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Modeling rapidly disseminating infectious disease
during mass gatherings
Gerardo Chowell1,2*, Hiroshi Nishiura3,4 and Cécile Viboud2

Abstract

We discuss models for rapidly disseminating infectious
diseases during mass gatherings (MGs), using
influenza as a case study. Recent innovations in
modeling and forecasting influenza transmission
dynamics at local, regional, and global scales have
made influenza a particularly attractive model scenario
for MG. We discuss the behavioral, medical, and
population factors for modeling MG disease
transmission, review existing model formulations, and
highlight key data and modeling gaps related to
modeling MG disease transmission. We argue that the
proposed improvements will help integrate infectious-
disease models in MG health contingency plans in
the near future, echoing modeling efforts that have
helped shape influenza pandemic preparedness plans
in recent years.

Keywords: Model, mathematical, epidemic, outbreaks,
epidemiology, mass gathering, school closure, cluster-
ing, reactive vaccination, movement, social networks/

Background
Mass gatherings (MGs) occur around the world on a
relatively frequent basis, and include events as diverse as
sport, religious, and educational activities [1]. MGs are
typically defined as the influx of a large number of people
at a specific location, for a specific purpose, and for a
defined period of time; much of the available literature
refers to gatherings exceeding 25,000 individuals [1].
Some MGs are spontaneous, whereas others will have
been planned several years in advance, and include events
as varied as royal weddings, the Olympic Games, or the
Muslim Hajj pilgrimage [1].

A range of respiratory and waterborne diseases out-
breaks have been reported at previous MGs, and are
responsible for an estimated 14 out of 21 documented
events, with occasional onward dissemination beyond the
initial location of the MG [2]. A comprehensive review of
infectious diseases at MGs highlights that influenza is the
acute upper respiratory tract pathogen most commonly
reported in these settings, partly because of its short incu-
bation period and ubiquitous nature [2-4]. Influenza out-
breaks have been reported in settings of varying scale,
ranging from outbreaks in close living conditions (includ-
ing troop ships [5] and airplanes [6,7]) to outbreaks in
large public gatherings (such as the Winter Olympics in
2002 in Salt Lake City, USA[8] and the World Youth Day
in July 2008 in Sydney [9]). Further, respiratory illness was
the most common diagnosis made at a surveillance clinic
during the 2008 Olympic and Paralympic Games held in
Beijing and other cities of China [10]. More recently,
increased 2009 pandemic influenza virus activity has been
reported during several music festivals [11], and the pan-
demic transmission risk at the 2009 Hajj pilgrimage and
the Asian South Games was deemed sufficiently important
to prompt a strengthening disease surveillance systems
and implementation of vaccination programs [2,12]. In
addition, outbreaks of vaccine-preventable diseases can
occur during MGs; for instance, measles outbreaks were
reported during the 2008 European Football Champion-
ship in Austria and Switzerland, with onward transmission
to France, Germany, and Spain [13]. Similarly, recurrent
outbreaks of meningococcal meningitis have been well
publicized during past Hajj pilgrimages, which attract mil-
lions of pilgrims, prompting mandatory vaccination of all
participating visitors by the Government of Saudi Arabia.
Olympic events are perhaps the largest and most antici-

pated of all MGs, and yet, despite their scale, experience
suggests that the probability of a large-scale infectious dis-
ease event is typically low. Indeed, the proportion of
healthcare visits in Sydney during the 2000 Olympics for
infectious diseases was less than 1%. In the 2006 winter
Olympics in Torino, Italy, surveillance for acute
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gastroenteritis, influenza-like illnesses, measles, and other
infections found incidences similar to non-Olympics time
periods [14]. Similar experiences were reported in the ear-
lier Summer Olympics in Atlanta (1996) and Los Angeles
(1984) [10]. However, epidemiological alerts can happen, as
shown by an anthrax alert at the Salt Lake City airport on
the first night of the 2002 Winter Olympics, which was
found to be due to an environmental sample that falsely
tested positive [15].
The relatively low frequency of outbreaks reported dur-

