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Abstract 

We investigated the effect of the soluble Nogo66 receptor (sNgR-Fc) on the protection of 

cortical axons after cortical infarction in rats. The cortical infarction was induced by 

photothrombotic cortical injury (PCI) in Sprague Dawley rats, after which sNgR-Fc was 

injected into the lateral ventricle. The ipsilesional cortices were harvested for analyses using 

histochemical and transmission-electron microscope techniques. The involved signaling 

pathways, which include RhoA, JNK, c-JUN and ATF-2, were detected by Western blot. 

Serious pathologies were found in the brains of the rats after injury, including edemas in the 

axoplasms of axons that have no medulla sheath and a thickening or shrinkage in the sheath 

of the axons that have medulla sheathes. However, these pathologies improved after sNgR-Fc 

treatment. The levels of GTP-RhoA, p-JNK, p-c-JUN and p-ATF-2 in the PCI group were 

increased when compared with their levels in the sham-operation group (P < 0.05), and 

animals receiving the sNgR-Fc treatment showed lower expression levels of these proteins 

when compared with the sham-operation group (P < 0.05). Our results suggest that sNgR-Fc 

can alleviate the pathological changes of axons following cortical infarction via decreasing 

the activation of RhoA/JNK signaling pathways. 

Key words: Nogo-66 receptor; Axon; Cortical infarction; Regeneration; Signal pathway 
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Introduction 

A brain infarction (also known as an ischemic stroke) is caused by the blockage of a cerebral 

artery by a blood clot, which results in the following effects: a critical reduction in blood flow, 

ischemia, anoxia, and, finally, ischemic necrosis or encephalomalacia in the brain. This 

condition is characterized clinically by high morbidity, high mortality, high disability rate, 

high recurrence rates, and it is difficult to treat. Because our population is aging, stroke is 

becoming a more serious threat and an urgent medical problem. Previous studies have shown 

that the central nerve system cannot regenerate after injury, as a result of factors that include 

the insufficiency of neural progenitor cells (NPCs) and a microenvironment that inhibits the 

regeneration of neurons
 
[1]. Recent studies have demonstrated that the inhibition of axon 

regeneration after injuries to the central nervous system (CNS) were associated with several 

CNS myelin proteins, including Nogo-A, myelin-associated glycoprotein (MAG), and 

oligodendrocyte myelin glycoprotein (OMgp). These three proteins bind to the Nogo-66 

receptor (NgR1), which then leads to the downstream activation of RhoA (Ras homolog gene 

family, member A) via two transmembrane proteins, LINGO-1 and p75; these proteins inhibit 

the activity in neurons and their axons [2–4]. Jun N-terminal kinases (JNKs) are intracellular 

molecules related to stress stimuli. The activation of these molecules mediates many types of 

injury-induced apoptosis and plays a role in the regeneration of axons. However, the role of 

the JNK-signaling pathway in the presence of a brain infarction is still unclear. The 

administration of sNgR-Fc, a recombinant rat soluble NgR-Fc fusion protein
 
[5], has been 

found to block the interaction of myelin proteins with NgR1 effectively and to promote the 

regeneration of axons in rodent models of CNS injuries such as spinal cord injury [6–10]. A 

previous study has shown that anti-Nogo-A antibody promoted the behavioral outcome and 
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corticospinal plasticity in a rat stroke model [11]. In this study, we established a stroke model 

in rats and observed the effects of sNgR-Fc on the axonal pathology and the involved 

RhoA/JNK signaling pathways after cortical infarction. 

 

Experimental Procedure 

Animals 

The animal experiments were approved by the Committee for the Use of Live Animals in 

Teaching and Research at the Sun Yat-sen University. All of the experiments were performed 

in a fully randomized and blinded fashion.  

Photothrombotic cortical injury  

Photothrombotic ischemia was induced in the rat parietal cortex using previously described 

methods [9,11,12] with the modifications as outlined below. Twenty seven male SD rats 

weighing 250 g were anesthetized by an intraperitoneal injection of ketamine (80 mg/kg) and 

xylazine (8 mg/kg). Dilute Rose-Bengal in saline (40 mg/kg body weight) was infused into 

the femoral vein. The portion of the skull exposed at 3 mm posteriorly to the bregma and 3 

mm laterally from the midline was illuminated with a cold, white light beam (Volpi Intralux 

6000, 150 W; Volpi AG, Schlieven, Switzerland) for 8 min at maximum output via a 

fiber-optic bundle with a 10 mm aperture. The animals were randomly grouped into 

sham-operation (operation + Rose-Bengal), PBS (operation + Rose-Bengal + PBS), or 

sNgR-Fc (operation + Rose-Bengal + sNgR-Fc) groups (n = 9 for each group). A solution of 

sNgR-Fc (400 μg/kg body weight) in 10μl PBS or equivalent PBS was only once injected 

into the ipsilateral ventricle using a 26-gauge sterile microsyringe 24 h after photothrombotic 

cortical injury [11]. The site of injection was at 1 mm posteriorly to the bregma and 1.5 mm 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 5 

laterally from the midline, and the depth of injection was about 3.5~4.0 mm. For each group, 

the whole cerebrum of 3 animals was collected 24 h after injury for tissue staining. The 

ipsilateral cortex of peripheral penumbra at 7 mm posteriorly to the bregma and 3 mm 

laterally from the midline of rats was collected at 27 d after injury for electron microscopy 

examination (n = 3 for each group) and for Western blotting (n = 3 for each group). 

