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ABSTRACT 

One measure of the severity of a pandemic influenza at an individual level is the 

risk of death among people infected by the new virus. However, there are 

complications in estimating both the numerator and denominator. Regarding the 

numerator, statistical estimates of the excess deaths associated with influenza 

virus infections tend to exceed the number of deaths associated with laboratory-

confirmed infection. Regarding the denominator, few infections are laboratory-

confirmed, while differences in case definitions and approaches to case 

ascertainment can lead to wide variation in case fatality risk estimates. Serologic 

surveillance can be used to estimate the cumulative incidence of infection as a 

denominator which is more comparable across studies. We estimated that the 

first wave of 2009-H1N1 was associated with approximately 232 (95% 

confidence interval: 136-328) excess deaths in all ages in Hong Kong, mainly in 

the elderly. The point estimates of the risk of death on a per-infection basis 

increased substantially with age, from below 1 per 100,000 infections in children 

to 1,099 per 100,000 infections in those 60-69y of age. Substantial variation in 

the age-specific infection fatality risk complicates comparison of the severity of 

different influenza strains. 

 

Key words: 

Human influenza, death, severity. 
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INTRODUCTION 

The severity profile of a pandemic influenza virus, in combination with its 

transmissibility, determines the impact it will have in a population (1). One 

commonly reported measure of severity at the individual level is the risk of 

death among people infected by the virus, and this conditional measure is 

referred to as the case fatality risk (CFR), or sometimes the case fatality rate or 

ratio. There are well-known complications in quantifying both the numerator 

and the denominator of the CFR (2). Regarding the numerator, deaths of 

individuals with confirmed infection would under-ascertain all deaths associated 

with infection (3-6). Instead of directly counting ‘confirmed’ deaths, it is also 

possible to statistically estimate excess deaths (5-9). Regarding the denominator, 

most influenza infections are mild, laboratory testing has limited capacity, is 

expensive and often unnecessary for clinical management, and therefore few 

infections would be laboratory-confirmed (10, 11).  

 

It is feasible to estimate the incidence rates of infections in a population if 

relevant surveillance data are available (12, 13), and the estimated cumulative 

incidence of infection may provide more unbiased denominators of CFR that 

addresses the unobservability of infection and minimizes ascertainment bias. In 

the present study, we propose such a severity measure referred to as the 

infection fatality risk (IFR), and define it as the number of influenza-associated 

deaths divided by the number of infections in a population or subgroup. The IFR 

is expected to permit comparisons (e.g. across age- and risk-groups), and we 

investigate the IFR where the numerator is based on deaths among individuals 
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with confirmed infection (abbreviated IFRc) as well as with the numerator based 

on statistical estimates of excess deaths (abbreviated IFRe). IFRc involves 

ascertainment and underreporting biases, while IFRe assumes full description of 

observed data by statistical modeling. 

 

The first objective of our study was to estimate the number of excess deaths 

associated with the first wave of 2009 pandemic influenza A(H1N1) (hereafter 

denoted pH1N1) in Hong Kong. The second objective was to estimate the age-

specific severity profiles of IFRc and IFRe, and to investigate the differences 

between them. 

 

METHODS 

Sources of Data  

Age-specific all-cause deaths and the corresponding annual mid-year 

populations from 2001 through 2009 were obtained from the Hong Kong 

Government Census and Statistics Department (14, 15). Age-specific 

hospitalizations and deaths associated with laboratory-confirmed pH1N1 

infection from 1 May 2009 through 31 December 2009 were provided by the 

Hong Kong Hospital Authority. Surveillance data on influenza-like illness from 

around 50 sentinel general practitioners were available as the weekly 

proportion of outpatients reporting a fever >37.8°C plus a cough or sore throat 

(denoted ‘ILI data’ hereafter), along with local laboratory data on the weekly 

proportion of specimens from sentinel outpatient clinics and local hospitals that 

tested positive for influenza (denoted ‘LAB data’ hereafter) (16). Surveillance 
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data stratified by age were not available. Data on temperature and humidity 

were obtained from the Hong Kong Observatory (17). Age-specific estimates of 

the cumulative incidence of pH1N1 infection in the first wave were estimated in 

separate serologic surveillance studies (18, 19), and used as the denominators 

for estimation of IFRc and IFRe. 

 

Statistical Analysis 

We assume that all excess deaths are truly associated with pH1N1. To address 

the uncertainty, four statistical models were used to estimate the excess deaths, 

namely time series regression, linear regression, and Poisson regression with log 

links and identity links. In each approach we compared excess death estimates 

based on four different proxy measures of local influenza activity including: (1) 

weekly incidence rates of pH1N1 infection, (2) weekly ILI data, (3) weekly LAB 

data, and (4) the product of weekly ILI and LAB data. Incidence rates of pH1N1 

infection were estimated by deconvoluting the time series of hospitalizations 

associated with pH1N1 allowing for the delay from infection to hospitalization 

and scaling to serial cross-sectional serologic data (Web Appendix) (18). 