ing MGs could stem from several factors. MG events are
naturally ideal settings for infectious-disease transmission
because of the large numbers of dense contacts. However,
the probability of observing a large-scale outbreak given
the introduction of a particular infectious disease intro-
duction is relatively small, owing to the high disease-
extinction rates associated with high stochasticity in het-
erogeneous populations typical of MGs (for example, het-
erogeneity in background susceptibility, infectiousness,
and vaccination rates) [16]. In addition, limited or over-
whelmed disease surveillance systems can complicate early
outbreak detection, reporting, and control during MGs.
Moreover, for infectious diseases with long incubation
periods such as tuberculosis, transmission may not be
noticed during the time course of an MG event [2]. Over-
all, although the probability of large-scale epidemics aris-
ing from MGs seems, based on previous experience, to be
low, such events do have the potential to generate unpre-
cedented rates of morbidity and mortality at local and glo-
bal levels (that is, these are low probability, high-impact
events, similar to the risk of emergence of a novel pan-
demic virus).
A review of key data and methodological needs is useful

to improve assessment of epidemic risk during MGs and
to guide public-health interventions. In this article, we dis-
cuss modeling aspects and data requirements relating to
modeling respiratory-disease outbreaks and responses dur-
ing MG, with a specific focus on influenza and other
respiratory diseases. The focus on respiratory diseases,
particularly influenza, is based on the observations that
respiratory infections are the most commonly reported
diseases at MGs, and that influenza has been the subject
of a rich modeling literature that can be used as a model
for other pathogens. In particular, the A/H5N1 avian
influenza threat and the 2009 A/H1N1 pandemic have
helped improved influenza models and forecasts [17-22].
Because disease transmission during MG events is often
tightly connected to the community at large via local and
global transportation networks, we also considered onward
transmission at broader spatial scales (city, region, world)
and the relevant public-health control interventions. In
the first section of this paper, we review key modeling
concepts, and characterize the population and social net-
work of MG participants. In the second section, we discuss

how to incorporate these specificities into existing disease-
transmission models. In the third section, we highlight key
data gaps related to models of respiratory diseases at MG,
and suggest innovative approaches to fill those gaps and
better inform future models.

Key disease-model concepts
The risk of infectious-disease transmission during MGs is
directly related to the characteristics of the participants
and their environment [2]. The effects of these factors on
the risk of disease transmission can be integrated in key
epidemiological quantities: the basic reproduction number,
R0, and the effective reproduction number, R [23-25]. R0

measures the average number of secondary cases generated
by a primary infectious individual in a completely suscepti-
ble population. A more practical quantity is the effective
reproduction number, R, which quantifies the potential for
infectious-disease transmission in a population that may be
only partially susceptible owing to prior exposure or vacci-
nation [26]. From a probabilistic perspective, R and R0

denote the mean of the distribution of secondary cases for
each single primary case in the population to account for
individual-level variation in, for instance, infectiousness
and contact rates [16]. R can be formulated as the product
of three quantities: the contact rate, the conditional prob-
ability of transmission per contact, and the duration of the
infectious period [23,24], hence we can expect higher
values for R in crowded or confined conditions associated
with MGs. Overall, R of less than 1 indicates that a major
epidemic is likely to occur whereas R of greater than 1
indicates that transmission chains cannot be sustained.
Respiratory infections cover a wide range of transmission
potentials, with R being estimated at 1.2 to 1.6 for seasonal
influenza [27], 1.4 to 5.2 for pandemics [28-32], 15 for per-
tussis, 17 for measles [23], and 1.2 to 1.3 for meningococcal
meningitis [33].
Another key quantity for disease control is the serial

interval, which measures the time interval between succes-
sive cases and sets the time scale for epidemic growth, and
hence the speed with which intervention measures need to
be initiated [34]. Despite the relatively low transmission
potential of influenza, outbreaks are difficult to control in
real time because of its short serial interval of 2 to 3 days
and the fact that a substantial fraction of transmission
events occur before a case becomes symptomatic [34].