 

Triphenyltetrazolium chloride staining 

To evaluate the extent of cortical infarction, we used 2, 3, 5-Triphenyltetrazolium chloride 

(TTC) to assess cerebral injury. At 24 h after PCI, the animals were sacrificed using an 

overdose of pentobarbital sodium (150 mg/kg, Alcon-Couvreur, Rijksweg, Puurs, Belgium). 

The brains were removed immediately and then were chilled at −30 °C for 4 min to slightly 

freeze the tissue. Two-mm coronal sections from the olfactory bulb to the cerebellum were 

prepared, stained with 1.5% TTC (Genetime) at 37 °C for 30 min, and fixed in 10% buffered 

formalin solution.  

Transmission electron microscopy 

Seven days after PCI, the peripheral penumbra at 7 mm posteriorly to the bregma and 3 mm 

laterally from the midline on the injury side was removed and immediately cut into 0.5 cm
3
 

cubes at 0 °C, fixed with 4% paraformaldehyde for 4 h, and washed with PBS. Then, the 

tissue was fixed with 2% osmic acid for 2 h, washed with pure water, dehydrated with a 

mixture of ethanol, propylene oxide, and resin, embedded in pure resin, and ultramicrocut 

and stained with uranyl acetate and lead citrate [13, 14]. The sections were observed under an 

HE-800 transmission electron microscope (Hitachi, Japan).  

Western blotting 
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The cortex from the injury side was collected at 7 days after injury and homogenized in a 

lysis buffer (in mM: Tris, 10, pH 7.4; NaCl, 150; EDTA, 1; EGTA, 1; 10% protease inhibitor, 

1% phosphatase inhibitor), and incubated on ice for 30 min. The protein lysate was then 

centrifuged at 13,500 rpm for 30 min at 4 ℃. The supernatant was aliquoted and stored at 

−80 °C until its use. The supernatant was measured for its protein concentration using a 

Bio-Rad DC Protein Assay Kit (Bio-Rad Laboratories, CA, USA). A 40 μg aliquot of protein 

from each sample was subjected to 5–12% SDS–polyacrylamide gel electrophoresis and 

transferred onto a PVDF membrane. Each membrane was blocked with 5% non-fat milk and 

2% bovine serum albumin in Tris-buffered saline containing 0.1% Tween 20 (TBST) for 1 h 

at room temperature and then probed with rabbit anti-p-JNK (Cell Signaling Technology, 

MA, USA), anti-p-c-JUN (Cell Signaling Technology), p-ATF-2 (Cell Signaling 

Technology), total-JNK (Cell Signaling Technology) and total-RhoA antibodies at 4 °C 

overnight. As a gel loading control, β-actin was used. After washing, the membranes were 

incubated for 2 h with horseradish peroxidase-conjugated goat anti-rabbit antibody (1:2000; 

DakoCytomation, Denmark). Its immunoreactivity was visualized using the Amersham 

enhanced chemiluminescence kit (Amersham, Piscataway, NJ, USA). The protein loading 

was controlled using the goat antibody against β-actin (C-11; Santa Cruz Biotechnology). 

The quantification of the results was performed by densitometry, and the results were 

analyzed as total integrated densitometric values (arbitrary units). The protein GTP-RhoA 

was pulled down using a RhoA activation assay kit, according to the manufacturer's 

instruction (Cytoskeleton, Denver, CO, USA) and assayed by Western blotting using an 

antibody against RhoA (Cytoskeleton). All experiments for Western blotting were performed 

with 3 animals in each group, and the samples were run on the gels as individual animals. 
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Data and statistical analysis 

The values are presented as the mean ± SD. The statistical analyses was performed 

using Student’s t-test for comparisons between two groups or the one-way analysis of 

variance (ANOVA) followed by post-hoc tests (Student-Neuman-Keuls) for comparisons of 

more than two groups. The data were analyzed statistically with the software SPSS 12.0. The 

significance level was set at P < 0.05. 

 

Results 

Measurement of brain infarct volume and identification of blood brain barrier integrity 

After TTC staining, the rats in the sham group did not appear to have any infarctions (Fig. 

1b). However, the right parietal lobes of the rats 24 h after PCI presented pale infarctions that 

were bowl-shaped, with the bottom pointing to the lateral ventricle; these infarctions affected 

the entire cortex. The total infarct volumes were 297.1 ± 23.4 μl in the PBS group and 

285.4 ± 19.7 μl for the sNgR-Fc group respectively before the treatment. The locations of 

the infarctions were stable, and the infarctions showed similar volumes to those in the rats 

(Fig. 1). 

Pathological changes of axons 

The morphology of ischemic penumbra on the injury side was evaluated using TEM at 7 days 

after PCI. Compared with the normal axons observed in the sham group (Fig. 2a), more 

serious pathologies were observed in the PCI group (Fig. 2b). For the axons without a 

medulla sheath, many edemas, dilutions of cytoplasmic matrices, and axonal fusions or 

dissolutions were found. Occasionally, we observed that oligodendrocytes appeared to 

“swallow” the axons (Fig. 2b). For axons with a medulla sheath, compared with the sham 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 8 

group, thickening or shrinking was more in the axoplasm of the fibers, and amyloidosis and 

swollen axons were observed at a higher rate. In addition, the axolemma were found to be 

separated from the inner layers of the myelin (Fig. 2e). In addition, there were only minor 

pathological changes, including slight nuclear edemas with complete nucleoli, slightly 

swollen mitochondria, and slightly widened endoplasmic reticula with complete ribosomes 

and Golgi bodies. In unmyelinated axons, there were some axonal edemas, axonal 

deformities, and dilutions of cytoplasmic matrices; in addition, there were no axonal fusions 

or cytophagic effects of oligodendrocytes (Fig. 2c). In myelinated axons, the morphology of 

axons was almost normal. There was little demyelination and no amyloidosis of the myelin 

sheath was found (Fig. 2f). Compared with normal synapses (Fig. 2g), the synaptic cleft 

widened, and there was edema in the PBS group (Fig. 2h). However, no clear edema or 

widening of the synaptic cleft was observed in the group that received the sNgR-Fc treatment 

