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Calderón Multiplicative Preconditioned EFIE With
Perturbation Method

Sheng Sun, Senior Member, IEEE, Yang G. Liu, Weng Cho Chew, Fellow, IEEE, and Zuhui Ma

Abstract—In this paper, we address the low-frequency break-
down and inaccuracy problems in the Calderónmultiplicative pre-
conditioned electric field integral equation (CMP-EFIE) operator,
and propose the perturbation method as a remedy for three-di-
mensional perfect electric conductor (PEC) scatterers. The elec-
tric currents at different frequency orders as a power series can be
obtained accurately in a recursive manner by solving the same ma-
trix systemwith updated right hand side vectors. This method does
not either require a search for the loops in the loop-tree/-star based
method or include charge as additional unknown in the augmented
EFIE method. Numerical examples show the far-field pattern can
be accurately computed at extremely low frequencies by the pro-
posed perturbation method.

Index Terms—Calderón multiplicative preconditioner (CMP),
electric field integral equation (EFIE), low-frequency breakdown,
low-frequency inaccuracy, perturbation method.

I. INTRODUCTION

I T is well-known that the electric field integral equation
(EFIE) always suffers from the low-frequency breakdown

problem due to the decoupling between the electric field and
magnetic field [1]. In the low-frequency regime, the current
naturally decomposes itself into a solenoidal (divergence free)
part and an irrotational (curl-free) part. This is also known as the
Helmholtz decomposition. Both of the two currents are equally
important in capturing the inductive and capacitive physics. At
low frequencies, the solenoidal current represents eddy
currents that produce primarily the magnetic field, whereas the
irrotational current represents charge currents that produce
primarily the electric field. In the integral representation of
EFIE, the electric field is decomposed into the vector potential
part and the scalar potential part. They are also phrased as the
smoothing term and the hypersingular term. As the frequency
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approaches zero, the smoothing term is much smaller than the
hypersingular term. Due to the finite machine precision, the
contribution from the smoothing term will be lost during the
numerical process [2]. Moreover, the hypersingular term has a
null space because of its divergence operator. It means that, the
eigenvalues of the matrix flip-flop between very large values
associated with when the hypersingular term dominates,
and very small values relevant to when the smoothing
term dominates. Hence, the MoM matrix becomes extremely
ill-conditioned and converges slowly for the iterative solvers as
the mesh density increases [3].
In order to remedy this problem and capture the circuit

physics at low frequencies, an idea of the loop-tree or the
loop-star decomposition has been proposed to separate the
electrostatic and magnetostatic physics [2], [4]–[10]. However,
the loop-tree/-star based method is always burdened by the
need to search for loops, which is especially difficult for the
complicated interconnects which have many entangled long
loops. Recently, the Calderón preconditioning (CP) based on
the self-regularizing property of the EFIE and Calderón identi-
ties has been exploited for preconditioning of the MoM matrix
[11]–[13]. Multiplying the EFIE operator by itself pro-
vides a well-conditioned second-kind Fredholm integral equa-
tion operator. Unfortunately, the direct discretization of
using div-conforming Rao-Wilton-Glisson (RWG) basis func-
tion and basis function incurs a singular Gram
matrix, where is a unit normal vector at on the surface
of objects. Alternatively, the composite operator can be
decomposed in terms of its smoothing and hypersingular

terms [14]. For closed surfaces, the square of the hypersin-
gular term vanishes. In order to discretize the remaining
three terms ( , , and ), Galerkin method and spe-
cial intermediate spaces are developed to properly map the
range of the first operator onto the domain of the second one.
However, it requires calculation of additional matrix elements
and has poorer solution accuracy than the original EFIE due to
the numerical discretization error. Moreover, applying CP for
the open surfaces introduces non-integrable line charges at all
edges of the scatterer. The operator cannot be projected to
the operator and the operator is no longer second kind.
Hence, as indicated in [11], [14], the operator becomes
unstable near the discontinuous edges of an open surface, be-
cause of the low-order approximation of the effects of edge
diffraction.
More recently, a multiplicative form of the Calderón pre-

