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Metals and metalloids play distinct roles in human health, either beneficial or toxic, depending on their concentrations and species. 
There is an increasing interest in metals uptake, trafficking, function, and exertion in microorganisms to maintain and advance 
human health. Metallomics, an emerging research area, focuses on elucidation of metals/metalloids location, distribution, specia-
tion, and behavior in living organisms. This paper briefly summarized the recent progress on the methodology development of 
metallomics including various techniques, i.e. multiple dimensional liquid chromatography-inductively coupled plasma mass 
spectrometry (LC-ICPMS), gel electrophoresis-laser ablation-inductively coupled plasma mass spectrometry (GE-LA-ICPMS), 
synchrotron X-ray fluorescent spectroscopy (XFS), and the applications of metallomics in environmental and health care.  
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Metals (and metalloids) play crucial roles to lives. Currently, 
about twenty-eight elements are considered as essential or 
beneficial components, regulating a great number of bio-
logical processes and sustaining a healthy functional envi-
ronment in living organisms. For example, copper is an es-
sential trace element, serving as a cofactor in many redox 
enzymes, i.e., cytochrome c oxidase, that influence respira-
tory electron transport chain of mitochondria [1]. Selenium 
is an essential micronutrient for humans, usually incorpo-
rated into antioxidant enzymes such as selenocysteine, and 
plays a key role in host oxidative defense [2]. However, 
majority of the known metals and metalloids are potentially 
toxic to living organisms including those essential metals if 
not being regulated properly. Either metal deficiency or 
excess will exert damaging effects and cause a range of 
human diseases [3,4]. Iron deficiency is the most common 
nutritional deficiency leading to iron deficiency anemia; 

dietary calcium deficiency can deplete calcium stores in the 
bones and poses potential risk for osteoporosis. Elevated 
levels of metals such as copper, zinc and iron are usually 
found in amyloid- plaques within the brain of Alzheimer’s 
disease, playing a role in the aggregation of A peptides 
and the formation of reactive oxygen species [5]. Metal ion 
regulation can even be carried out at extremely low concen-
tration, i.e., zinc concentrations in cells are tightly regulated 
at the picomolar to femtomolar level [6]. The oxidation state 
of a metal or metalloid may also determine whether it acts 
as a physiologically required or toxic element. Chromium is 
probably a well-known example, i.e., chromium(VI) is the 
most toxic form of chromium which classified as a carcino-
gen, whereas chromium(III) is a beneficial element required 
in trace amounts for glucose and lipid metabolism [7]. 
Moreover, the accumulation of toxic metals and metalloids 
in the environment naturally or anthropogenically pose sig-
nificant potential risks on human health. Lead exposure is 
particularly influential to children, causing potentially  
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permanent learning and behavior disorders [8]; whereas 
mercury toxicity mainly exerts damage to human kidney, 
lungs and central nervous system, mediated by different 
forms of mercury (i.e., organic mercuric compounds and 
inorganic forms) [9]. Therefore, systematic studies on the 
metal uptake, trafficking, and function in many basic and 
complex biological processes, will help us to understand the 
molecular mechanisms underlying the beneficial or toxic 
effects exerted by a given metal or metalloid, and further 
clarify the impact of metals/metalloids on human health. 