(Fig. 2i). 

sNgR-Fc inhibited RhoA signal pathway 

The level of GTP-RhoA in the PBS group was significantly higher than that in the 

sham-operation group (P <0.05). After treatment with sNgR-Fc, the level of GTP-RhoA was 

significantly decreased. Moreover, the level of Total-RhoA was not different among the three 

groups (Fig.3, Table 1). These data indicate that sNgR-Fc could decrease the activation of 

RhoA. 

sNgR-Fc inhibit the activation of SAPK/JNK signal pathway 

The levels of p-JNK1, 2 and its downstream targets, p-c-JUN and p-ATF-2, in the cortex 

around the infarcts in the PCI group were significantly higher compared with those in the 

sham operation group (P < 0.05). In contrast, the cortex in the sNgR-Fc-treated group showed, 
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on average, reductions in the levels of p-JNK1, 2, p-c-JUN and p-ATF-2 to their basal levels 

(P < 0.05). The levels of total JNK1, 2 were not different among the three groups (P > 0.05). 

These results demonstrate that the cortical infarction injury activates the SAPK/JNK signal 

pathway and that treatment with sNgR-Fc has the potential to decrease or prevent this 

activation (Fig.3, Table 1). 

 

Discussion 

Watson et al reported a stroke model induced by a photochemical method in 1985 [12]. The 

principle underlying this model was based on a photochemical reaction. Following the 

injection of a potent photosensitive agent into rats, ischemic lesions were formed by 

irradiating the left parietal convexities of the exposed skulls under a light with a specific 

wavelength. Free radicals were released, damaging the endothelium of the cerebral vessels 

and inducing platelet aggregation. Furthermore, this pathology causes thrombosis in cerebral 

parenchymal vessels and results in irreversible hypoxic-ischemic brain damage (HIBD). 

Because of the advantages of a stable location and infarction volume, a low mortality rate, 

and a good replication rate, the stroke model is widely used in current studies of brain injury. 

In this study, we successfully induced a cortical ischemic infarction model in rats in which 

the BBB was also damaged. The primary pathological features of stroke were induced, and 

the volumes of infarction were consistent. No infarction and no burn were observed in the 

sham-group, indicating that the light stimulation alone did not induce the infarction and that it 

acts as a good control. 

Delayed neuron death (DND) is an important pathology of cerebral ischemia and 

cerebral degenerative disease. Cell apoptosis was the primary DND pattern after an acute 
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HIBD, which aggravated the injury of sub-acute or chronic cerebral infarction [15, 16]. In our 

study, axonal pathologies were observed via the TEM at 7 days after PCI, including many 

edemas in the axoplasm of axons that have no medulla sheath, and thickening or shrinkage in 

the sheaths of the axons that have a medulla sheath. However, these conditions improved 

after sNgR-Fc treatment. The administration of the soluble NgR1 fusion protein (sNgR-Fc) 

effectively blocked the interaction of myelin molecules with NgR1 and promoted axon 

sprouting and functional recovery after spinal cord injuries[7–9], or dorsal root rhizotomy[10]. 

A previous study found that Nogo-A is involved in the secondary axonal degeneration of the 

thalamus with cerebral infarction in hypertensive rats [17] and after a focal ischemic stroke 

[18]. Anti–Nogo-A antibody improved behavioral outcome and corticospinal plasticity but 

did not decrease the infarct volume after experimental stroke [11]. In this study, sNgR-Fc did 

not cause any difference on infarct volume, but still provided protection of axons as observed 

in TEM. 

Nogo-A, MAG and OMgp were considered to be the inhibitory factors of axonal 

regeneration in the CNS. NgR1 mediates their inhibitory effect via two co-receptors, p75 and 

Lingo-1, and transduces the signals via RhoA and its downstream pathways [19, 20]. In this 

study, the level of the GTP-RhoA protein in the model group was significantly higher than 

that of the sham-operation group. With the treatment of sNgR-Fc, the level of the GTP-RhoA 

protein was significantly decreased, suggesting that sNgR-Fc may promote axonal recovery 

by preventing the activation of RhoA after cerebral infarction.  

The stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling 

pathway is a powerful signaling pathway under the stresses of ultraviolet light, radiation and 

inflammation [21–23]. In publications on neuronal apoptosis, some of the proteins in the 
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mitogen-activated protein kinases (MAPK) signaling pathways have been well-studied in 

recent years. The MAPK signaling pathway is a family of serine/threonine kinases that 

include three members: the extracellular signal-regulated protein kinases (ERK), JNK and 

p38 [24]. The JNK/SAPK and p38 are induced by cellular stress and some of the cytokines. 