Characterizing population at risk and contact networks
during mass gatherings
Structure of disease-relevant contact network
Perhaps the most challenging aspect of modeling infec-
tious-disease transmission in the context of MG lies in
appropriately capturing the complexity of dynamic human
interactions and contact networks to provide valid and
reliable predictions of transmission potential and attack
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rates. The dynamic social contact networks during MGs
will depend on a number of factors, including the type (for
example, confined versus open setting), size and duration
of the event, the schedule of activities, the capacity of the
corresponding locations in which the activities take place
(for example, Olympic stadium, aquatic center), and speci-
fic crowd behavior (for example, in the case of diseases
spread by aerosols, the use and sharing of plastic blowing
horns by sports fans to provide audible support for their
team [35]).
Most contact-network surveys have been based on cum-

bersome questionnaires with arbitrary physical definitions
of ‘social’ contacts between individuals, but recent techno-
logical advances in wearable sensing devices allows unob-
trusive and unsupervised quantification of contact
intensity and duration. Radiofrequency identification
devices were recently used to monitor in great detail the
face-to-face contact patterns relevant to the spread of
infectious diseases [36], particularly in primary schools
[37,38]. Such detailed analysis of contact patterns high-
lighted important departures from homogeneous mixing
assumptions, which should be integrated in disease models
focused on outbreaks in schools or on childhood infec-
tions [38-41]. Another recent study analyzed real-time
close contact interactions between conference participants,
and found that the duration of contacts between the parti-
cipants provided a good approximation to the epidemic
dynamics compared with results obtained by modeling the
full dynamic contact network [42,43]. To our knowledge,
no detailed survey of contacts has been performed at MG
events. A key avenue for future research would be to gain
more information on contact networks in this context,
perhaps by distributing sensing devices to a sample of MG
participants. Although it could be challenging to enroll
representative populations of MGs, recent efforts have
achieved 30% participation rates for conference settings
[42]. Crowd modeling is another interesting research area
that offers useful tools for modeling pedestrian flow and
crowd dynamics at the individual level, particularly during
MGs [44]. Of note, electronic devices such as mobile
phones have improved the estimation of the sizes of
crowds compared with capture-recapture methods [45].
Demographic characteristics
The demographic characteristics and particularly the age
distribution of the MG participants could inform the para-
meterization of age-specific contact rates and pre-existing
immunity [46,47], and thus the risk of severe disease out-
comes [48,49]. For instance, school-age children tend to
have high contact rates, are more susceptible to influenza
infection, and have increased viral shedding relative to
other age groups [50]. By contrast, populations of seniors
experience relatively low influenza attack rates, but they
are at higher risk of severe disease outcomes during seaso-
nal influenza epidemics [51]. During pandemic seasons,

however, senior populations may benefit from significant
residual immunity to infection [52-54]. During the 2008
Olympic and Paralympic Games in Beijing, most (76%) of
the patients at a surveillance clinic were between the ages
of 16 and 54 years [10], suggesting a relatively low suscept-
ibility of older MG populations to influenza infection and
severe outcomes, relative to other age groups. Finally,
rates of hand hygiene and disease reporting are likely to be
reduced during MGs, but relevant data on this behavioral
aspect is lacking.
Susceptibility levels and vaccination status
Susceptibility of the MG population to the occurrence of
outbreaks is a function of the collective vaccination status,
previous disease exposure history, and resulting immunity.
It is important to take into account the country of origin
of participants, as populations from different geographical
areas are exposed to different pathogens. In addition,
exposure and co-infections with multiple pathogens in
populations from low-income and middle-income coun-
tries could also affect immune status to common infec-
tions, such as influenza [55]. Hence, it is important to
know the expected composition of participants based on
country of origin and expected immunization status in
order to assess susceptibility of the total MG population,
which could significantly differ from that of the local
population. During the 2008 Olympic and Paralympic
Games in Beijing, the foreign visitors came from 46 coun-
tries, but the great majority arrived from high-income
temperate regions including the USA (24%), the Nether-
lands (19%), Australia (9%), and the UK (9%) [10]. In addi-
tion, only 9% of foreign visitors at a surveillance clinic
reported having received the influenza vaccine in their
country of origin [10].
Timing of MG in relation to travel patterns, climatic
conditions, and school cycles
The risk of influenza transmission at MG is connected to
incoming travel patterns, local climatic conditions, and
school cycles. In particular, the transmissibility of influ-
enza has been shown to be associated with environmental
conditions, as low absolute humidity has been shown to
favor virus transmission and survival in the laboratory
[56-58]. Influenza has marked winter seasonal patterns in
temperate areas of the world, with viruses being reintro-
duced every winter and causing large and intense out-
breaks, followed by fade-out periods in warmer months,
during which little influenza activity is detected [59]. By
contrast, in the Tropics, the seasonality of influenza is less
defined, and the timing of virus activity varies between
locales [60,61]. As an example, the influenza outbreaks
identified during the World Youth Day occurred during
the regular influenza season in Australia in winter 2008
[62]. Similarly, schools have been associated with increased
rates of influenza transmission at the community level
[50], and the celebration of MGs during school activity

Chowell et al. BMC Medicine 2012, 10:159
http://www.biomedcentral.com/1741-7015/10/159

Page 3 of 12



periods could significantly increase the risk of epidemic
events.