The concept of metallome was firstly coined by Williams 
in 2001 [10,11], referring to an element distribution or a 
free element content in a cellular compartment or a whole 
cell, comparable to the genome or proteome characteristic 
for a living organism. The term was subsequently extended 
to the entirety of metal and metalloid species present in a 
cell or tissue type, described according to their identity, 
quantity and localization [12]. Characterization of the 
metallome, as well as its functional connections with the 
genome, transcriptome, proteome and metabolome was re-
ferred to as metallomics. As a complementary to genomics 
and proteomics, metallomics is an interdisciplinary area 
combining analytical, inorganic and biochemical studies, 
with an ultimate goal to elucidate the metal uptake, traf-
ficking, accumulation and metabolism in biological systems 
[13,14]. Metalloproteomics is a new subset of proteomics 
focusing on the structural and functional characterization of 
all metalloproteins in proteome wide [15–17]. The specific-
ity of metalloproteomics studies involves the description of 
the metal-binding sites, metal stoichiometry, metal-dependent 
conformation as well as the identification and quantification 
of the metalloproteins in a living organism [17]. Owing to 
the overlap of the research contents between metalloprote-
omics and metallomics, the former could be generally re-
garded as part of the metallomics study. Compared with 
genomics and proteomics, the metallomics community has 
not built up a robust and high-throughput experimental 
platform that could be widely accepted and utilized, which 
to some extent restricted the rapid development of this 
emerging field. To report the latest progress and state-of- 
the-art techniques for metallomics study, the journal 
“Metallomics” was initiated in 2009 by the Royal Society of 
Chemistry. This review is focused on recent advances in the 
methodologies used in this field, as well as recent applica-
tions of metallomics in the environmental and health related 
research. Relevant reviews in this field, either general 
[13,17–22] or more specific such as method-oriented 
[23–30], bioinformatics [16,31–34] and structure-related 
[35–37], are available elsewhere for readers. 

1  Experimental approaches to metallomics 

As an emerging research field, there is still lack of a well- 
established analytical platform to systematically decipher 

the metallome and characterize the landscape of metallo-
proteins in a living organism. Typical proteomics strategies 
have been successfully employed in metalloproteomics. The 
continuous development of techniques by hyphenating a 
high resolution separating technique (e.g., HPLC, gel elec-
trophoresis) with a high sensitive detection (elemental or 
molecular mass spectrometry) has led to new possibilities in 
these research fields [12]. To realize a comprehensive study 
of metalloproteins, complementary detection systems are 
necessary to obtain parallel information of the metal/met-     
alloid associated with the organic moiety. Inductively cou-
pled plasma mass spectrometry (ICP-MS) is the most com-
monly used approach to solve such challenges, and always 
performed in combination with different separation tech-
niques [38]. Moreover, there is an increasing interest in the 
use of nuclear analytical techniques to study a number of 
basic issues in metalloproteomics. Neutron activation anal-
ysis, synchrotron radiation X-ray fluorescence (XRF) and 
isotopic tracer technique have significantly facilitated met-
alloprotein identification and characterization [27,39]. Met-
al distribution and localization in individual cells or cellular 
compartments can also be determined by SR-XRF micro-
probe analysis [40,41]. For the structural characterization of 
metalloproteins, Mössbauer spectrometry and X-ray absorp-
tion (XAS) are promising techniques to characterize the 
local structure of protein-associated metal ions [42,43]. 
Computational bioinformatics analysis, a complementary 
approach to experimental methods, can predict metal-binding 
proteins based on known consensus metal-binding pattern 
or metal-binding domain on a genome-wide scale [16]. In-
tegrated applications of these techniques provide enormous 
possibilities to further investigate the function of the metal-
lomes associated with human health.  

1.1  Application of liquid chromatography (LC)/gel 
electrophoresis-mass spectrometry/atomic spectroscopy 
in metallomics 

As stated in some recent reviews [22,44], the combination  

 
Figure 1  (Color online) Current approaches in metallomics. 
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of multidimensional LC and mass spectrometry is still a 
relatively mature and convincible technique now being 
widely applied to large-scale metalloprotein separation and 
characterization. Promising data on either all-element anal-
ysis of salmon egg cells [45] or exploration for full metal-
loproteome in bacterial cells [46] further confirmed the fea-
sibility of this technique. However, it is worth noticing that 
different from the LC separation in normal proteomic re-
search, metalloprotein separation generally requires a com-
bination of ion-exchange and size-exclusion chromatog-
raphy, rather than the combination of ion-exchange and 
reversed phase chromatograph. The application of size-  
exclusion chromatography would well preserve the non- 
covalent binding between metals and their associated pro-
teins, and reduce the metal loss during separation under 
harsh conditions. Such a replacement would however some-
times compromise the separation capacity [47]. Currently, 
there is no systematic study on the stability of metal/protein 
complex during liquid chromatography separation, thus the 
metal losses from the complex or artificial gain/replacement 
during separation process remains to be investigated. 