The JNK protein can be activated by many stress stimulators, such as lipopolysaccharide 

(LPS), tumor necrosis factor-α(TNF-α), interleukin (IL)-1 or ultraviolet light. Activation of 

the JNK signaling pathway is related to cell apoptosis [24]. Following its activation, JNKs 

may phosphorylate specific sites of some of the transcription factors, such as ATF-2, SAP-1 

and Elk-1, and increase the expression of genes, subsequently increasing the synthesis of 

proteins that may participate in the apoptosis pathway and cause cell death [25]. We found 

high levels of p-JNK，p-c-JUN and p-ATF-2 after stroke injury, indicating that cortical 

infarction activates the SAPK/JNK signal pathway and leads to the pathology of tissues and 

cells. The administration of sNgR-Fc decreased the activation of those proteins, suggesting 

that sNgR-Fc has the potential to prevent or decrease the activation of the SAPK/JNK signal 

pathway. We previously identified that sNgR-Fc binds to Nogo66, OMgp, and MAG [9] and 

inhibited the Nogo66-NgR interaction [6]. sNgR-Fc may protect axons by inhibiting the 

interaction of Nogo-A-NgR1 after stroke injury, decreasing the activation of RhoA and JNK. 

A schematic diagram illustrating the proposed mechanism for sNgR-Fc on axons in stroke is 

shown in Figure 4: In normal conditions, the cortex expresses low levels of Nogo-A and 

NgR1. However, cortical infarction under stroke injury increases the expression of Nogo-A 

and NgR1. Nogo-A activates RhoA and JNK signaling pathways via interacting with NgR1 

and then results in pathological changes on axons. sNgR-Fc perturbs the interaction of 

Nogo-A and NgR1, decreases the activation of RhoA and JNK signaling pathways and 
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relieving the pathological changes of axons.  

RhoA regulates the intracellular microfilament associated with cell proliferation through a 

series of complex mechanisms [26]. Previous studies have observed that RhoA stimulates Jun 

expression through the Rho-associated kinase (ROCK), which phosphorylates c-Jun and 

ATF2 after binding to the c-Jun promoter [27]. In this study, we observed that changes in the 

expression of p-JNK, p-c-Jun and p-ATF-2 were consistent with changes in the GTP-RhoA 

level following both the cerebral infarction and the sNgR-Fc treatment. These findings 

suggest that sNgR-Fc can relieve the axonal pathology partially by decreasing the activation 

of the SAPK/JNK signal pathways. 

In summary, pathological changes in axons were induced by the cerebral 

hypoxia-ischemia for an extended period after the cortical infarction. This phenomenon may 

be associated with the activation of RhoA/ROCK/JNK/c-Jun signaling pathways. We 

determined that an NgR1 antagonist, sNgR-Fc, alleviated axonal pathology changes and 

prevented the activation of RhoA/ROCK/JNK/c-Jun signaling pathways. Further studies 

should be performed before this treatment is used in a clinical study. 
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Figure Legends 

Figure 1. The morphology and characteristics of the rat brain after a stroke induced by 

photothrombotic cortical injury. (a) Representative photographs of the coronal brain 

sections stained with 2,3,5-triphenyltetrazolium chloride in rats, (b) sham-operated rats, (c) 

and photothrombotic cortical injury (PCI) rats. White indicates the infarct area (arrow).  

 

Figure 2. The protective effect of sNgR-Fc on axon neurons under transmission electron 

microscope after stroke injury. Ultrastructural appearances of morphology of axons in 

sham-operated, PBS and sNgR-Fc groups: (a) Normal unmyelinated axons in sham-operated 

group; (b) Extensive edema, axon deformity, dilution of cytoplasmic matrices and axonal 

fusion in stroke model; (c) Slight edema and dilution of cytoplasmic matrices with the 

treatment of sNgR-Fc in stroke model; (d) Normal myelinated axons in sham-operated group; 

(e) Thickening, shrinking or amyloidosis was more in stroke model; (f) Little demyelination 

and no amyloidosis of the myelin sheath were found with the treatment of sNgR-Fc in stroke 

model; (g) Normal synapses in the sham-operated group; (h) Widened and swollen synaptic 

cleft in stroke model; (i) Approximately normal synapses with the treatment of sNgR-Fc in 

stroke model. Arrows show the changes in axons. 

 

Figure 3. The RhoA, SAPK/JNK signaling pathways after stroke injury and with the 

treatment of sNgR-Fc under Western blotting. The levels of p-JNK，p-c-JUN, p-ATF-2 

and GTP-RhoA increased after stroke injury. Treatment with sNgR-Fc decreased the levels of 

p-JNK, p-c-JUN, p-ATF-2 and GTP-RhoA to normal levels. 

 

Figure 4. The diagram of the signaling pathways involved in the sNgR-Fc on axons after 

stroke injury. In the normal condition, there is low level of Nogo-A and NgR1 in the cortex. 

However, the expression of Nogo-A and NgR1 is increased under stroke injury. The increased 

Nogo-A binds with NgR1 to activate the downstream pathways of RhoA and JNK, and then 

results in axonal pathology. The treatment of sNgR-Fc inhibits the interaction of Nogo-A and 

NgR1, decreases the activation of RhoA and JNK signaling pathways and then relieves 

axonal pathology.  
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Abstract 

We investigated the effect of the soluble Nogo66 receptor (sNgR-Fc) on the protection of 

cortical axons after cortical infarction in rats. The cortical infarction was induced by 

photothrombotic cortical injury (PCI) in Sprague Dawley rats, after which sNgR-Fc was 

injected into the lateral ventricle. The ipsilesional cortices were harvested for analyses using 

histochemical and transmission-electron microscope techniques. The involved signaling 

pathways, which include RhoA, JNK, c-JUN and ATF-2, were detected by Western blot. 