conditioner (CMP) [15] was developed based on the div- and
quasi-curl-conforming basis function, called the Buffa-Chris-
tiansen (BC) basis function [16]. This preconditioning is more
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straightforward to implement and easily integrated into existing
MoM codes based on RWG basis functions. For the discretiza-
tion of composite operator , the inner operator is dis-
cretized by using div-conforming RWG basis function (source)
and basis function, while the outer operator is
discretized by using div- and quasi-curl-conforming BC basis
function (source) and basis function. Therefore, the re-
sulting Gram matrix is a mixed curl- and quasi-curl-conforming
matrix, which is highly sparse and invertible. Subsequently, the
CMP is applied on the combined field integral equation (CFIE)
formulation for PEC objects [17], and also for the single source
integral equations [18]. It should also be noted that the BC basis
function represents a subset of the functions proposed by Chen
and Wilton in 1990 [19], [21], which was named the dual basis.
In other words, the idea of these two basis functions is com-
pletely the same. Both of these two basis functions are a linear
combination of RWG basis functions on the barycentrically re-
fined triangles within a polygon pair and have the same dual
basis property, i.e., approximately orthogonal to the original
RWG basis function [20]. Perhaps the reason why the BC basis
function has received more attention in the EM community is
because of its successful application in the CMP [15], where
the well-conditioned nature of the Grammatrices linking the BC
basis functions to basis functions is ensured. Hence,
we should rightfully call them the Chen-Wilton-Buffa-Chris-
tiansen (CWBC) basis function.
As mentioned above, since the composite operator is a

well-conditioned second kind operator, it is immune to low-fre-
quency breakdown and stable at low frequencies, if the
property can be well preserved. However, some literature has
shown that the roundoff error of the CMP-EFIE formulation
cannot be avoided and causes the preconditioner to fail when
the frequency goes to zero [22], [23]. Therefore, the previously
developed loop-star decomposition [2] has been further utilized
to decouple the electrostatic and magnetostatic fields to over-
come this problem. Unfortunately, the Gram matrix is no longer
well-conditioned due to the overlapping of the large domain of
support of loop and star basis functions.
In other words, the low-frequency breakdown problem

cannot be fully avoided in the traditional CMP-EFIE [15]. As
also mentioned in [24], the property has not been well
conserved during the direct discretization of the operator
at low frequencies. Therefore, the term must be removed
analytically by decomposing into the remaining three
terms. However, we found that there still exists an accuracy
problem in this three-term formulation, which will result in
a large error in the far-field computation. The same problem
also exists in the far-field computations of the magnetic field
integral equation (MFIE) at very low frequencies [25]. Because
the real-part of the tree current is much smaller than the loop
current, the total current error is hard to detect in the MFIE for-
mulation. Although the loop-tree basis function has been used,
the zeroth-order loop current still induces a large cancellation
during the far-field computation. In addition, the condition
number becomes very large because the diagonal-dominant
property in the original MFIE operator has been lost after
applying the loop-tree basis. To eliminate this error in the tree
current detection, perturbation method has been employed,

which has been widely used in solving several kinds of physics
and engineering problems [26]. As a result, the accurate real
part of the tree current has been obtained and the unwanted
zeroth-order loop current can be analytically removed. Based
on the same strategy of the series expansion, this method has
also been utilized in solving the low-frequency inaccuracy of
the augmented EFIE [27].
In this paper, we propose the perturbation method to enhance

the accuracy of the CMP-EFIE formulation, which transforms
the first-kind EFIE operator to the second-kind Fredholm
integral equation operator. Without using the loop-tree or the
loop-star decomposition, the current distribution can be pre-
cisely captured and the error in the far-field computation can
also be removed accordingly. Based on the frequency-depen-
dent analysis, the reasons for both low-frequency breakdown
and inaccuracy have been given. Numerical examples show that
the far-field results can be accurately computed at extremely
low frequencies by the proposed perturbation method.

II. LOW-FREQUENCY BREAKDOWN

The traditional EFIE operator can be written in its mixed po-
tential form as

(1)

in which the smoothing and hypersingular terms are
defined as

(2)

(3)

where

(4)

is the free space Green’s function, is the wave-number in the
free space, and are the relative permeability and permittivity,
and is the surface current on an arbitrarily shaped PEC surface
whose outward pointing unit normal at is denoted by .
When , the hypersingular term which is

dominates over the smoothing term which is . As
mentioned above, because of the existence of the divergence
operator in (3) and , has a null space. Thus,
the ill-conditioned behaves like a first-kind operator be-
tween the solenoidal and irrotational subspaces. This makes
the impedance matrix nearly singular and unsolvable at low
frequencies [2], [4]. This is the so-called low-frequency break-
down problem for the EFIE operator.
In past decades, many research efforts have been carried out

to avoid the imbalance inherent in the traditional EFIE operator.
The most popular one is the loop-tree or loop-star decomposi-
tion, which separates the electrostatic andmagnetostatic physics
at low frequencies [2], [4], [6]–[10]. In addition, by adding the
charge in the unknown list and enforcing the current continuity
constraint, the frequency scaling can be normalized in a bal-
anced manner, thus remedying the low-frequency breakdown
problem [28]–[30]. However, these methods do not change the
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original spectral property of the EFIE operator. The Calderón
identity, which can be expressed as [11]–[13]