 

We applied each regression model to the time series of weekly all-cause 

mortality rates from 2001 through 2009, excluding February-September 2003 

which was affected by the Severe Acute Respiratory Syndrome epidemic. The 

data were stratified into 8 age groups: 0-4 years, 5-14y, 15-29y, 30-39y, 40-49y, 

50-59y, 60-69y and ≥70y. In each regression model we included one of the 

measures of influenza activity as a covariate, lagged by 1 week to allow for a 
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delay between infection and death, and also adjusted for covariates including 

seasonal influenza activity, respiratory syncytial virus activity, mean 

temperature and absolute humidity (Web Appendix). Trigonometric components 

were included to allow for cyclic annual seasonality. The influenza-associated 

excess mortality rates were calculated by subtracting the predicted mortality 

rate estimated from each fitted regression model setting influenza activity as 

zero from the predicted mortality rate from the same model based on the 

observed weekly influenza activity. Further details of the statistical methods are 

described in the Web Appendix. All analyses were conducted in R version 2.13.1 

(20). 

 

RESULTS 

The first wave of pH1N1 in Hong Kong began in the summer and peaked in 

September 2009 before activity declined to low levels (Figure 1). Local all-cause 

mortality rates generally increased in the winter, and there was no obvious 

increase in all-cause deaths during the peak of the pandemic (Web Appendix). 

Because the patterns of age-specific pH1N1 incidence rates were similar in each 

age group (Figure 1), we directly standardized these age-specific pH1N1 

incidence rates using the Hong Kong population. The resulting age-standardized 

incidence rates were then used as a single proxy measure of influenza activity.  

 

We compared the correlation between the ILI data, the LAB data, and the 

product of ILI and LAB data versus age-standardized incidence rates (Figure 2). 

ILI data tended to overestimate lower levels of pH1N1 incidence rates, as did the 
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LAB data to a lesser extent, while the product of ILI and LAB data had the 

strongest correlation with pH1N1 incidence rates. 

 

Using age-standardized pH1N1 incidence rates as the proxy of influenza activity, 

we estimated that the overall number of excess deaths associated with the first 

wave of pH1N1 was 232 (95% confidence interval, CI: 136-328) under the time 

series regression model with most of the excess deaths in the elderly (Table 1, 

Table S1). Estimates of excess deaths were similar in each of the four regression 

models (Table 1, Table S1). Estimates of excess mortality based on proxy 

measures of influenza activity gave similar estimates to those based on 

estimated pH1N1 incidence rates (Table 1, Table S1). In comparison, there were 

54 deaths in patients with laboratory-confirmed pH1N1 before 31 December 

2009 (7). In sensitivity analyses, point estimates of the excess deaths were lower 

when influenza activity was lagged by 2 weeks and when it was not lagged 

(Table S2). 

 

Based on deaths of patients with laboratory-confirmed pH1N1, point estimates 

of the IFRc increased with age from 0.4 to 164 deaths per 100,000 infections for 

individuals 5-14y to 60-69y (Table 2). Similarly, based on estimated excess 

deaths by the time series regression model using age-standardized incidence 

rates as the proxy measure of influenza activity, point estimates of the IFRe 

increased from approximately zero (point estimate -1.1; 95% CI: -6.1, 4.2) deaths 

per 100,000 infections in 5-14y to 1,100 (95% CI: 180, 4,700) deaths per 

100,000 infections in 60-69y.  
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DISCUSSION 

We estimated that during the first wave of the pandemic, pH1N1 was associated 

with 232 excess deaths in individuals in all ages, mostly in the elderly (Table 2). 

In the elderly, we estimated that there were around 10 times as many excess 

deaths as deaths in patients with confirmed pH1N1 (21). Although the 

population-wide estimate involves large standard error due to overall small age-

specific estimates and large variations in the estimates by age-group, previous 

estimates of the excess mortality associated with pH1N1 in Hong Kong were 

similar to those presented here (7). Excess deaths typically exceed confirmed 

deaths because some deaths occur in individuals who do not present to the 

health-care system, while others occur in patients who are only tested for pH1N1 

after cessation of detectable viral shedding or who never receive a laboratory 

test (3-6). In particular, excess influenza deaths in the elderly tend to exceed 

confirmed deaths because of non-specific presentation of influenza infections, 

and the association with non-respiratory causes of deaths in this age group (22, 

23). 

 

Although caution must be exercised in attempting causal interpretation of 

statistical estimates of excess deaths due to their ecologic nature, four different 

statistical methods each gave similar estimates of the excess deaths associated 

with pH1N1 (Table 1). The ILI×LAB proxy, a measure of the proportion of ILI due 

to pH1N1 among outpatients, was highly correlated with the estimated incidence 
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rates of pH1N1 infection suggesting that it may be a better proxy of influenza 

activity than either the ILI or LAB data alone (Figure 2) (24, 25).  

 

Using estimates of the excess deaths and the cumulative incidence of infection, 

we found that the risk of death on a per-infection basis increased substantially 

with age, with the IFRe varying from below 1 per 100,000 infections in children 

to the order of 1,100 per 100,000 infections in those 60-69y. Combining 

information from a serologic study in the Netherlands (26) with excess death 

estimates (21), it is possible to obtain very similar estimates of the IFRe, varying 

from 2.1 to 2,900 deaths per 100,000 infections for individuals 5-24y to 65-74y. 