Apart from the above-mentioned chromatography meth-
ods, immobilized-metal affinity chromatography (IMAC) is 
a key technique commonly used to capture proteins with 
metal-binding ability, depending on their differential bind-
ing affinities of the surface exposed amino acids towards 
immobilized metal ion [48,49]. This approach could also 
efficiently enrich metal-binding proteins/peptides in order to 
systematically investigate the whole metalloproteome pre-
sent in a biological sample, and has been used to identify 
hepatocellular proteins with copper-binding ability [50], Ni- 
interacting proteins in human B cells [51], copper-binding 
proteins in Arabidopsis roots [52], and the metalloproteins 
being targeted by bismuth in Helicobacter pylori [53]. As a 
bottom-up technique, IMAC is a promising tool for rapidly 
capturing proteins that are involved in metal sensing and 
trafficking, but it may not identify all proteins in a given 
metalloproteome. Proteins with a high metal affinity site 
will very likely pass through the column undetected as the 
metal sites are already occupied; or metalloenzymes with 
the metal-binding sites buried in the interior are not readily 
accessible for interaction with the immobilized metal ions 
[15,49]. The other drawback is that IMAC provides infor-
mation on the presence of metal-binding sites in proteins 
but it may not be specific for physiologically active metal 
binding [54]. Therefore, great attention must be taken when 
interpreting the results from IMAC experiments to avoid 
premature conclusions.  

Polyacrylamide gel electrophoresis (PAGE) employed 
either in the 1D (IEF, BN or SDS) or 2D mode (IEF-SDS) 
is considered the most adequate technique for protein sepa-
ration, with the ability to improve the resolving power and 
reproducibility compared with liquid-based separation 
[55,56]. Metal-specific detection in the gels has enjoyed 
considerable interest for a long time, with recent applica-

tions referring to the analysis of Se-containing proteins in 
yeast cells on the 2D gel [57], metal imaging in non-dena-    
turing 2D gels for the detection of metalloproteins from rat 
kidney [58] and Zn exchange by Cu in bovine serum albu-
min separated by 1D BN-PAGE gels [59]. However, the 
principle difficulty in its application for metalloprotein sep-
aration is also the requirement of the preservation of the 
integrity of metal-protein bond, especially in the commonly 
used 2D gel electrophoresis (IEF-SDS), which owns the 
advantage of simultaneously resolving thousands of proteins 
in a denatured separation procedure. Metal loss during the 
denatured separation seems inevitable due to application of 
the reducing agent, e.g. DL-dithiothreitol, and detergent 
used for improvement of gel resolution, as well as the high 
voltage used when performing IEF separation. Native PAGE 
(e.g. blue native-PAGE) can be performed in place of SDS- 
PAGE [58], but the resolution of the 2D separation would 
be significantly reduced and generate a great difficulty for 
the following protein identification. Therefore, the stability 
of metal-protein binding during gel separation may require 
some specific experimental evaluations. Another limitation 
in the use of PAGE techniques concerns the contamination 
issue. Many metal-protein complexes are labile and can be 
destroyed by exchange with the metal impurities in the gel 
during separation and staining [60]. Attention must be paid 
to avoid the presence of metal impurities in gels as well as 
in the buffer system especially when trace metal analysis 
was performed. 