(5)

can be used to conduct a new operator. In the above, is the
magnetic field integral equation (MFIE) operator [1]

(6)

It is important to notice from (5) that the composite operator
is actually a second-kind integral operator with its spectrum

accumulated at . In other words, the operator can be
directly utilized to precondition itself, which is so-called “self-
regularizing property” of the operator.
According to the decomposition in (1), the composite oper-

ator can be further expanded as

(7)

where

(8)

(9)

(10)

(11)

Recalling the surface Helmholtz decomposition of the surface
current [31], [32]

(12)

where and are scalar functions defined on . The first term
of (12) is purely irrotational (curl-free) while the second term is
purely solenoidal (divergence-free). It is easy to show that [11]

(13)

As a result, the square of the hypersingular term in (11) is
identically zero. Consequently, the decomposed operator in
(7) can be re-written as

(14)

Notice that from (8) to (10), the , while the
, when . In other words, the

and are frequency invariant, so that the two terms
behave like an identity operator. Meanwhile, behaves like

a compact operator, and approaches zero when . There-
fore, the total operator can be considered as an identity
operator plus a compact operator, which makes it a well-con-
ditioned second-kind Fredholm integral operator and immune
to low-frequency breakdown. Meanwhile, . It
implies that the square of the hypersingular term has to be set
to zero; otherwise it will swamp the contributions from the
other three terms at low frequencies. However, if is of the
order smaller than and higher order current is also important
for certain problems, the decomposed (without ) still
decreases with frequency. It does not cause the breakdown of
the MoM, but causes the inaccuracy of the electric current at
low frequencies, which will be discussed in the next section.

III. LOW-FREQUENCY INACCURACY

In this work, we directly discretize the inner and outer op-
erator for the operator by using the dual finite element space.
To avoid the low-frequency breakdown problem, the decom-
posed operator with remaining three terms in (14) will be used in
the following discretization procedure. By following the same
strategy of the discretization using the aforementioned CWBC
basis function [16], [19], the decomposed operator can be
discretized as

(15)

where

(16)

is the impedancematrix obtained by using CWBCor RWGbasis
function with the notation of the subscript , the superscript
indicates the smoothing or hypersingular term, and

(17)

is the Gram matrix linking the range and domain spaces. Then,
we can write the CMP-EFIE matrix system as

(18)

where denotes the unknown vector of electric current and
is the known excitation vector due to the incident field.

At very low frequencies, the scalar Green’s function in (4) is
well approximated as

(19)

where and . We notice that when
, the leading terms of the Green’s function in (19) are

the first two terms. Thus, the real part of is of order of ,
while the imaginary part of is of order . Since the testing and
basis functions in (18) are frequency invariant, the impedance
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matrices and the excitation vector are on the same order of the
Green’s function. Subsequently, the frequency dependence of
each term in (18) for a plane wave scattering problem can be
easily estimated as

(20)

Matching the real and imaginary parts of the two sides of (20)
yields

(21)

That means in CMP-EFIE, the real part of is on the order of
, and the imaginary part of is on the order of . However,

as shown in [25], [27], the frequency dependence of the currents
for the loop-tree decomposition is given by

(22)

At low frequencies, the leading term of current is loop current
which is , while the imaginary part of the current which is

has the mixed contribution from both loop and tree cur-
rents. This implies that, the imaginary part of the current in (22)
should be on the order of , that is , which is a subset
of obtained by (20). In other words, it is difficult to ob-
tain the accurate imaginary part of the current at low frequencies
by solving CMP-EFIE directly, due to the finite machine preci-
sion. This is the reason for the low-frequency inaccuracy of the
CMP-EFIE operator.

