

R = Λ(q1(R))

=




a2
1−a2

2−a2
3 +a2

4 2(a1a2−a3a4)

2(a1a2 +a3a4) −a2
1 +a2

2−a2
3 +a2

4

2(a1a3−a2a4) 2(a2a3 +a1a4)

2(a1a3 +a2a4)

2(a2a3−a1a4)

−a2
1−a2

2 +a2
3 +a2

4


 ,

(20)
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or

q2(R) = sR ∈R3,

R = (I3− [q2(R)]×)−1 · (I3 +[q2(R)]×) .
(21)

No matter what kind of rotation representation is applied, camera translation and 3D coordinates of the target

may simply be restored:

t =
st

‖st‖ ,

h j = sh j , j = 1, . . . ,n.

(22)

It is obvious that the ultimate results of motion and structure estimation shall satisfy image boundary condition

expressed in (7) and (8).

3.3 Path-Planning Based Visual Servoing

The objective of this section is to plan the 3D path and follow it by reducing error between real trajectories and

planned trajectories. In this paper, the error is computed on the virtual plane for cameras obeying the unified

model. For the sake of path-planning, we introduce parameter w ∈ [0,1] with its boundary describing the starting

point and the destination. Therefore, each stage of camera motion could be related with the parameter w, that is

{R(w), t(w)}. We propose to use groups of polynomials in w to stand for items in camera translation and rotation

quaternion: 



φ(w) = Ũ · [wσ ,wσ−1, ...,w,1]>

t(w) = Ṽ · [wτ ,wτ−1, ...,w,1]>,
(23)

where rotation quaternion φ(w) ∈R4 is expressed by four polynomials of w with degree σ , translation t(w) ∈
R3 is decomposed into three polynomials of w with degree τ , Ũ ∈ R4×(σ+1) and Ṽ ∈ R3×(τ+1) stand for the

coefficient matrices.

Some entries in the coefficient matrices Ũ and Ṽ are determined by the initial camera pose {I3,03} and the

results of motion estimation {R, t} in section 3.2:



{φ(0), t(0)}= {[03,1]>,03}
{φ(1), t(1)}= {q1(R), t},

(24)

where q1(R) is declared in (20). Consequently, coefficient matrices satisfying pose boundary condition (24) is

expressed as follows: 



Ũ = [q1(R)−U ·1σ−1− [0>3 ,1]>,U, [0>3 ,1]>],

Ṽ = [t−V ·1τ−1,V,03].
(25)

We denote the unknowns in coefficient matrices Ũ and Ṽ as U ∈R4×(σ−1) and V ∈R3×(τ−1) respectively.

Values in U and V regulate the planned 3D camera path.
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3.3.1 Multiple Constraints

Constraints on camera path are required to avoid collision, occlusion and preserve visibility. It is worth mention-

ing that for IBVS existing methods have been proposed to exploit the redundant degree of freedom (DOF) of a

robot to meet some of the constraints [21, 22]. In this paper, however, we use path-planning method to consider

multi-constraint satisfaction.

For collision avoidance, we may simply limit the workspace by setting up the following inequality:

‖t(w)−obs‖ ≥ d, ∀w ∈ (0,1), (26)

where constant d is a given safe distance between the camera trajectory t(w) and the obstacle, vector obs ∈R3

represents obstacle position in the reference frame. Bring (23) into (26), we have

(
wτ ,wτ−1, ...,w,1

)
Ṽ >Ṽ

(
wτ ,wτ−1, ...,w,1

)>−d2 ≥ 0, (27)

where

Ṽ = [t−V ·1τ−1,V,−obs]. (28)

The planned camera path shall keep an appropriate large distance from the point representing the obstacle

when inequality (27) is satisfied. Two or more points may also be used to stand for an obstacle and form a group

of polynomial inequalities.

Although the obstacle avoidance is accomplished in (27), it would probably cause the camera to lose sight of

the target and fail the servo task. Therefore, visibility constraint is incorporated to ensure image projections of the

target are always available. We express coordinates of image projections as p̄ j = [x̄ j, ȳ j,1]>, then the visibility

requirement along the planned path may be fulfilled by:




Z j(w) > 0,∀w ∈ (0,1), j = 1, ...,n, (29)

0≤ x̄ j(w)≤ ζ̄x, (29′)

0≤ ȳ j(w)≤ ζ̄y, (29′′)

(x̄ j(w)− x̄o)
2 +(ȳ j(w)− ȳo)

2 ≥ ζ̄ 2
o , (29′′′)

where Z j is the depth of the j-th point with respect to camera frame, ζ̄x and ζ̄y denote the image size along the x

and y coordinate respectively, x̄o and ȳo denote the image center, ζ̄o signifies the radius of dead zone at the image

center formed in catadioptric imaging systems.