Serious pathologies were found in the brains of the rats after injury, including edemas in the 

axoplasms of axons that have no medulla sheath and a thickening or shrinkage in the sheath 

of the axons that have medulla sheathes. However, these pathologies improved after sNgR-Fc 

treatment. The levels of GTP-RhoA, p-JNK, p-c-JUN and p-ATF-2 in the PCI group were 

increased when compared with their levels in the sham-operation group (P < 0.05), and 

animals receiving the sNgR-Fc treatment showed lower expression levels of these proteins 

when compared with the sham-operation group (P < 0.05). Our results suggest that sNgR-Fc 

can alleviate the pathological changes of axons following cortical infarction via decreasing 

the activation of RhoA/JNK signaling pathways. 

Key words: Nogo-66 receptor; Axon; Cortical infarction; Regeneration; Signal pathway 
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Introduction 

A brain infarction (also known as an ischemic stroke) is caused by the blockage of a cerebral 

artery by a blood clot, which results in the following effects: a critical reduction in blood flow, 

ischemia, anoxia, and, finally, ischemic necrosis or encephalomalacia in the brain. This 

condition is characterized clinically by high morbidity, high mortality, high disability rate, 

high recurrence rates, and it is difficult to treat. Because our population is aging, stroke is 

becoming a more serious threat and an urgent medical problem. Previous studies have shown 

that the central nerve system cannot regenerate after injury, as a result of factors that include 

the insufficiency of neural progenitor cells (NPCs) and a microenvironment that inhibits the 

regeneration of neurons
 
[1]. Recent studies have demonstrated that the inhibition of axon 

regeneration after injuries to the central nervous system (CNS) were associated with several 

CNS myelin proteins, including Nogo-A, myelin-associated glycoprotein (MAG), and 

oligodendrocyte myelin glycoprotein (OMgp). These three proteins bind to the Nogo-66 

receptor (NgR1), which then leads to the downstream activation of RhoA (Ras homolog gene 

family, member A) via two transmembrane proteins, LINGO-1 and p75; these proteins inhibit 

the activity in neurons and their axons [2–4]. Jun N-terminal kinases (JNKs) are intracellular 

molecules related to stress stimuli. The activation of these molecules mediates many types of 

injury-induced apoptosis and plays a role in the regeneration of axons. However, the role of 

the JNK-signaling pathway in the presence of a brain infarction is still unclear. The 

administration of sNgR-Fc, a recombinant rat soluble NgR-Fc fusion protein
 
[5], has been 

found to block the interaction of myelin proteins with NgR1 effectively and to promote the 

regeneration of axons in rodent models of CNS injuries such as spinal cord injury [6–10]. A 

previous study has shown that anti-Nogo-A antibody promoted the behavioral outcome and 

corticospinal plasticity in a rat stroke model [11]. In this study, we established a stroke model 
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in rats and observed the effects of sNgR-Fc on the axonal pathology and the involved 

RhoA/JNK signaling pathways after cortical infarction. 

 

Experimental Procedure 

Animals 

The animal experiments were approved by the Committee for the Use of Live Animals in 

Teaching and Research at the Sun Yat-sen University. All of the experiments were performed 

in a fully randomized and blinded fashion.  

Photothrombotic cortical injury  

Photothrombotic ischemia was induced in the rat parietal cortex using previously described 

methods [9,11,12] with the modifications as outlined below. Twenty seven male SD rats 

weighing 250 g were anesthetized by an intraperitoneal injection of ketamine (80 mg/kg) and 

xylazine (8 mg/kg). Dilute Rose-Bengal in saline (40 mg/kg body weight) was infused into 

the femoral vein. The portion of the skull exposed at 3 mm posteriorly to the bregma and 3 

mm laterally from the midline was illuminated with a cold, white light beam (Volpi Intralux 

6000, 150 W; Volpi AG, Schlieven, Switzerland) for 8 min at maximum output via a 

fiber-optic bundle with a 10 mm aperture. The animals were randomly grouped into 

sham-operation (operation + Rose-Bengal), PBS (operation + Rose-Bengal + PBS), or 

sNgR-Fc (operation + Rose-Bengal + sNgR-Fc) groups (n = 9 for each group). A solution of 

sNgR-Fc (400 μg/kg body weight) in 10μl PBS or equivalent PBS was only once injected 

into the ipsilateral ventricle using a 26-gauge sterile microsyringe 24 h after photothrombotic 

cortical injury [11]. The site of injection was at 1 mm posteriorly to the bregma and 1.5 mm 

laterally from the midline, and the depth of injection was about 3.5~4.0 mm. For each group, 

the whole cerebrum of 3 animals was collected 24 h after injury for tissue staining. The 
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ipsilateral cortex of peripheral penumbra at 7 mm posteriorly to the bregma and 3 mm 

laterally from the midline of rats was collected at 27 d after injury for electron microscopy 

examination (n = 3 for each group) and for Western blotting (n = 3 for each group). 

 

Triphenyltetrazolium chloride staining 

To evaluate the extent of cortical infarction, we used 2, 3, 5-Triphenyltetrazolium chloride 

(TTC) to assess cerebral injury. At 24 h after PCI, the animals were sacrificed using an 

overdose of pentobarbital sodium (150 mg/kg, Alcon-Couvreur, Rijksweg, Puurs, Belgium). 

The brains were removed immediately and then were chilled at −30 °C for 4 min to slightly 

freeze the tissue. Two-mm coronal sections from the olfactory bulb to the cerebellum were 

prepared, stained with 1.5% TTC (Genetime) at 37 °C for 30 min, and fixed in 10% buffered 

formalin solution.  