The subsequent detection techniques coupled to the 
above-mentioned separation systems are alike those high- 
quality bio-mass spectrometry applied to the traditional 
proteomics, varying slightly according to the analytical fea-
tures which can be found in selected reviews [28,30,44]. For 
quantitative determination of trace metals in biological sys-
tems, ICP-MS and atomic spectrometry techniques are the 
best choices. ICP-MS, featuring high sensitivity and wide 
linear dynamic range, allows robust, accurate and multiele-
mental detection for most metallic and metalloid elements 
[38,61]. By coupling with a front-end chromatography sep-
aration system, an on-line analysis could be performed for 
identifying and quantifying metal binding proteins in solu-
tion. For solid-based analysis, laser-ablation (LA)-ICP-MS, 
pioneered by Nielsen et al. [62], offers a competitive choice 
for in situ probing the protein spots with the presence of 
metals or metalloids on gels, by using a focused laser beam 
to ablate material from the surface of a solid sample [56]. 
LA-ICP-MS has been successfully applied to detect Se- 
containing proteins with a sensitivity of 6 pg/mm, promis-
ing the capability for quantitative measurement [63,64]. 
LA-ICP-MS offers a potentially fast and fairly robust tech-
nology, but the high cost of a powerful laser ablation system 
with sufficient spatial resolution restrained its application to 
a certain extent. Other atomic spectrometry techniques, e.g. 
atomic absorption spectrometry (AAS) [65] and atomic flu-
orescence spectrometry (AFS) [66,67] have been employed 
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in the early metalloproteomics studies, by digesting the 
separated protein spots on gels and inserting the resulting 
solution into the atomic analyzing system. 

1.2  Application of nuclear analytical techniques in 
metallomics 

Modern nuclear analytical techniques, including neutron 
activation analysis (NAA), synchrotron radiation X-ray fluo-
rescence (SR-XRF), particle-induced X-ray emission (PIXE), 
have been applied extensively in metallomics for multiele-
mental quantification and distribution analysis as well as for 
structural characterization of metallomes and metallopro-
teomes in a biological system, with their unique features of 
high sensitivity, noninvasive and less or none matrix effect 
[27,39]. NAA is a multielemental quantification technique 
with the ability to simultaneously measure more than thirty 
elements [68,69]. However, real time and on-line analysis 
are not achievable by this method, and the speed of the 
analysis is relatively slow [27]. The basic principle of XRF 
is that when materials are exposed to a high-energy radia-
tion source, the component atoms will be irradiated. By 
detecting the fluorescent characteristic X-ray emitted by the 
excited atom, one could identify the specific element in a 
sample. The fluorescence peak is directly proportional to 
the concentration of the excited element, therefore XRF is a 
quantitative method that could provide a two/three-dimen-     
sional image of the metal distribution [24,27]. The early 
XRF technique was limited by its poor sensitivity and 
weakness in the determination of elements associated with 
protein spots [70]. Particle-induced X-ray emission spec-
trometry (PIXE) having a high-energy proton beam could 
provide a better analytical sensitivity [71]. Using synchro-
tron radiation (SR) as the exciting source can greatly im-
prove the sensitivity and spatial resolution of XRF analysis. 
An absolute detection limit of 1012–1015 g and a relative 
detection limit as low as 10 ng/g can be achieved with only 
micrograms of sample required [19,27]. By combining gel 
electrophoresis with XRF, quantitative analysis of trace 
elements associated to proteins is possible and the combined 
technique possesses a great potential to facilitate metallom-
ics and metalloproteomics research [23,24]. However, nu-
clear analytical techniques at the present stage can only be 
performed at off-line or quasi-on-line mode. In addition, the 
limited resources of synchrotron radiation sources have un-
doubtedly restrained the rapid development and widespread 
application of these techniques.  

Besides chemical speciation analysis, nuclear analytical 
techniques can also be used in the structural characterization 
of metalloproteins. Techniques which are capable of offer-
ing a detailed structural information for the metal sites in a 
metalloprotein mainly include electron paramagnetic reso-
nance (EPR), Mössbauer spectroscopy, and X-ray absorption 
spectrometry (XAS) [27]. These techniques are also applied 
to the traditional protein structural characterization. Here we 