IV. PERTURBATION METHOD FOR CMP-EFIE

In order to remedy the aforementioned low-frequency inaccu-
racy problem, a perturbation method is employed in this section
[25]–[27]. Following the expansion of the Green’s function in
(19), the sub-matrices in (16) can be expanded with respect to a
small parameter . Then, we have

(23)

where the impedance matrices for the smoothing term are given
by

(24)

(25)

(26)

and the impedance matrices for the hypersingular term are given
by

(27)

(28)

(29)

At low frequencies, , because the zeroth-order of
the Green’s function in (19) is equal to its original form of (4)
in static regime.
For the current and excitation vectors, we use the same nota-

tions as those in [27] as

(30)

(31)

where

(32)

(33)

(34)

and is the unit vector of the incident direction and the tilde
above indicates the normalization by , where is a typical
length scale.
Substituting them into (18) and matching the coefficients of

like powers of , we obtain a recurrent system of equations for
the current functions . Firstly, matching the zeroth order of
gives the lowest order equation as

(35)

We notice that the impedance matrix is equal to the three-term
CMP-EFIE without in (14) in static regime, where the con-
tributions from the at disappear. That means the re-
sultant matrix is in the form formulated by an identity operator
plus a compact operator as the aforementioned analysis. Hence,
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it has a good spectral property at low frequencies and is easy to
see the convergence of an iterative solver.
Then, the first-order equation can be obtained by matching

the first order of as

(36)

With the zeroth-order current, we can solve for the first order
of them by inverting the same impedance matrix. During the
updating of the right hand side vector, only the contributions
from the first order and operators are iterated.
Next, the second order equation can also be invoked

(37)

Once the currents at the first three orders are obtained by solving
(35)–(37), the far-field results at very low frequencies can be
obtained accurately.
It is important to notice that the impedance matrices at the

left-hand side of (35)–(37) have both contributions from the
smoothing and hypersingular terms, thus avoiding the null space
problem and breakdown at low frequencies. Similar to the aug-
mented EFIE formulations [27], the decomposed CMP-EFIE
operator is balanced at low frequencies after setting .
As mentioned above, the contribution from the last term in
(7) is of , which is much lager than the contributions
from the other three terms. Consequently, the first three terms
are diminishing as frequency decreases, so that the whole ma-
trix system breaks down because of solving a non-existent term,
that is, .
In particular, we can observe from (22) that the leading term

of current is on the order of for plane wave scattering prob-
lems. It implies that the leading term of is on the order of
. Hence, the zeroth order current in (30), which is on the

order of , should be zero. By utilizing this natural character-
istic, the solution complexity of the matrix systems in (35)–(37)
can be reduced significantly.

Fig. 1. Comparison of the bistatic RCS of a PEC sphere for the vertical polar-
ization. The radius of the PEC sphere is 1 m and the frequency is 100 kHz.

Fig. 2. Comparison of the bistatic RCS of a PEC sphere for the vertical polar-
ization. The radius of the PEC sphere is 1 m and the frequency is 100 Hz.

V. NUMERICAL EXAMPLES

Different from the previous solutions using loop-star decom-
position [22], [23], the proposed CMP-EFIE with the perturba-
tion method keeps the sparse characteristic of the Gram matrix.
Without the need for loop search, the enhanced CMP-EFIE suc-
cessfully remedies the inaccuracy problem at low frequencies.
Fig. 1 shows the comparison between Mie series, traditional

CMP-EFIE and the decomposed CMP-EFIE without
at 100 kHz. In this numerical example, an -polarized plane
wave impinges onto a PEC sphere from the direction.
The sphere centers at the origin and has a radius of 1 m. We
discretize the surface into 578 triangular patches, equivalent
to 867 inner edges. From the results, we find that both the
two CMP-EFIE methods have no breakdown or inaccuracy
problem, since the frequency is not very low. Then, we did
the comparison at 100 Hz, as shown in Fig. 2. The traditional
CMP-EFIE cannot converge due to the low-frequency break-
down as discussed in Section II. With the perturbation method,
the decomposed CMP-EFIE gives the right results, while the
decomposed CMP-EFIE without perturbation method is still
able to deliver correct results. However, when the frequency
becomes even lower, the situation worsens. The decomposed
CMP-EFIE without perturbation method does not have con-
vergent problem, but incurs an inaccuracy problem. As shown
in Fig. 3, at 1 Hz, the decomposed CMP-EFIE is wrong due
to the low-frequency inaccuracy of electric current, while the



252 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 1, JANUARY 2013

Fig. 3. Comparison of the bistatic RCS of a PEC sphere for the vertical polar-
ization. The radius of the PEC sphere is 1 m and the frequency is 1 Hz.