Transmission electron microscopy 

Seven days after PCI, the peripheral penumbra at 7 mm posteriorly to the bregma and 3 mm 

laterally from the midline on the injury side was removed and immediately cut into 0.5 cm
3
 

cubes at 0 °C, fixed with 4% paraformaldehyde for 4 h, and washed with PBS. Then, the 

tissue was fixed with 2% osmic acid for 2 h, washed with pure water, dehydrated with a 

mixture of ethanol, propylene oxide, and resin, embedded in pure resin, and ultramicrocut 

and stained with uranyl acetate and lead citrate [13, 14]. The sections were observed under an 

HE-800 transmission electron microscope (Hitachi, Japan).  

Western blotting 

The cortex from the injury side was collected at 7 days after injury and homogenized in a 

lysis buffer (in mM: Tris, 10, pH 7.4; NaCl, 150; EDTA, 1; EGTA, 1; 10% protease inhibitor, 

1% phosphatase inhibitor), and incubated on ice for 30 min. The protein lysate was then 
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centrifuged at 13,500 rpm for 30 min at 4 ℃. The supernatant was aliquoted and stored at 

−80 °C until its use. The supernatant was measured for its protein concentration using a 

Bio-Rad DC Protein Assay Kit (Bio-Rad Laboratories, CA, USA). A 40 μg aliquot of protein 

from each sample was subjected to 5–12% SDS–polyacrylamide gel electrophoresis and 

transferred onto a PVDF membrane. Each membrane was blocked with 5% non-fat milk and 

2% bovine serum albumin in Tris-buffered saline containing 0.1% Tween 20 (TBST) for 1 h 

at room temperature and then probed with rabbit anti-p-JNK (Cell Signaling Technology, 

MA, USA), anti-p-c-JUN (Cell Signaling Technology), p-ATF-2 (Cell Signaling 

Technology), total-JNK (Cell Signaling Technology) and total-RhoA antibodies at 4 °C 

overnight. As a gel loading control, β-actin was used. After washing, the membranes were 

incubated for 2 h with horseradish peroxidase-conjugated goat anti-rabbit antibody (1:2000; 

DakoCytomation, Denmark). Its immunoreactivity was visualized using the Amersham 

enhanced chemiluminescence kit (Amersham, Piscataway, NJ, USA). The protein loading 

was controlled using the goat antibody against β-actin (C-11; Santa Cruz Biotechnology). 

The quantification of the results was performed by densitometry, and the results were 

analyzed as total integrated densitometric values (arbitrary units). The protein GTP-RhoA 

was pulled down using a RhoA activation assay kit, according to the manufacturer's 

instruction (Cytoskeleton, Denver, CO, USA) and assayed by Western blotting using an 

antibody against RhoA (Cytoskeleton). All experiments for Western blotting were performed 

with 3 animals in each group, and the samples were run on the gels as individual animals. 

Data and statistical analysis 

The values are presented as the mean ± SD. The statistical analyses was performed 

using Student’s t-test for comparisons between two groups or the one-way analysis of 

variance (ANOVA) followed by post-hoc tests (Student-Neuman-Keuls) for comparisons of 
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more than two groups. The data were analyzed statistically with the software SPSS 12.0. The 

significance level was set at P < 0.05. 

 

Results 

Measurement of brain infarct volume and identification of blood brain barrier integrity 

After TTC staining, the rats in the sham group did not appear to have any infarctions (Fig. 

1b). However, the right parietal lobes of the rats 24 h after PCI presented pale infarctions that 

were bowl-shaped, with the bottom pointing to the lateral ventricle; these infarctions affected 

the entire cortex. The total infarct volumes were 297.1 ± 23.4 μl in the PBS group and 

285.4 ± 19.7 μl for the sNgR-Fc group respectively before the treatment. The locations of 

the infarctions were stable, and the infarctions showed similar volumes to those in the rats 

(Fig. 1). 

Pathological changes of axons 

The morphology of ischemic penumbra on the injury side was evaluated using TEM at 7 days 

after PCI. Compared with the normal axons observed in the sham group (Fig. 2a), more 

serious pathologies were observed in the PCI group (Fig. 2b). For the axons without a 

medulla sheath, many edemas, dilutions of cytoplasmic matrices, and axonal fusions or 

dissolutions were found. Occasionally, we observed that oligodendrocytes appeared to 

“swallow” the axons (Fig. 2b). For axons with a medulla sheath, compared with the sham 

group, thickening or shrinking was more in the axoplasm of the fibers, and amyloidosis and 

swollen axons were observed at a higher rate. In addition, the axolemma were found to be 

separated from the inner layers of the myelin (Fig. 2e). In addition, there were only minor 

pathological changes, including slight nuclear edemas with complete nucleoli, slightly 

swollen mitochondria, and slightly widened endoplasmic reticula with complete ribosomes 
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and Golgi bodies. In unmyelinated axons, there were some axonal edemas, axonal 

deformities, and dilutions of cytoplasmic matrices; in addition, there were no axonal fusions 

or cytophagic effects of oligodendrocytes (Fig. 2c). In myelinated axons, the morphology of 

axons was almost normal. There was little demyelination and no amyloidosis of the myelin 

sheath was found (Fig. 2f). Compared with normal synapses (Fig. 2g), the synaptic cleft 

widened, and there was edema in the PBS group (Fig. 2h). However, no clear edema or 

widening of the synaptic cleft was observed in the group that received the sNgR-Fc treatment 

(Fig. 2i). 