While incidence of infection was very low in the elderly, probably due to pre-

existing immunity associated with historical exposures to similar viruses (27), 

we found that the high severity in this age group led to a substantial impact on 

mortality (Table 2). We did not identify substantial differences between IFRc and 

IFRe for individuals below the age of 60. 

 

Other studies provided a wide range of estimates of the CFR of pandemic 

influenza (3, 11, 19, 28-31). The earliest study of the severity of pH1N1 did not 

account for age, and estimated that the case fatality risk was 400 deaths per 

100,000 infections (29). Another study from Mexico estimated the fatality risk 

varying from 3 to 30 deaths per 100,000 cases with influenza-like illness in 

individuals aged 1-9y and ≥70y respectively (30). In the United Kingdom, the 

infection fatality risk was estimated to range from 5 to 9 deaths per 100,000 

infections for all ages (28). Studies on previous influenza pandemics in 1918, 
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1957 and 1968 estimated the fatality risk among clinically apparent illnesses to 

be 100-2,500 per 100,000 patients (31). However, estimates of the cumulative 

incidence of symptomatic infection are likely to vary depending on the case 

definition as well as health-care seeking behaviors and surveillance systems. The 

IFRe measured by using cumulative incidence of infection derived from the 

serologic data as the denominator, and statistically-estimated deaths as the 

numerator, may provide a more consistent and less biased approach for 

comparatively assessing the severity of infection than CFR estimates.  

 

Our study has a few limitations. First, estimates of IFRe may not be comparable 

between populations because the severity of infection could be affected by virus 

mutations, environmental conditions or host factors which may vary in different 

countries (32). In addition, estimates of the number of excess deaths may be zero 

or even negative due to harvesting or virus interference (33, 34), and in the 

presence of stronger such effects the IFRe may not fully capture the risk of 

mortality associated with influenza infection. Second, the ILI and laboratory 

surveillance systems in Hong Kong are not population-based, while the 

laboratory specimens are mostly diagnostic specimens submitted by hospitals 

rather than routinely collected through the ILI network. Nevertheless, ILI×LAB 

was highly correlated with pH1N1 incidence rates (Figure 2). Third, it is unclear 

whether serologic surveillance accurately measures the actual cumulative 

incidence in the population, because serum samples may not be collected from a 

representative sample of the population, and also because the validity and 

reliability of using seropositivity or seroconversion as indicators of infection has 
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yet to be explored in detail. Finally, individuals who died would not have had a 

chance to seroconvert and would not be reflected in the IFR denominator. This 

would be a relevant consideration for studies of diseases with much greater 

severity than pH1N1.
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Table 1. Estimated excess all-cause deaths in Hong Kong in 2009 by 4 statistical methods and 4 measures of influenza activity, assuming 

a 1-week lag between influenza incidence and death. 

Age Statistical model Influenza incidence proxy 
  Age-standardized 

incidence proxy 
 ILI×LAB  ILI  LAB 

  No. (95% CI)  No. (95% CI)  No. (95% CI)  No. (95% CI) 
<60y Time series regression  2 (-57, 61)  -15 (-72, 42)  -19 (-79, 42)  -1 (-62, 59) 
 Linear regression  19 (-18, 55)  -1 (-37, 36)  9 (-27, 45)  21 (-16, 57) 
 Poisson regression with log 

link 
9 (-23, 42)  -8 (-41, 25)  -7 (-39, 26)  8 (-25, 40) 

 Poisson regression with 
identity link 

16 (-18, 50)  -3 (-37, 31)  7 (-26, 41)  18 (-16, 52) 

             
≥60y Time series regression  231 (154, 307)  223 (149, 298)  162 (84, 240)  201 (123, 279) 
 Linear regression  230 (128, 333)  223 (120, 326)  160 (58, 263)  200 (98, 302) 
 Poisson regression with log 

link 
230 (154, 307)  221 (144, 298)  161 (85, 237)  197 (121, 273) 

 Poisson regression with 
identity link 

248 (169, 326)  236 (158, 315)  192 (115, 270)  224 (146, 302) 

Abbreviations: ILI = influenza-like illness based on general practitioners (GP) consultations; LAB = laboratory specimens positive for 

influenza; ILI×LAB = GP consultations associated with influenza. 
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Table 2. Severity profile of pH1N1 during the first wave in Hong Kong in 2009.  