For cameras obeying the unified model, constraints (29′)-(29′′′) may be transferred onto the virtual plane

introduced in section 3.1. We symbolize coordinates of the corresponding projection of p̄ j on the virtual plane as

m j = [m j1,m j2,1]>, and its boundary ζx,ζy according to the image size ζ̄x, ζ̄y could be established:



ζx

ζy

1


 =




γ 0 0

0 γ 0

0 0 1


K−1




ζ̄x

ζ̄y

1


 , (30)

where γ is defined in (5). In this case, constraints (29′) and (29′′) may be transformed into:



−ζx < m j1(w) < ζx,

−ζy < m j2(w) < ζy.
(31)
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Similar transformation is applied to (29′′′):

m j1(w)2 +m j2(w)2 ≥ ζ 2
o , (32)

where ζo is the corresponding value of radius ζ̄o on the virtual plane. As a result, visibility constraint may be met

by a series of polynomial inequalities:




e>3 c > 0, (33)

ζ 2
x (e>3 c)2− (e>1 c)2 > 0, (33′)

ζ 2
y (e>3 c)2− (e>2 c)2 > 0, (33′′)

(e>1 c)2 +(e>2 c)2−ζ 2
o (e>3 c)2 ≥ 0, (33′′′)

where

c = Λ(φ(w))>(h j− t(w)), j = 1, ...,n. (34)

Polynomial degrees are 2σ + τ in (33) and 4σ +2τ in (33′)-(33′′′) according to the representation in (23). If

the equipped sensor is not a catadioptric camera, constant ζo shall be assigned to be zero.

We put together all the constraints in (27) and (33)-(33′′′), and describe them with an integrated function:

gk,w, j(U,V ) > 0,

∀k = 1, ...,kMAX ,∀w ∈ (0,1),∀ j = 1, ...,n.
(35)

It is straightforward to interpret that assembling function g(U,V ) shall be positive for all k = 1, ...,kMAX ,w ∈
(0,1) and j = 1, ...,n.

3.3.2 Computing and Following the Path

Appropriate values of the unknowns U and V shall be found in (35) for the planned path, and the optimization

method is presented immediately.

We integrate all the entries of U and V matrices into a united variable v ∈ R4(σ−1)+3(τ−1) and assign

04(σ−1)+3(τ−1) to be its initial value, which indicates a straight line as the camera 3D path. With initial value

in v, the minimum value of the left hand side of all the constraints in (35) are calculated:

g1,w, j(v) = min
w∈(0,1)

[‖t(w)−obs‖2−d2] ,

g2,w, j(v) = min
w∈(0,1)

min
j=1,...,n

e>3 c,

g3,w, j(v) = min
w∈(0,1)

min
j=1,...,n

[
ζ 2

x (e>3 c)2− (e>1 c)2
]
,

g4,w, j(v) = min
w∈(0,1)

min
j=1,...,n

[
ζ 2

y (e>3 c)2− (e>2 c)2
]
,

g5,w, j(v) = min
w∈(0,1)

min
j=1,...,n

[
(e>1 c)2 +(e>2 c)2−ζ 2

o (e>3 c)2
]
.

(36)

Again, a minimum value among (36) is found and defined as:

G(v) = min
k=1,...,kMAX

{gk,w, j(v)}. (37)
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If G(v) is positive, then all the constraints are already satisfied with initial value of v, otherwise maximization

of G(v) is performed until it is positive.

G∗ = max
v

G(v). (38)

There would be more than one camera path satisfy multiple constraints collected in (35). One can simply

adopt the solution returned by the solver. Since v is an integrated variable, local maximum of G(v) is guaranteed.

We may recover U and V matrices from the newly obtained variable.