Modeling infectious-disease transmission during mass
gatherings
Stochastic versus deterministic models
Mathematical models of infectious-disease transmission
are typically expressed as deterministic dynamical systems
that capture the average epidemic behavior and are often
amenable to mathematical analysis [23,24,63,64]. By con-
trast, the models most appropriate for MGs should include
probabilistic components to integrate stochasticity in the

risk of infection, especially in the case of smaller popula-
tions, in which demographic stochasticity will affect the
risk of outbreak emergence. We produced stochastic
simulations of the classic SEIR (susceptible, exposed, infec-
tious, recovered) transmission model tailored to the epide-
miology of influenza [65] (Figure 1). It is also important to
use probabilistic models to consider shorter temporal
scales during MGs and compare these with community-
level transmission. Moreover, stochastic models allow the
estimation of the probability that introduction of initial
case(s) will trigger a major epidemic, which is also signifi-
cantly affected by host heterogeneity (for example, age,
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Figure 1 Effect of demographic stochasticity on influenza epidemics. The classic stochastic SEIR (susceptible, exposed, infectious, recovered)
model tailored to the epidemiology of influenza, based on a latent period of 1.5 days, an infectious period of 3 days, basic reproduction
number (R0) of 1.5, and an assumption of homogenous mixing of the population, was used to generate 100 stochastic simulations in two
population sizes of n = 1,000 (left panels) and 11,000 individuals (right panels). Simulations were initialized with five infectious individuals.
Histograms show a higher probability of epidemic extinction in the lower population setting. Stochastic epidemic realizations are shown in light
blue, while the red solid line curve corresponds to the average of the stochastic realizations that resulted in epidemics.
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vaccination status) and mixing patterns (for example, con-
fined space in airplane, large conference hall).
Mass gathering contact structure
In general, infectious-disease models using explicit con-
tact-network approaches can be classified as agent-based,
individual-based, and spatially structured models, accord-
ing to the level of detail used to model disease trans-
mission. Agent-based models are very flexible, and can
incorporate heterogeneities in the interactions, behaviors,
and susceptibility of individuals, which make them parti-
cularly suitable for the analysis of collective dynamics of
complex systems [66]. Models relying on detailed informa-
tion on individual-level activities have been used to model
the spread of rapidly disseminating infectious diseases,
including influenza, and to help assess intervention strate-
gies [19,20,67-73]. A slightly cruder approach is provided
by individual-based models, which are often based on sta-
tic networks of individual interactions [74,75]. Spatially
structured epidemic models consider subsets of the popu-
lation categorized by geographic location, with interactions
between these subpopulations based on human mobility
patterns [76-78] (for example, governed by gravity laws,
whereby larger population centers tend to interact with
higher probability) and age-specific contact rates based on
contact survey data [46].
The choice of the underlying assumptions about the

contact-structure profile will depend on the MG popula-
tion. For instance, in the case of infectious-disease trans-
mission in small populations within confined settings,
such as disease transmission in Navy ships [79] and cor-
rectional facilities [64], assuming a well-mixed population
could be reasonable. However, recent work has identified
significant departures from homogenous mixing assump-
tions during specific MGs, including conference settings
[42]. The role of the contact-network structure on trans-
mission dynamics is illustrated in Figure 2; faster disease-
transmission rates are seen in random-mixing structures
than in small-world network structures [74].
Airborne transmission in confined spaces
Quantitative microbial risk-assessment models have been
successful in modeling airborne transmission of respira-
tory pathogens in confined spaces, such as influenza and
tuberculosis on airplanes [6,80-82], and quantifying infec-
tion risk as a function of host, pathogen, and environmen-
tal factors [83-86]. In particular, the Wells-Riley model
[87-90] has been shown to be useful for well-mixed con-
fined spaces, which can readily incorporate environmental
and pathogen-specific variables such as room ventilation
rates, pulmonary respiratory rates, number of infectious
individuals, and infectivity, as a function of virus concen-
tration exhaled by infectious individuals [91]. This model
has been widely used in the microbial dose-response mod-
eling literature [92], and was successful in assessing the
risk of transmission in different areas of a closed-space