Age Population CII (%) (95% CI)  Confirmed 
deaths 

IFRca (95% CI)  Estimated 
deaths 

IFRea (95% CI) 

0-4 229,200 na   0 na   -8 na  
5-14 644,200 43.5 (39.6, 48.3)  1 0.4 (0, 1.1)  -3 -1.1 (-6.1, 4.2) 
15-29  1,430,500 16.9 (12.4, 21.3)  4 1.7 (0.3, 3.8)   2 0.8 (-12.3, 14.6) 
30-39 1,114,500 5.8 (3.1, 9.7)  7 10.8 (3.6, 25.5)   2 3.1 (-40.1, 43.7) 
40-49 1,273,000 3.8 (1.1, 7.5)  6 12.5 (3.4, 51.4)  8 16.7 (-51.2, 119) 
50-59 1,085,400 5.0 (2.4, 8.3)  15 27.9 (14.6, 61.7)   1 1.9 (-59.2, 49.9) 
60-69 555,500 0.8 (0.2, 4.2)  7 164 (18, 741)   47 1,099 (176, 4,657) 
≥70 671,400 na   14 na   184 na  
Abbreviations: CII = cumulative incidence of infection (%) based on serologic surveillance studies (18, 19); IFRc = infection fatality risk 

based on deaths of confirmed cases; IFRe = infection fatality risk based on excess influenza-associated deaths; CI = confidence interval; 

na = not available. 

 

a Infection fatality risks (IFR) are expressed as number of deaths per 100,000 infections. IFRc, the infection fatality risk with the 

numerator given by deaths among confirmed cases. IFRe, the infection fatality risk with the numerator given by the number of excess 

deaths. The denominator for IFRc and IFRe was the number of estimated pH1N1 infections in each age group. A bootstrap method was 

employed to compute 95% confidence intervals. IFRc = deaths in confirmed cases / (CII × Population) × 100,000. IFRe = estimated 

excess deaths / (CII × Population) × 100,000.
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FIGURE LEGENDS 

 

Figure 1. All-cause deaths, pH1N1 hospitalizations and deaths, and estimated 

pH1N1 incidence rates in Hong Kong, 2009. A) Weekly number of all-cause 

deaths. B) Weekly number of hospitalizations of patients with confirmed pH1N1. 

C) Weekly number of deaths of patients with confirmed pH1N1.  D) Age-specific 

estimated incidence rates of pH1N1 infection, estimated by deconvoluting 

hospital admission rates and scaling to serologic surveillance data. Incidence 

rates by age group (5-14y (gray dot-dash), 15-19y (gray long-dash), 20-29y 

(gray double-dash), 30-39y (gray solid), 40-49y (gray dashed), and 50-59y (gray 

dotted), respectively), and the age-standardized incidence rates (black solid), 

expressed as rates per 100,000 population per week. Incidence rates were 

standardized to the local Hong Kong population. 

 

Figure 2. Correlation between influenza-like illness (ILI) surveillance data, 

laboratory detection (LAB) data, and age-standardized incidence rate estimates 

(per 100,000 population per week) based on hospital admissions and serologic 

surveillance data in Hong Kong, 2009. A) Correlation between ILI based on 

general practitioners (GP) and incidence rates. B) Correlation between LAB data 

and incidence rates. C) Correlation between ILI×LAB and incidence rates. In each 

panel the solid line indicates the least squares regression line and the dotted line 

indicates the constrained ordinary least squares regression line through the 

origin. The dotted line in each panel has the intercept coefficient fixed at zero. 

The estimated intercept coefficients for the solid line in each panel were 
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estimated as follows: A) 41 (95% CI: 29, 53); B) 70 (95% CI: 37, 100); C) -1.3 

(95% CI: -7.4, 4.7). 
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Table S1. Age-breakdown of excess all-cause deaths by 4 statistical methods and 4 measures of influenza activity, assuming a 1-week lag 

between influenza incidence and death. 

 Influenza incidence proxy 
 Age-standardized 

incidence proxy 
 ILI×LAB  ILI  LAB 

 No. (95% CI)  No. (95% CI)  No. (95% CI)  No. (95% CI) 
By time series 
regression 
model 

           

  0-4y -8 (-13, -3)  -6 (-11, 0)  -12 (-18, -7)  -9 (-15, -4) 
  5-14y -3 (-17, 12)  -2 (-16, 13)  -1 (-16, 14)  -3 (-19, 12) 
  15-29y 2 (-31, 35)  1 (-30, 33)  7 (-26, 41)  3 (-31, 36) 
  30-39y 2 (-23, 28)  0 (-24, 25)  5 (-21, 31)  3 (-24, 29) 
  40-49y 8 (-22, 37)  -3 (-31, 25)  13 (-17, 43)  11 (-19, 41) 
  50-59y 1 (-24, 26)  -7 (-31, 17)  -31 (-56, -5)  -5 (-31, 20) 
  60-69y 47 (22, 72)  43 (19, 68)  63 (37, 88)  63 (38, 88) 
  ≥70y 184 (112, 256)  180 (110, 250)  99 (26, 173)  138 (65, 211) 
  Overall 232 (136, 328)  208 (114, 302)  143 (45, 242)  200 (101, 298) 
            
By linear 
regression 
model 

           