The planned image trajectory can thus be found by the following computation:

p̄ j(w) =
KΛ(φ(w))>(h j− t(w))

e>3 Λ(φ(w))>(h j− t(w))+ξ‖h j− t(w)‖ . (39)

Their projections on the virtual plane m j(w) may be developed according to (3)-(6), or directly calculated as:

m j(w) =
Λ(φ(w))>(h j− t(w))

e>3 Λ(φ(w))>(h j− t(w))
. (40)

To track the planned path, we select

p j(w) = Km j(w) (41)

as features to be chased and let trajectory parameter w be the function of time:

w = 1− e−tλ1 . (42)

At the beginning of visual servoing, w = 0; as time goes, w gets closer to the value of 1. With this new

definition of trajectory parameter, the camera may chase features p j(w) with the following instant velocity:

Tc =−λ2L̂+(s(t)− sp(w))+λ1e−tλ1L̂+ ∂ sp(w)
∂w

, (43)

where λ1 and λ2 are positive gains, L̂+ is the pseudo-inverse of the estimated image Jacobin [10], s(t) is the

current features according to the current robot/camera position and sp(w) is the planned features at time t. Both

s(t) and sp(w) are projections on the virtual plane.

The depth of each feature point used in the image Jacobin are calculated as:

z j = αe>3 Rc(h j− tc), j = 1, . . . ,n, (44)

where α is an estimated constant symbolizing the distance between the initial and the desired camera poses, h j

is 3D coordinates of the j-th point obtained in Section 3.2, Rc and tc are the current camera pose with respect to

the initial camera frame, which is estimated from the initial and the current views.

4 EXPERIMENTAL EXAMPLES

The robot used for the experiments is a Staubli RX60 6-DOF articulated arm, while the fisheye camera mounted

on the robot end-effector consists of a video camera Prosilica CV640 and a fisheye lens Fujinon FE185C046HA-

1. The Omnidirectional Calibration Toolbox [23] was used to calibrate the fisheye camera with the estimated
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intrinsic parameters and coefficient ξ in the unified model as follows:

Kexp =




296.9365 0 316.8076

0 298.4197 254.9012

0 0 1


 ,

ξexp = 1.2910.

(45)

We now consider a non-planar target beside the wall with a set of 9 black dots. Example 1 and Example 2

demonstrates the proposed strategy when respectively pure translation, both translation and rotation are consid-

ered. In these examples, total computation time for motion and structure estimation and path-planning is around 6

seconds. The computation is performed on a standard PC (Pentium D CPU 3.40GHz 3.39GHz, 2.00GB of RAM,

WIN XP) with MATLAB. Time consumed respectively for the two stages (motion and structure, path-planning)

are given in each example.

4.1 Example 1

Displacement between the initial and the desired robot end-effectors is pure translation:

tx = 0.0497mm, ty =−99.9782mm, tz = 199.9552mm,

(uθ)x =−0.0030deg, (uθ)y = 0.0013deg, (uθ)z =−0.0015deg.

The images corresponding to the initial and desired poses are given in Fig. (2) (a) - (b), with image size

of 659× 432 pixels. Fig. (2) (c) - (d) show the obstacle position represented by a blue box with respect to the

initial and desired camera/robot poses respectively, in this case, classical image-based visual servoing may cause

collision. In order to reach the desired pose while avoiding the obstacle and keep camera view of the target at the

same time, we plan the 3D path between estimated camera poses by polynomial parametrization of translation and

rotation. The polynomial degrees are two for items in both translation and rotation quaternion. Visual servoing is

afterwards performed to follow the planned path.

It takes about 3.073 seconds to obtain motion and structure, and then around 2.796 seconds to complete path-

planning. In Fig. (3) (a), the box, as an obstacle, is quite long and limit the workspace very much. In this case,

the obstacle is actually located behind and below the initial camera frame and can not be detected by the initial

camera. In this particular example, the obstacle is represented by two points, the position of which are respectively

approximated as [−10,−65,85]>mm and [−5,−80,90]>mm with respect to the initial camera frame of F o in

Fig. (3) (a). Two points with minus x-coordinates may prohibit the robot moving along the opposite direction of

the x-axis. Minus y-coordinates of these two points mean the obstacle is below camera frame F o. Values in the

z-coordinates are approximated larger than the actual position of the box since at initial pose the size of the robot

arm is very large along the z-coordinate. If z-coordinates of these two obstacle points are approximated according

to the actual position of the box, then the camera may avoid collision with the box, while the arm body may not.

Safe distance d is selected as 55mm since near to the box the robot arm is around 100mm in the diameter. After

optimization, the minimum distance between the planned path and the obstacle points is 66.127mm.
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(a) (b)

(c) (d)

Figure 2: Experimental example 1. (a) Initial view. (b) Desired view. (c) Initial robot position. (d) Desired robot

position.
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Figure 3: Experimental example 1. (a) 3D path. (b) Trajectories on the virtual plane. (c) Image trajectories.
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Figure 4: Experimental example 1. (a) Robot translation evolution. (b) Robot rotation evolution.