will mainly focus on the X-ray absorption technique that 
concerns more with the metallomics study. XAS is a well- 
developed tool for determining local structure around cer-
tain atoms without the requirement of crystalline samples. 
High-throughput X-ray absorptions spectrometry (HTXAS) 
including extended X-ray absorption fine structure (EXAFS) 
and X-ray absorption near edge structure (XANES) can be 
used to characterize the electronic configuration, site sym-
metry and the coordination environment of the absorbing 
atom [17,27]. HTXAS is a promising approach to elucidate 
metal insertion, cluster assembly and reaction mechanisms 
for metalloproteins, in order to obtain proteome- wide 
knowledge of the active-site structures. Separation technol-
ogies developed for proteomics and structural genomics 
have been fully utilized in HTXAS. Two potential work-
flows for characterizing the metalloproteome from a given 
genome were proposed [72]. One way is to perform separa-
tion at the gene level. Individual gene products are generat-
ed by high-throughput cloning, expression and purification. 
XAS characterization is then performed on separated met-
alloprotein samples. The other way is to delay the separa-
tion step to the proteome stage. After expression of the en-
tire proteome (either from microorganisms or cells of a 
given organ or tissue), individual metalloprotein samples 
are generated from separated protein fractions and then 
characterize by XAS. In order to create a pipeline from ge-
nome to metalloproteome, automation of rapid data collec-
tion and analysis of multiple low-concentration samples 
must be developed. In recent years, significant progress has 
been made in high- throughput sample detection [43], theo-
retical XAS application [73,74] as well as automated data 
analysis [75]. Further, XAS can present its full advantages 
through combination with other techniques in metallomics 
and metalloproteomics. For example, the combination of 
crystallographic information and XAS promises a powerful 
tool to characterize unusual metal coordination and to refine 
models of complex structures [76–78]. 

1.3  Bioinformatic approaches 

Due to the lack of well-developed experimental platform 
aiming at deciphering the complete metalloproteome en-
coded by an organism, information provided by computa-
tional approaches is thus essential for a comprehensive un-
derstanding of the functional characterization of metals and 
metalloids in the whole living system [16]. Bioinformatics 
can give valuable support to experimental methods in an 
effort to accelerate the investigation of metalloproteomes. 
By means of bioinformatic approaches, prediction of met-
al-binding proteins mainly based on known metal-binding 
domains or metal-binding patterns in their sequences, which 
resources can be extracted from a number of available da-
tabases [79]; while prediction of a metal binding site is 
based on a known 3D structure [80] or on the low-resolution 
structural data with sequence information [81]. However, 
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the accurate prediction of metalloproteins is generally lim-
ited to an deficient understanding of the complicated deter-
minants of metal-binding specificity in proteins rather than 
a limitation of informatics methods [82]. The nearly infinite 
combinations of amino acid sequence result in highly varia-
ble sequences at metal binding sites and make it difficult to 
identify reliable sequence motifs. In addition, factors other 
than a protein’s primary sequence may determine the metal 
binding specificity of a protein [46,83], thus the identifica-
tion of specific metal binding site on a given protein is in-
herently limited. Additionally, with the incorporation of 
datasets from individual biological systems, 3D metallopro-
tein structures and other non-sequence-based datasets, the 
predictive capacity of bioinformatic approaches will defi-
nitely continue to be improved.  

2  Application of metallomics in environmental/ 
health related research 

2.1  In situ imaging of metals/metalloids in living cell 
and tissue  

Identification and quantification of metals in cells and tis-
sues or even cellular compartments under the native condi-
tions is the first important step towards elucidation of metal 
trafficking and their function at molecular level [84], which 
in situ imaging of metals/metalloids provides the most 
straightforward and comprehensive pathway. For example, 
using synchrotron X-ray fluorescence mapped the mercury 
distribution in zebrafish larvae after treated with MeHg-L- 
cysteine. The mercury could be imaged in micrometer reso-
lution. As shown in Figure 2 [41], it was observed that the 
mercury distribution is not homogenous in fish, and mainly 
accumulated in brain, gastrointestinal tract, and especially 
the eye lens. High resolution image of zebrafish eye section 
revealed that Hg accumulated preferentially on the outer 
single cell layer of fish eyes epithelial tissue, and this layer 
also contained high content of S but not Zn (Figure 3) [41]. 
The high accumulation mercury in the fish eye implied that 
mercury impaired visual process might be led by the direct  

 

Figure 2  X-ray fluorescence images of MeHg-L-cysteine treated living 
zebrafish. (a),(d) were optical images; (b),(e) were images of mercury 
distribution; (c),(f) were the images of mercury (blue) merged with Zinc 
(green) and calcium (red). Reprinted with permission from [41]. Copyright 
(2008) National Academy of Sciences, USA. 