  0-4y -8 (-14, -3)  -6 (-11, -1)  -13 (-18, -7)  -9 (-15, -4) 
  5-14y -3 (-6, 0)  -2 (-5, 1)  -1 (-4, 2)  -3 (-7, 0) 
  15-29y 6 (-3, 15)  5 (-5, 14)  13 (4, 23)  8 (-1, 17) 
  30-39y 3 (-6, 12)  1 (-8, 10)  6 (-4, 15)  3 (-6, 13) 
  40-49y 15 (-2, 33)  4 (-13, 22)  25 (7, 42)  21 (3, 38) 
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  50-59y 6 (-23, 34)  -3 (-31, 26)  -21 (-49, 8)  2 (-27, 30) 
  60-69y 46 (13, 80)  43 (9, 76)  62 (28, 95)  62 (29, 95) 
  ≥70y 184 (87, 281)  180 (83, 277)  99 (2, 196)  138 (41, 234) 
  Overall 249 (140, 358)  222 (113, 331)  170 (61, 278)  221 (112, 329) 
            
By Poisson 
regression 
model with log 
link 

           

  0-4y -8 (-14, -3)  -6 (-11, 0)  -12 (-17, -7)  -9 (-14, -4) 
  5-14y -3 (-6, -1)  -2 (-4, 1)  -2 (-4, 1)  -4 (-6, -1) 
  15-29y 2 (-5, 8)  1 (-6, 8)  7 (-1, 14)  2 (-5, 9) 
  30-39y 2 (-7, 12)  0 (-9, 10)  5 (-5, 14)  3 (-7, 12) 
  40-49y 13 (-3, 28)  2 (-14, 18)  20 (4, 35)  17 (1, 32) 
  50-59y 4 (-21, 30)  -4 (-30, 21)  -24 (-49, 1)  -1 (-26, 25) 
  60-69y 33 (5, 61)  31 (3, 59)  42 (14, 70)  44 (16, 72) 
  ≥70y 197 (126, 268)  190 (118, 261)  119 (48, 190)  153 (82, 224) 
  Overall 240 (157, 323)  213 (130, 297)  155 (72, 237)  205 (112, 288) 
            
By Poisson 
regression 
model with 
identity link 

           

  0-4y -9 (-14, -4)  -6 (-11, 0)  -12 (-17, -7)  -9 (-14, -4) 
  5-14y -4 (-6, -1)  -2 (-5, 0)  -2 (-5, 1)  -5 (-7, -2) 
  15-29y 5 (-3, 13)  4 (-4, 12)  12 (4, 20)  7 (-1, 15) 
  30-39y 2 (-2, 31)  0 (-10, 11)  5 (-5, 15)  3 (-7, 13) 
  40-49y 15 (-20, 32)  3 (-13, 20)  25 (-9, 42)  21 (5, 38) 
  50-59y 6 (17, 77)  -3 (-29, 23)  -21 (-47, 5)  1 (-25, 27) 
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  60-69y 47 (17, 77)  44 (14, 74)  65 (35, 94)  64 (34, 94) 
  ≥70y 201 (129, 273)  193 (120, 265)  128 (56, 200)  160 (88, 232) 
  Overall 264 (179, 349)  233 (148, 319)  200 (115, 285)  243 (158, 327) 
ILI = influenza like illness based on general practitioners (GP) consultations; LAB = laboratory specimens positive for influenza; ILI×LAB 

= GP consultations associated with influenza. 
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Table S2. Estimated overall excess all-cause deaths by 4 statistical methods and 4 measures of influenza activity, assuming 0-week and 

2-week lags between influenza incidence and death. 

Lag Statistical model Influenza incidence proxy 
  Age-standardized 

incidence proxy 
 ILI×LAB  ILI  LAB 

  No. (95% CI)  No. (95% CI)  No. (95% CI)  No. (95% CI) 
No 
lag 

Time series regression  109 (-3, 221)  136 (27, 245)  19 (-96, 134)  76 (-38, 191) 
Linear regression  125 (-9, 259)  149 (15, 284)  43 (-91, 176)  95 (-38, 229) 
Poisson regression with log 
link 

120 (37, 202)  141 (58, 225)  31 (-52, 113)  85 (3, 168) 

Poisson regression with 
identity link 

150 (65, 236)  169 (83, 255)  83 (-2, 168)  130 (46, 215) 

             
2-
week 
lag 

Time series regression  145 (36, 255)  125 (18, 232)  33 (-79, 145)  119 (7, 231) 
Linear regression  164 (35, 294)  141 (10, 271)  60 (-69, 190)  141 (12, 271) 
Poisson regression with log 
link 

156 (73, 240)  131 (47, 215)  49 (-34, 132)  128 (45, 211) 

Poisson regression with 
identity link 

181 (96, 266)  153 (68, 239)  95 (10, 180)  168 (83, 253) 

ILI = influenza like illness based on general practitioners (GP) consultations; LAB = laboratory specimens positive for influenza; ILI×LAB 

= GP consultations associated with influenza. 
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1. MEASURES OF INFLUENZA ACTIVITY 

1.1 Incidence rates of pH1N1 infection 

In a serologic study, we collected approximately 13,000 serum specimens during 

the first wave of the 2009 pandemic in Hong Kong (1). We obtained the 

specimens from three groups of individuals including: (1) Blood donors (16-59y) 

participating in the Hong Kong Red Cross Blood Transfusion Service; (2) Patients 

(5-90y) visiting the Pediatric and Adolescent Medicine outpatient clinic and the 

Medicine outpatient clinic at Queen Mary Hospital, a local tertiary care centre; 

(3) Subjects aged 5-14y in a community-based cohort study. The majority of sera 

came from blood donors and in detailed analysis we found no difference in 

estimates of the cumulative incidence of infection from each source (2). 