sNgR-Fc inhibited RhoA signal pathway 

The level of GTP-RhoA in the PBS group was significantly higher than that in the 

sham-operation group (P <0.05). After treatment with sNgR-Fc, the level of GTP-RhoA was 

significantly decreased. Moreover, the level of Total-RhoA was not different among the three 

groups (Fig.3, Table 1). These data indicate that sNgR-Fc could decrease the activation of 

RhoA. 

sNgR-Fc inhibit the activation of SAPK/JNK signal pathway 

The levels of p-JNK1, 2 and its downstream targets, p-c-JUN and p-ATF-2, in the cortex 

around the infarcts in the PCI group were significantly higher compared with those in the 

sham operation group (P < 0.05). In contrast, the cortex in the sNgR-Fc-treated group showed, 

on average, reductions in the levels of p-JNK1, 2, p-c-JUN and p-ATF-2 to their basal levels 

(P < 0.05). The levels of total JNK1, 2 were not different among the three groups (P > 0.05). 

These results demonstrate that the cortical infarction injury activates the SAPK/JNK signal 

pathway and that treatment with sNgR-Fc has the potential to decrease or prevent this 

activation (Fig.3, Table 1). 
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Discussion 

Watson et al reported a stroke model induced by a photochemical method in 1985 [12]. The 

principle underlying this model was based on a photochemical reaction. Following the 

injection of a potent photosensitive agent into rats, ischemic lesions were formed by 

irradiating the left parietal convexities of the exposed skulls under a light with a specific 

wavelength. Free radicals were released, damaging the endothelium of the cerebral vessels 

and inducing platelet aggregation. Furthermore, this pathology causes thrombosis in cerebral 

parenchymal vessels and results in irreversible hypoxic-ischemic brain damage (HIBD). 

Because of the advantages of a stable location and infarction volume, a low mortality rate, 

and a good replication rate, the stroke model is widely used in current studies of brain injury. 

In this study, we successfully induced a cortical ischemic infarction model in rats in which 

the BBB was also damaged. The primary pathological features of stroke were induced, and 

the volumes of infarction were consistent. No infarction and no burn were observed in the 

sham-group, indicating that the light stimulation alone did not induce the infarction and that it 

acts as a good control. 

Delayed neuron death (DND) is an important pathology of cerebral ischemia and 

cerebral degenerative disease. Cell apoptosis was the primary DND pattern after an acute 

HIBD, which aggravated the injury of sub-acute or chronic cerebral infarction [15, 16]. In our 

study, axonal pathologies were observed via the TEM at 7 days after PCI, including many 

edemas in the axoplasm of axons that have no medulla sheath, and thickening or shrinkage in 

the sheaths of the axons that have a medulla sheath. However, these conditions improved 

after sNgR-Fc treatment. The administration of the soluble NgR1 fusion protein (sNgR-Fc) 

effectively blocked the interaction of myelin molecules with NgR1 and promoted axon 

sprouting and functional recovery after spinal cord injuries[7–9], or dorsal root rhizotomy[10]. 
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A previous study found that Nogo-A is involved in the secondary axonal degeneration of the 

thalamus with cerebral infarction in hypertensive rats [17] and after a focal ischemic stroke 

[18]. Anti–Nogo-A antibody improved behavioral outcome and corticospinal plasticity but 

did not decrease the infarct volume after experimental stroke [11]. In this study, sNgR-Fc did 

not cause any difference on infarct volume, but still provided protection of axons as observed 

in TEM. 

Nogo-A, MAG and OMgp were considered to be the inhibitory factors of axonal 

regeneration in the CNS. NgR1 mediates their inhibitory effect via two co-receptors, p75 and 

Lingo-1, and transduces the signals via RhoA and its downstream pathways [19, 20]. In this 

study, the level of the GTP-RhoA protein in the model group was significantly higher than 

that of the sham-operation group. With the treatment of sNgR-Fc, the level of the GTP-RhoA 

protein was significantly decreased, suggesting that sNgR-Fc may promote axonal recovery 

by preventing the activation of RhoA after cerebral infarction.  

The stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling 

pathway is a powerful signaling pathway under the stresses of ultraviolet light, radiation and 

inflammation [21–23]. In publications on neuronal apoptosis, some of the proteins in the 

mitogen-activated protein kinases (MAPK) signaling pathways have been well-studied in 

recent years. The MAPK signaling pathway is a family of serine/threonine kinases that 

include three members: the extracellular signal-regulated protein kinases (ERK), JNK and 

p38 [24]. The JNK/SAPK and p38 are induced by cellular stress and some of the cytokines. 

The JNK protein can be activated by many stress stimulators, such as lipopolysaccharide 

(LPS), tumor necrosis factor-α(TNF-α), interleukin (IL)-1 or ultraviolet light. Activation of 

the JNK signaling pathway is related to cell apoptosis [24]. Following its activation, JNKs 

may phosphorylate specific sites of some of the transcription factors, such as ATF-2, SAP-1 
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and Elk-1, and increase the expression of genes, subsequently increasing the synthesis of 

proteins that may participate in the apoptosis pathway and cause cell death [25]. We found 

high levels of p-JNK，p-c-JUN and p-ATF-2 after stroke injury, indicating that cortical 

infarction activates the SAPK/JNK signal pathway and leads to the pathology of tissues and 

cells. The administration of sNgR-Fc decreased the activation of those proteins, suggesting 

that sNgR-Fc has the potential to prevent or decrease the activation of the SAPK/JNK signal 

pathway. We previously identified that sNgR-Fc binds to Nogo66, OMgp, and MAG [9] and 

inhibited the Nogo66-NgR interaction [6]. sNgR-Fc may protect axons by inhibiting the 

interaction of Nogo-A-NgR1 after stroke injury, decreasing the activation of RhoA and JNK. 