effect on ocular tissue other than be originated from neuro-      
logical effects. The imaging provided a straightforward way 
for investigation of metal toxicity on living cells and could 
screened out several leading targets for further study in de-
tail. Currently, the XRF could provide the 3D image with 
spatial resolution up to 400 nm [85], which lateral might 
reach to tens of nanometers [86], and multiple elemental 
information, including not only metals/metalloids but also 
non-metals. In addition to metals/metalloids identification, 
the species of metals, i.e. chemical form and oxidative sta-
tus, could also be characterized. For example, X-ray fluo-
rescence imaging can be used to investigate arsenic adsorp-
tion on rice roots. The arsenic in different forms including 
arsenite [As(III)], arsenate [As(V)], arsenic triglutathione 
[As(GS)3], and dimethylarsinic acid were observed (Figure 
4) [87]. In addition to X-ray fluorescent imaging, others 
techniques, i.e. mass spectrometry imaging techniques 
(SIMS and LA-ICP-MS), magnetic resonance imaging, ra-
dioisotope imaging techniques and classical histochemical  

 

Figure 3  High resolution Hg, S, and Zn distribution of zebrafish head. (a) histological image, (b) mercury distribution at resolution of 2.5 m, (c) merged 
image of Hg (green), S (red), and Zn (blue). Reprinted with permission from [41]. Copyright (2008) National Academy of Sciences, USA.
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Figure 4  Cross-sectional image of rice roots obtained with X-ray fluo-
rescence imaging showing iron, total arsenic, arsenite, arsenate and arsenic 
trisglutathione distribution. Reprinted with permission from [87]. Copy-
right (2010) American Chemical Society. 

imaging techniques [84], could also be applied for in situ 
mapping metals in cells or tissues samples. 

2.2  Profiling toxic metals associated proteins with 
metallomics approaches 

Profiling metals associated proteins in proteome wide will 
facilitate elucidation of metals trafficking in biological sys-
tems and provide insight into molecular mechanisms of met-
als related biological function, although it is still a big chal-
lenge now. The strategies combining high resolution separa-
tion techniques and high sensitive element-specific detection 
i.e. multiple dimensional liquid chromatography-inductively 

coupled plasma mass spectrometry/electrospray mass spec-
trometry, are predominant in recent studies. Limit reports 
have achieved the global analysis of metalloproteome in 
specific biological samples, for example investigation of 
metalloproteome of Pyrococcus furiosus, Escherichia coli, 
and Sulfolobus solfataricus, which clearly implied microbial 
metalloproteomes were largely unknown [46]. Most of 
works either monitored the metal contained proteins which 
however not characterized the proteins identity, or focused 
on particular proteins [45,88–90]. Uncharacterized insights 
into the behaviors and toxicity of metals were still provided. 
Wang et al investigated the metals contained proteins frac-
tions in brain cytoplasm of mercury exposed rats and found 
that samples from maternal rats contained more mercury 
associated proteins and total mercury content than those 
from infant rats [91]. Multiple mercury contained protein 
peaks with molecular weight ranging from 12 to 300 kD 
also being monitored in cytoplasm from mercury treated 
salmon egg cells. Furthermore, these mercury containing 
peaks concurrently processed significant selenium and sul-
fur, indicating that mercury might binds the selenocysteine 
and/or cysteine residues in proteins [92]. For quantitative 
analysis of the metal containing proteins, post column iso-
tope dilution provided a convenient and robust method for 
accurate evaluation their contents [93,94]. 

3  Perspectives 

Recent results on metal related researches either on globally 
profiling the metallome in microbes or systematically elu-
cidating the molecular mechanism of metal/metalloid based 
therapeutic agent revealed a promising future on  metal-
lomics [46,95,96], which also implied the hint of trends in 
both methodological development and functional studies. In 
current status, building up a robust experimental platform 
possessing high-throughput and high sensitivity of detec-
tion/ identification on metals/metalloids and associated bi-
omolecules, is the primary task. In addition, experimentally 
based strategies in combination with bioinformatics will be a 
promising way to efficiently carry out metallomic studies.   
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