environment and calculating the potential number of new
infections generated over a specific time period.
Table 1 summarizes the differences between the quanti-

tative risk-assessment and the dynamic transmission mod-
els. Dose-response models are traditionally used to
understand dose-response mechanisms and allowable
microbial concentration in foods and water, but they can
also be combined with other epidemiological models. A
typical example is a model for point source outbreaks
caused by certain exposure doses (for example, the Sver-
dlovsk anthrax leak), which can provide estimates for the
total number of cases, the time of exposure, and the dose
[92,93]. Another useful approach is to account for the
dose-response nature of the risk of infection in traditional
disease-transmission models, allowing adjustment for dif-
ferent transmission probabilities by route of transmission
(aerosols, droplets) [94].
The role of multiple initial infectious sources
An important modeling consideration is the initial number
of infectious individuals, and their geographical location
and contact networks, particularly in the context of highly
heterogeneous MG populations. Indeed, the probability of
an epidemic unfolding and the rate of growth rate in the
number of infections will depend upon the number of
initial infectious individuals and their spatial location
within the MG contact network [65]. This also has rele-
vance to the potential deliberate release of infectious dis-
eases during MGs. To illustrate this point, we show how
outbreak size increases with the initial number of infec-
tious individuals, using a small-world contact-network
structure of 1,000 individuals (Figure 3).
Spatial scale considerations and global transmission models
Disease transmission during MG events cannot be dis-
connected from the rest of the population, because of the
tight connections to the community at large via local,
regional, and global transportation networks. For
instance, in the context of large MGs such as the Olym-
pics Games or the Soccer World Cups, given the scale of
the event and the many neighborhoods and sometimes
cities involved, models appropriate for a large city or a
network of cities may be more appropriate than models
limited to a confined space. Hence, large-scale transmis-
sion models and population-wide public-health control
interventions are also useful to discuss in the context of
MG events.
In the event of an infectious-disease outbreak during a

MG, worldwide travel patterns originating from the MG
population could disseminate the outbreak on a global
scale within a matter of weeks [95]. For instance, follow-
ing the identification of the 2009 A/H1N1 influenza pan-
demic in Mexico and California in late March 2009, the
novel pandemic virus was detected within a few weeks in
the 20 countries with highest volume of passengers arriv-
ing from Mexico [96].
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Large-scale computational transmission models para-
meterized with high-volume air-traffic data and country-
level seasonality factors are being increasingly used to
assess the global transmission patterns of emerging infec-
tious diseases and the effectiveness of control measures

[18,77,97,98]. Such large-scale modeling efforts predicted
that an early peak of pandemic influenza A/H1N1 virus
activity would occur in October/November 2009 in the
Northern hemisphere, several weeks before vaccination
campaigns could be carried out, and that antiviral use
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Figure 2 Effect of contact-network structure on influenza epidemics. The classic stochastic SEIR (susceptible, exposed, infectious, recovered)
model was tailored to the epidemiology of influenza, based on a latent period of 1.5 days, an infectious period of 3 days, and fixed transmission
probability per contact, simulated using two different contact networks: 1) a small-world contact network based on the model of Watts and
Strogatz [74], with an average degree of 4 and disorder parameter (p) of 0.1 in a population of 1,000 individuals (left panels) and 2) in a random
network model with an average degree of 4 (right panels) with the same population size. Histograms show the distribution of outbreak sizes for
both network topologies when everything else is kept fixed. Epidemic realizations are shown in blue, while the red solid line curve corresponds
to the average of the stochastic realizations that resulted in epidemics.
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could delay peak pandemic timing. In regards to the
effects of interventions on global transmission patterns,
multiple studies have concluded that substantial reduc-
tions in air travel could only provide a short delay in pan-
demic progression [99-102].
Overall, network-based approaches have become useful

tools to model the transmission dynamics of infectious
diseases and control interventions on city, regional, and
global scales [19,20,67-69,74,103,104]. These simulation
models are currently underused in the context of MGs. To
our knowledge, only a single network-based modeling
study has examined how outbreak size may depend on the
timing of an MG event, relative to the temporal course of
an influenza pandemic [105]. The MG event was modeled
as a change in population mixing.