Although the size of the robot arm is quite large along the z-coordinate, it still reaches the desired pose while

avoiding the box exhibited in Fig. (3) (a). The camera path in Fig. (3) (a) is generated during the real servo, nine

points plotted in front of these camera poses are estimated target structure. While performing visual servoing,

trajectories on the virtual plane are obtained, as shown in Fig. (3) (b). The corresponding image trajectories are

displayed in Fig. (3) (c). In Fig. (3) (b)-(c), circles in red color denote the initial projections, while blue stars

the desired ones. Fig. (4) (a) - (b) plots translation and rotation evolution of the robot. At the beginning of

visual servo, translation q1 along the x-axis increases very fast to avoid collision with the box, while very slowly

translation q2 along the y-axis decreases and translation q3 along the z-axis grows. After being away from the

obstacle, translation q1 gradually falls back to its initial value at -50 mm, q2 decreases to the desired value of

400 mm, and q3 keeps growing and ultimately converges to about 350 mm. Rotation angles q4,q5,q6 around

the x-axis, y-axis and z-axis respectively preserve constant values during the whole process of visual servoing.

Results show that the robot successfully kept away from the obstacle and reached the desired pose with rotation

almost unchanged. All the image trajectories generated are kept in the camera field of view, and are convergent

to the desired projections.

4.2 Example 2

The images corresponding to the initial and desired robot frames are given in Fig. (5) (a) - (b) respectively.

Displacement between the initial and the desired robot frames:

tx =−202.0935mm, ty = 0.0154mm, tz =−8.2329mm,

(uθ)x =−0.0111deg, (uθ)y =−24.9738deg, (uθ)z = 0.0056deg,

can be recognized in the snapshots shown in Fig. (5) (c) - (d). A pink box, standing for the obstacle, is very

close to the initial robot/camera frame as we can see in Fig. (5) (c), which makes successful visual servoing

without collision and collusion a difficult problem. Again, classical image-based visual servoing would ignore
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Figure 5: Experimental example 2. (a) Initial view. (b) Desired view. (c) Initial robot position. (d) Desired robot

position.
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the obstacle block in the way and results in collision. In this case, an appropriate planned 3D path is required to

be followed. Polynomial parametrization of translation and rotation with degrees of two is implemented to find

the appropriate 3D path. Subsequently, visual servoing is applied on the virtual plane to follow the planned path.

In optimization, the obstacle is represented by one point and is approximated as [−98,−2,40]>mm expressed

in the camera frame of F o in Fig. (6) (a). The safe distance is selected to be 70mm since the box hanged in

the scene is about 90mm long and the dimension of the fisheye camera is around 50mm in the diameter. After

optimization for multi-constraints satisfaction, the planned path has the minimum distance of 82.249mm from

the obstacle point. Computational time is near 3.899 seconds for motion and structure and around 1.814 seconds

for path-planning. Fig. (6) (a) demonstrates camera path in 3D space avoiding collision and occlusion. The

generated trajectories on virtual plane and fisheye image plane are plotted in Fig. (6) (b) - (c) respectively. It is

obvious that all the image trajectories are within the image boundary, although their projections spread greatly on

the virtual plane. The convergence of robot translation and rotation can be seen in Fig. (7) (a) - (b). Translation

q1 along the x-axis keeps falling down to the desired value of -50 mm. The shape of evolution q2 is attributed to

the requirement of obstacle avoidance. Ultimate values in robot translation along the y-axis and z-axis are almost

the same with their starting values of approximately 400 mm and 350 mm respectively, as we can see in Fig. (7)

(a). Rotation q5 around the y-axis decreases steadily and converges ultimately to its desired value.

5 CONCLUSION

We have presented a path-planning visual servoing strategy for cameras obeying the unified model, which includes

conventional perspective cameras, fisheye cameras, and catadioptric cameras. This strategy consists of designing

image trajectories for eye-in-hand robotic systems that allow one to reach a desired location while satisfying

typical visual servoing constraints. To this end, the available image features are reprojected onto a virtual plane

independently on the type of camera used to acquire them, a feasible image trajectory is computed through

polynomial programming, and an IBVS controller is used to track such a trajectory. The proposed strategy has

been illustrated and validated through experimental results with a fisheye camera mounted on a 6-DOF robot arm.

Future work will investigate the extension of the proposed strategy to complex objects where points are not

available, and to different camera models.
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Figure 6: Experimental example 2. (a) 3D path. (b) Trajectories on the virtual plane. (c) Image trajectories.
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