 

We used a “deconvolution” approach to estimate incidence rates of pH1N1 

infection from the serologic surveillance data and hospital admission rates (see 

Figure 3 in (1)). In brief, we obtained unscaled incidence rates of pH1N1 

infection by deconvoluting the time series of hospitalizations associated with 

pH1N1 accounting for the delay from infection to hospitalization. Then we 

estimated unscaled seropositivity fractions over time (defined as the proportion 

that had microneutralization titer at or above 1:40 at a given point in calendar 
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time) from the unscaled incidence rates of pH1N1 infection accounting for the 

delay from infection to seropositivity. Lastly, we scaled the incidence rates of 

pH1N1 infection by fitting the unscaled seropositivity rates to the serologic 

surveillance data (1). 

 

1.2 Influenza-like illness and laboratory surveillance data 

We used influenza-like illness (ILI) data on the proportion of outpatients with ILI 

among all outpatient visits from a network of sentinel general practitioners in 

the private sector in Hong Kong (Web Figure 1). ILI is defined as body 

temperature >37.8°C with cough or sore throat. The sentinel network has 

included around 50 private outpatient clinics since its creation in 1998. Around 

70% of outpatient consultations occur in the private sector in Hong Kong (3). A 

separate network also reports similar data from clinics in the public sector, but 

there is a cap on walk-in attendance and data from the private network appear to 

be more responsive to changes in influenza activity in the community (4, 5). 

 

We used laboratory (LAB) data on the proportion of respiratory specimens 

tested that were positive for a particular influenza type/subtype, including 

seasonal influenza A(H1N1), A(H3N2), B, and 2009 pandemic influenza A(H1N1) 
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(Web Figure 1). Specimens were tested using viral culture or reverse 

transcription polymerase chain reaction. Most specimens were provided by local 

hospitals for diagnostic and surveillance purposes, and some specimens were 

submitted by the sentinel outpatient clinics. The median number of specimens 

tested each week was 619 (inter-quartile range 325-819) with some seasonal 

variation. 

 

 

Web Figure 1. ILI and LAB data per week from 2001-09 in Hong Kong. (a) 

Weekly proportion of patients with influenza-like illness among all outpatient 

consultations in around 50 outpatient clinics. (b) Weekly proportion of 

laboratory specimens that tested positive for influenza by type and subtype. 
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2. COVARIATES 

We fitted four separate types of regression model to explore the association 

between influenza activity and mortality, adjusting for covariates including 

seasonal influenza activity, respiratory syncytial virus activity, mean 

temperature and absolute humidity. 

 

A series of terms representing influenza activity were included as weekly data of 

the form ILI×LABs where LABs is the proportion of laboratory detections of 

influenza type/subtypes among all specimens submitted. Similarly, respiratory 

syncytial virus activity was included as a term of the form ILI×LABrsv, where 

LABrsv is the proportion of laboratory detections of respiratory syncytial virus 

among all specimens submitted.  

 

We used absolute humidity (AH) instead of relative humidity (RH) since AH has 

been suggested to be a better predictor of influenza infection and virus survival 

in previous studies (6). RH is the ratio of the partial pressure of water vapor in 

the air to the saturated vapor pressure of water, and expressed as a percentage. 

AH indicates the actual water vapor content in the air which was measured in 
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our study by the density of water vapor (Dw, g/m3). The relationship between 

different meteorological parameters is indicated by the equations below:  

 

( ) 100
( ) s

e TRH
e T

= ×         [1] 

17.67( ) 611.2 exp( )
243.5s

Te T
T

×
= ×

+
      [2] 

( )
(   273.1)w

w

M e TD
T R

×
=

+ ×
       [3] 

 

where e(T) and es(T) refer to the partial and saturation vapor pressure at 

temperature T with the unit of Pascal (Pa). es(T) in equation [2] is an 

approximation (7). T is measured in Celsius in the above equations. M is the 

molecular weight of water vapor, 18.016 g/mol.  Rw, the gas content of water 

vapor, approximately equals to 8.314472 Pa·m3/mol·K. 

 

3. STATISTICAL MODELS 

We used four classes of statistical models to estimate the excess deaths 

associated with pH1N1, namely time series regression, linear regression, and 

Poisson regression models with log link and identity link. We applied each 

regression model to the time series of weekly all-cause death rates (Web Figure 
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2). The data were stratified into 8 age groups: 0-4 years, 5-14y, 15-29y, 30-39y, 

40-49y, 50-59y, 60-69y and ≥70y for analysis.   

 

 

Web Figure 2: All-cause mortality rates per 100,000 population per week from 

2001-09 in Hong Kong. 

 

In each model we included a linear predictor of the form {βXt} where β 

represents a vector of regression parameters and Xt is a vector of covariates.  