Key data needs for large-scale simulation models
Global transmission models rely on large amounts of data
on demographics, population movements, and age-specific
contact rates. High-resolution demographic and age-specific
contact data has become available for a number of areas,
including the USA [19,106], and southeast Asia [20,107],
while age-specific contact rates have been derived from
population surveys for a number of European countries
[46]. However, travel patterns before and after the MG
event are naturally difficult to ascertain well in advance of
the event, but are essential data for anticipating the
expected composition of the MG and the potential global
infectious disease-transmission patterns. Analysis of inter-
national travel data from previous Summer Olympics sug-
gests that changes in travel patterns to the host city are
difficult to predict months in advance [12]. Moreover, high-
resolution contact rate data and within-country connectivity
data are not available for most countries. Equally important
is the need for country-specific historical immunization

coverage data to assess the risk of importation to and from
different locations. Finally, additional information on the
temperature, humidity, ventilation settings, and capacity of
confined environments specific to MGs, such as indoor sta-
diums (Olympics) and mosques (the Hajj), would be useful
to tailor environmental risk models to MGs.

Public-health interventions during mass gatherings
The decision-making process on the type and intensity of
interventions to put in place to control a MG outbreak will
depend on our ability to detect early cases, characterize the
transmission potential and severity of the associated patho-
gen, and implement interventions rapidly [108]. Overall,
the timing of start of interventions will depend on the epi-
demiology of the infectious disease and the availability of
surveillance data that is representative of the general popu-
lation. Cancellation of large public gatherings has been suc-
cessfully implemented during past influenza pandemics
[4,9,25,109]; however, cancellation of a major MG event
such as the Summer Olympics as a result of perceived
infectious-disease transmission risk could be counter-
productive, because of potential for rapid global spread.
Instead, recommendations to use face-masks and increase
hygiene measures could prove to be effective mitigation
strategies, together with preventive or reactive vaccination
in the early stages of the outbreak, as shown in past epi-
demics of influenza, meningococcal meningitis, and
measles [69,110-114]. This is particularly important in light
of outbreaks of measles and mumps reported at past MGs
[2], and the difficulty in reaching the critical vaccination
coverage rate against childhood infectious diseases in many
European countries [115]. The importance of putting in
place targeted vaccination strategies against influenza and
other respiratory pathogens prior to any MG event cannot
be overemphasized.

Table 1 Contrasting quantitative microbial risk-assessment models and infectious disease-transmission models.

Modeling aspects Quantitative microbial risk-assessment
model

Dynamic transmission model

Non-linear dynamics Usually no Usually yes

Environmental sources Yes Usually no

Inclusion of uncertainty/
stochasticity

Yes Case-by-case basis (deterministic dynamical systems, stochastic, hybrid
models)

Time scale Days Weeks to months

Population size Thousands (music festival) to millions (Hajj
pilgrimage)

Hundred thousands to millions

Population density High Low to high

Model structure Spatial-temporal network (Summer Olympics);
confined space (Army barracks)

Age-structured, random-mixing populations; patch models; household-
level models; large-scale individual-level models

Stochastic disease
extinction

Yes Unlikely

Endemicity No Yes

Contribution of super-
spreading events

High Low to moderate
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In the extreme situation in which evidence suggests
the potential for increased rates of hospitalization and
mortality, stringent interventions could be justifiable,
including imposing movement restrictions on MG parti-
cipants to avoid or slow the importation of cases [86] to
high-risk countries, concurrent with a reactive vaccina-
tion strategy [116].
The composition and dynamics of MG events as large as

the Olympics are complex. Recent data indicate that influ-
xes of several million visitors are typically expected,
including tens of thousands of journalists and athletes
from a couple of hundred nationalities. Moreover, compe-
titions take place in a number of open and confined set-
tings, with capacities ranging from a few thousand to tens
of thousands. The expected age distribution of participants
is relatively young, with the majority being young and