A schematic diagram illustrating the proposed mechanism for sNgR-Fc on axons in stroke is 

shown in Figure 4: In normal conditions, the cortex expresses low levels of Nogo-A and 

NgR1. However, cortical infarction under stroke injury increases the expression of Nogo-A 

and NgR1. Nogo-A activates RhoA and JNK signaling pathways via interacting with NgR1 

and then results in pathological changes on axons. sNgR-Fc perturbs the interaction of 

Nogo-A and NgR1, decreases the activation of RhoA and JNK signaling pathways and 

relieving the pathological changes of axons.  

RhoA regulates the intracellular microfilament associated with cell proliferation through a 

series of complex mechanisms [26]. Previous studies have observed that RhoA stimulates Jun 

expression through the Rho-associated kinase (ROCK), which phosphorylates c-Jun and 

ATF2 after binding to the c-Jun promoter [27]. In this study, we observed that changes in the 

expression of p-JNK, p-c-Jun and p-ATF-2 were consistent with changes in the GTP-RhoA 

level following both the cerebral infarction and the sNgR-Fc treatment. These findings 

suggest that sNgR-Fc can relieve the axonal pathology partially by decreasing the activation 

of the SAPK/JNK signal pathways. 
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In summary, pathological changes in axons were induced by the cerebral 

hypoxia-ischemia for an extended period after the cortical infarction. This phenomenon may 

be associated with the activation of RhoA/ROCK/JNK/c-Jun signaling pathways. We 

determined that an NgR1 antagonist, sNgR-Fc, alleviated axonal pathology changes and 

prevented the activation of RhoA/ROCK/JNK/c-Jun signaling pathways. Further studies 

should be performed before this treatment is used in a clinical study. 
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Figure Legends 

Figure 1. The morphology and characteristics of the rat brain after a stroke induced by 

photothrombotic cortical injury. (a) Representative photographs of the coronal brain 

sections stained with 2,3,5-triphenyltetrazolium chloride in rats, (b) sham-operated rats, (c) 

and photothrombotic cortical injury (PCI) rats. White indicates the infarct area (arrow).  

 

Figure 2. The protective effect of sNgR-Fc on axon neurons under transmission electron 

microscope after stroke injury. Ultrastructural appearances of morphology of axons in 

sham-operated, PBS and sNgR-Fc groups: (a) Normal unmyelinated axons in sham-operated 

group; (b) Extensive edema, axon deformity, dilution of cytoplasmic matrices and axonal 

fusion in stroke model; (c) Slight edema and dilution of cytoplasmic matrices with the 

treatment of sNgR-Fc in stroke model; (d) Normal myelinated axons in sham-operated group; 

(e) Thickening, shrinking or amyloidosis was more in stroke model; (f) Little demyelination 

and no amyloidosis of the myelin sheath were found with the treatment of sNgR-Fc in stroke 

model; (g) Normal synapses in the sham-operated group; (h) Widened and swollen synaptic 

cleft in stroke model; (i) Approximately normal synapses with the treatment of sNgR-Fc in 

stroke model. Arrows show the changes in axons. 

 

Figure 3. The RhoA, SAPK/JNK signaling pathways after stroke injury and with the 

treatment of sNgR-Fc under Western blotting. The levels of p-JNK，p-c-JUN, p-ATF-2 

and GTP-RhoA increased after stroke injury. Treatment with sNgR-Fc decreased the levels of 

p-JNK, p-c-JUN, p-ATF-2 and GTP-RhoA to normal levels. 

 

Figure 4. The diagram of the signaling pathways involved in the sNgR-Fc on axons after 

stroke injury. In the normal condition, there is low level of Nogo-A and NgR1 in the cortex. 

However, the expression of Nogo-A and NgR1 is increased under stroke injury. The increased 

Nogo-A binds with NgR1 to activate the downstream pathways of RhoA and JNK, and then 

results in axonal pathology. The treatment of sNgR-Fc inhibits the interaction of Nogo-A and 

NgR1, decreases the activation of RhoA and JNK signaling pathways and then relieves 

axonal pathology.  
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Table 1 The density of the key proteins of RhoA and SAPK/JNK signal pathway  

 

 

 

 

 

 

 

 

▲
P<0.05 vs Sham-operated group; 

■
P<0.05 vs PBS group, Mean ±SD, n = 3） 

 

0.98±0.12 0.99±0.11 1±0.09 Total-JNK2 

1.01±0.08 1.01±0.09 1.0±0.08 Total-JNK1 

1.02±0.15▲■ 1.73±0.12▲ 1.0±0.14 p-JNK2 

1.30±0.31▲■ 2.24±0.27▲ 1.0±0.29 p-JNK1 

1.12±0.058▲■ 1.39±0.139▲ 1.0±0.062 p-c-JUN 

1.53±0.22▲■ 2.19±0.24▲ 1.0±0.12 p-ATF-2 

0.98±0.10 0.97±0.11 1.0±0.09 Total-RhoA 

1.10±0.13▲■ 1.73±0.16▲ 1.0±0.14 GTP-RhoA 

sNgR-Fc PBS  

Sham-operated  

Table
Click here to download Table: Table 1.doc 

http://www.editorialmanager.com/nere/download.aspx?id=102113&guid=f08a7167-7a4d-41b2-b16a-3c27ec1aaef9&scheme=1