 

1 2 3 4 5

2 3 2 3
6 1 7 1 8 1 9 1 10 1 11 1

1 1 3 2 1 1
12 1 13 1 14 1 15 1 16 1

2 2 4 4{ } sin cos sin cos
52 52 52 52

t t t t t t
sH N sH N B pH N
t t t t t

t t t tt

TEMP TEMP TEMP HUMID HUMID HUMID

FLU FLU FLU RSV FLU

π π π πβ β β β β

β β β β β β

β β β β β
− − − − − −

− − − − −

= + + + + +

+ + + + + +

+ + + +

tβΧ

 



 8 

where t represents the week number, β1 represents the regression coefficient of 

the linear trend of mortality, β2-β5 represent the regression coefficients of the 

seasonal variations in deaths, β6-β8 represent the regression coefficients of the 

linear and non-linear effect of temperature, β9-β11 represent the regression 

coefficients of the linear and non-linear effect of humidity, β12-β14 and β16 are the 

regression coefficients of the effect from the activities of different influenza 

types/subtypes, and β15 represents the regression coefficient of the effect 

associated with respiratory syncytial virus activity. 11
1

NsH
tFLU − , 23

1
NsH

tFLU − , B
tFLU 1− , 

11
1

NpH
tFLU −  represent seasonal influenza A(H1N1), A(H3N2), B, and 2009 

pandemic influenza A(H1N1) activities in week t-1 respectively since we 

assumed a time lag of one week between the virus activity and the caused deaths 

in the main model. 

 

3.1 Age-specific time series regression model 

The model is described by the following equations (8, 9): 

 

2{ } , ~ (0, )t
t t t

t

D N
N εθ ε ε σ= + +tβX  

( )2
1 ,? ~ 0,t t t t N

ζ
θ θ ζ ζ σ−= +  
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where Dt represents the number of deaths in week t, and Nt represents the 

population size in week t. {βXt}  represents the linear predictor. θt represents the 

unobserved level in week t and ζt represents the level disturbance in week t, 

which are assumed to be independent and identically distributed random 

variables that follow normal distribution with zero mean and variances 2
ζ

σ . In 

this model, the level component is allowed to vary over time. Level component at 

week t depends on the level at week t-1 and the level disturbance at week t.  

 

3.2 Age-specific linear regression model with identity link 

The model is described by the following equation: 

2
0 { } , ~ (0, )t

t t t
t

D N
N εβ ε ε σ= + +βX  

where Dt represents the number of deaths in week t, Nt represents the 

population size in week t, and β0 represents the intercept. {βXt}  represents the 

linear predictor.  

 

3.3 Age-specific Poisson regression model with log link 

The model is described by the following equation: 

0log( ( )) log( ) { }t t tE D N β= + + βX  
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where Dt represents the number of deaths in week t, Nt represents the 

population size in week t, and β0 represents the intercept. {βXt}  represents the 

linear predictor.  

 

3.4 Age-specific Poisson regression model with identity link 

The model is described by the following equation: 

0( ) [ { }]t t tE D N β= × + βX  

where Dt represents the number of deaths in week t, Nt represents the 

population size in week t, and β0 represents the intercept. {βXt}  represents the 

linear predictor.  

 

3.5 Seasonality 

The model considered the effect on the association between influenza activity 

and mortality from the model with trigonometric components of 12 months + 6 

months which was found to be the best fitting model with the smallest mean 

squared error (MSE) defined as: 

2

1

1 ( )
n

t
t

t t

DMSE f
n N=

= −∑  

where n represents the number of observations in the time series. ft represents 

the one-step-ahead forecasts based on data up to week t-1. Dt represents the 



 11 

number of deaths in week t, and Nt is the population size in week t. The 

comparison of the MSE of alternative models is shown in the Web Table 1. A 

similar approach was used to determine the optimal seasonal components in the 

other models (data not shown).  

 

There are 53 weeks in the year 2006. We deleted week 22, which has the lowest 

seasonal influenza activity, to permit the model to be fitted with trigonometric 

components of 52 weeks across the entire study period. 

 

Web Table 1. Model assessment by 6 combinations of trigonometric components.  

Trigonometric components* Mean Squared Error 

12m 28.22 

12m + 6m 27.56 

12m + 6m + 4m 28.09 

12m + 6m + 4m + 3m 28.38 

12m + 6m + 4m + 3m + 2m 28.47 

12m + 6m + 4m + 3m + 2m + 1m 28.81 

* Trigonometric components were added to time series regression model for the 

≥70y age group in which age-standardized incidence of pH1N1 was treated as 

the measure of influenza activity, assuming 1-week lag between influenza 

incidence and death. 



 12 

 

3.6 Model checking 

We assessed model fit using residuals from fitted models. No structure is left in 

the residuals and the estimated autocorrelation function (ACF) of the residuals 

for the four statistical models using age-standardized incidence rate as the proxy 

of influenza activity (data not shown). All models provided good fit to the data.  