middle-aged adults [10], which is the age group that
experienced the highest death rates during the most recent
influenza pandemic [117]. Moreover, recent data indicate
that only a small fraction of the participant population is
expected to have received the seasonal influenza vaccine
in their country of origin before the start of the competi-
tions [10,118]. Public-health preparedness planning is very
intense during Olympic Games. This was illustrated by the
2012 London Summer Olympics, for which the UK Health
Protection Agency set up an enhanced disease-monitoring
system including laboratory surveillance, clinical case
reporting, and syndromic surveillance based on patient
symptoms [119-121], and surveillance was conducted
using a lower than usual detection threshold. However, to
our knowledge, infectious disease-transmission models
were not integrated in any of these preparedness efforts.
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Figure 3 Effect of the initial number of infectious individuals. The classic stochastic SEIR (susceptible, exposed, infectious, recovered) model
tailored to the epidemiology of influenza, based on a latent period of 1.5 days, an infectious period of 3 days, and fixed probability of
transmission per contact, was simulated on small-world contact networks based on the Watts and Strogatz network model [74] with an average
degree of 4 and disorder parameter (p) of 0.1 in a populations of 1,000 individuals. Initially infectious individuals were selected uniformly at
random from the population. Histograms show how the distribution of outbreak sizes shifts to larger epidemics as the initial number of
infectious individuals increases.
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Future directions
Below we summarize the data and modeling gaps that we
have identified throughout this review, which must be filled
to improve infectious-disease models for MGs. Because no
detailed survey of MG contact networks has been carried
out, a key avenue for future research would be to gain more
information on the patterns and duration of human interac-
tions during MG events, perhaps by distributing innovative
contact-sensing devices to a sample of MG participants
[36]. The Olympic Games, Soccer World Cups, and annual
Hajj pilgrimages offer an interesting opportunity to study
large crowds in the context of infectious-disease transmis-
sion. Although it is not feasible to monitor contact patterns
in the entire MG population, information from a represen-
tative sample would be useful, and participation in previous
contact-sensing device studies has been high. Ideally, such
studies should be combined with enhanced monitoring of
disease activity, including simultaneously testing for several
pathogens (for example, using multiplex PCR) and incor-
porating innovative approaches for disease surveillance
(for example, exploiting web-based technologies, and data-
gathering and dissemination methods via smart phones)
[122].
Comprehensive modeling studies are lacking to assess

the cost-effectiveness of intervention strategies such as
movement restrictions and reactive vaccination in the con-
text of infectious-disease transmission during MGs. This is
partly because of our limited knowledge of crucial demo-
graphic and susceptibility characteristics of the population
and the relevant contact structure for disease transmission.
In parallel, the higher levels of computational power now
available is facilitating the development of extremely
detailed transmission models at multiple spatial scales
([18,19,22,107,123]. Another key data gap is the difficulty
in ascertaining up-to-date air-travel patterns relating to
MG events as well as country-specific repositories of
demographic, contact rates, and immunization data
for childhood and other infectious diseases, which would
be needed for appropriate calibration of large-scale trans-
mission models involving large numbers of international
visitors. Finally, it would be useful to validate infectious-
disease models for MGs against historical outbreaks that
have been well documented in the literature, especially
given the stochastic nature of these outbreaks in heteroge-
neous populations [2].
We note that the number of efforts to integrate micro-

bial risk-assessment modeling and dynamic population-
level transmission modeling approaches remains limited
[92-94]. Hence, the integration of quantitative risk models
into large-scale dynamic transmission models has the
potential to improve predictive capabilities in relation to
epidemic transmission patterns and prospects for outbreak
control, particularly in the context of disease transmission
at MGs. Such modeling approaches could follow a

hierarchical structure by connecting disease-transmission
processes on different spatial scales [86].

Conclusions
Comprehensive modeling studies are needed to assess
the cost-effectiveness of intervention strategies against
infectious disease arising during large MGs such as the
Summer Olympics and the annual Hajj events. These
studies will heavily rely on our ability to quantify popu-
lation mixing characteristics during MG events; antici-
pate air-travel patterns before and after the MG event;
gather country-specific repositories of demographic fac-
tors, contact rates, and immunization rates for child-
hood and other infectious diseases; and estimate the
potential effect of collective behavioral changes during
MG events. Further, development of novel mathematical
and statistical approaches specific to MGs, and integra-
tion of existing approaches, would be useful to provide
more appropriate models, which could be tested against
historical events [124]. Finally, MG preparedness and
contingency intervention plans to mitigate infectious-
disease transmission could incorporate some of these
modeling research, inspired by influenza modeling
efforts that have helped shape pandemic preparedness
plans in recent years [18,19,22,99-102,107,123].
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