 

3.7 Confidence intervals for the influenza-associated excess mortality rates 

The influenza-associated excess mortality rates were calculated by subtracting 

the predicted mortality rate estimated from each fitted regression model setting 

influenza activity as zero from the predicted mortality rate from the same model 

based on the observed weekly influenza activity. The confidence intervals of the 

influenza-associated excess mortality rates is obtained by the following steps: 

Step 1: We calculated the standard error of the excess mortality rates based on 

standard error of the weekly baseline mortality rates and standard error of 

weekly observed mortality rates, which is described by the following equation: 

2 2

1
( ) ( )

n
T B O

t t
t

SE SE SE
=

= +∑  

where n represents the number of observations in the time series, 

TSE represents the standard error (SE) of the total weekly excess mortality 
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rates, BSE represents the SE of the weekly baseline mortality rates in week t, and 

OSE represents the SE of the weekly observed mortality rates in week t. 

 

Step 2: We calculated the confidence intervals of the excess mortality rates based 

on the standard error of the excess mortality rates (obtained from step 1). To 

obtain the upper limit, we multiplied the standard error by 1.96 and added it to 

the excess mortality rates to. Similarly, subtracting to obtain the lower limit. 

 

4. CUMULATIVE INCIDENCE OF INFECTION 

Age-specific estimates of the cumulative incidence of infection (CII) in the first 

wave were estimated in separate serologic surveillance studies (1, 10), and used 

as the denominators for estimation of IFRc and IFRe. During the first wave of the 

2009 pandemic in Hong Kong, Wu et al. conducted a serial cross-sectional 

serologic study (1) and obtained serum specimens from three groups of 

individuals including blood donors (16-59y), hospital outpatients (5-90y), and 

participants of a community pediatric cohort study (5-14y). Riley et al. 

conducted a paired serologic study during the same period in Hong Kong. They 

obtained serum specimens from a cohort of households (3-103y), recruited from 

the community by random digit dialing to their home telephone numbers. Pre-
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pandemic sera were collected between July and September 2009 and post-

pandemic sera were collected from November 2009 to January 2010. Estimates 

of the cumulative incidence of infection were corrected for the non-bracketing 

design (10). In both studies, the age-specific CII estimates were very similar (1, 

10). 

 

We derived the CII for individuals aged 5-14y, 15-29y, 30-39y, 40-49y and 50-

59y based on Wu et al. (1). For individuals aged 60-69y, we used the estimate 

from Riley et al. for individuals aged ≥60y (10) in our analysis because only 34% 

of individuals in the ≥60y age group in that study were older than 70y. We did 

not have sufficient data to estimate the CII for individuals 0-4y and ≥70y. 

 

5. INFECTION FATALITY RISK 

In the present study, we proposed a severity measure referred to as the infection 

fatality risk (IFR), and define it as the number of influenza-associated deaths 

divided by the number of infections in a population or subgroup.  

 

5.1 IFRc and IFRe 
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We investigated the IFR where the numerator is based on deaths among 

individuals with confirmed pH1N1 infection (abbreviated IFRc) as well as with 

the numerator based on statistical estimates of excess deaths associated with 

pH1N1 (abbreviated IFRe). The denominator for IFRc and IFRe was the number 

of estimated pH1N1 infections in each subgroup. The IFRc and IFRe defined as: 

INF CII N= ×   [4]  

100000
cDIFRc

INF
= ×   [5] 

100000
eDIFRe

INF
= ×   [6]  

where INF refer the number of estimated pH1N1 infections, CII represents the 

cumulative incidence of infection, N represents the population size, cD  

represents the deaths among individuals with confirmed pH1N1 infection, and 

eD  represents the statistical estimates of excess deaths associated with pH1N1. 

 

5.2 Confidence intervals for the infection fatality risk 

A bootstrap method was employed to compute 95% confidence intervals with 

the following steps: 

 

For IFRc: 
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Step 1: From the sampling distribution of the confirmed deaths ( cD ) we 

generated 1000 bootstrap samples, c
iD i=1,2,...,1000.  

Step 2: From the sampling distribution of the number of estimated pH1N1 

infections (INF) we generated 1000 bootstrap samples, INFi i=1,2,...,1000. 

Step 3: We calculated 1000 samples of IFRc by equation [5] using the 1000 

samples of cD  (step 1) pairwise divided by the 1000 samples of INF (step 2), 

IFRci i=1,2,...,1000. 

Step 4: We obtained the 95% bootstrap confidence interval for IFRc as the 2.5 

and 97.5 percentiles of the 1000 bootstrap samples of IFRc from step 3. 

 

For IFRe: 

Step 1: From the sampling distribution of the estimated excess deaths ( eD ) we 

generated 1000 bootstrap samples, e
iD i=1,2,...,1000. 

Step 2: From the sampling distribution of the number of estimated pH1N1 

infections (INF) we generated 1000 bootstrap samples, INFi i=1,2,...,1000. 

Step 3: We generated 1000 samples IFRei i=1,2,...,1000 via equation [6] by 

pairwise division of the 1000 samples of eD (step 1) and the 1000 samples of INF 

(step 2),  
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Step 4: We obtained the 95% bootstrap confidence interval for IFRe as the 2.5 

and 97.5 percentiles of the 1000 bootstrap samples of IFRe from step 3. 
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