Fig. 4. The comparison of total calculated using the decomposed CMP-EFIE
without/with the perturbation method. (a) Real part. (b) Imaginary part. The
radius of the PEC sphere is 1 m and the frequency is 1 Hz.

one with the perturbation method shows good accuracy in
comparison with the results obtained from Mie series. The
aforementioned frequency dependence analysis shows that,
this inaccuracy problem is due to the difficulty in obtaining the
accurate imaginary part of total electric current. As shown in
Figs. 4(a) and 4(b), although double precision has been used,
the error in the imaginary part of is still involved without
perturbation method, while its real part has a good agreement
with the one obtained by the perturbation method. As our
previous analysis shows (also discussed in [27]), both of the

Fig. 5. Comparison of the bistatic RCS of a PEC sphere for the vertical polar-
ization. The radius of the PEC sphere is 1 m and the frequency is .

Fig. 6. (a) Geometry of a PEC torus (b) Comparison of the bistatic RCS for the
vertical polarization at 1 Hz.

loop and tree currents at different orders are equally important
for the far-field computations at very low frequencies, which
are equivalent to a magnetic dipole and an electric dipole,
respectively, according to Rayleigh scattering theory.
Then, we did the comparison at an extremely low frequency,

, as shown in Fig. 5. It is clear that the bistatic RCS
computed by the decomposed CMP-EFIE with the perturbation
method has an excellent agreement with the results obtained
from Mie series and A-EFIE with the perturbation method [27].
Futhermore, we replace the sphere with a PEC torus shown in

Fig. 6(a), which has two global loops. The radius of the tube is
0.1 m and the distance from the center of the tube to the center
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TABLE I
COMPUTATIONAL COMPLEXITY AND ITERATION NUMBERS OF NUMERICAL EXAMPLES.

Fig. 7. (a) Geometry of a PEC flying saucer (b) Comparison of the bistatic RCS
for the vertical polarization at .

of the torus is 0.3 m. We discretize the surface into 1,066 trian-
gular patches, equivalent to 1,599 inner edges. Fig. 6(b) shows
the comparison of RCS between A-EFIE [27] and the decom-
posed CMP-EFIE with the perturbation method at 1 Hz. Sim-
ilar to the sphere case, the decomposed CMP-EFIE with the
perturbation method generates correct results as A-EFIE with
the perturbation method does. However, following the study in
[33], themagnetostatic nullspace for torus structure still exists in
the CMP-EFIE with the perturbation method, which is strictly a
near field phenomenon. Although its contribution in the far-field
computation is trivial, the condition number of system matrix
becomes higher due to this nullspace. Hence, the additional
diagonally preconditioning Gram matrix [15] is preferred to
further improve the convergence. As discussed in [34], to en-
sure the near field accuracy, the magnetic field generated by the
surface current and the excitation must be zero just inside the
boundary of the torus. It implies that if the current in the mag-
netostatic nullspace is not excited by the source, a well-behaved

solution current may still be possible. This low-frequency be-
havior has been well addressed in [34], where the testing func-
tions can be thought of as being slightly inside the boundary
while the basis functions are on the boundary.
The third example is a PEC flying saucer with a sharp edge, as

shown in Fig. 7. The thickness of the flying saucer is 0.1 m and
the radius of its curvature is 2 m. We discretize the surface into
526 triangular patches, equivalent to 789 inner edges, which is
corresponding to 3156 barycentrically refined triangle patches
and 4734 refined inner edges. Fig. 7(a) shows the comparison
of RCS between A-EFIE [27] and the decomposed CMP-EFIE
with the perturbation method at . Without perturbation
method, the decomposed CMP-EFIE loses accuracy, while the
decomposed CMP-EFIE with the perturbation method delivers
accurate results down to DC.
Since the impedance matrices at different orders have to be

calculated and stored, the overall computational cost of the per-
turbation method could be higher than the traditional CMP-
based methods. Table I compares the computational cost and
the iteration numbers with other methods for the above numer-
ical examples. is the cost of matrix-vector product in the
original matrix system, while and indicate the number of
current and charge unknowns, respectively. and are
the number of iterations to achieve the convergence without/
with using the CMP. Here, is the number of orders in-
volved in perturbation method. Note that only the impedance
matrices at the zeroth order are involved in the iterative process.
It means that the computational cost of the CMP-EFIE will be
doubled after using perturbation method at each order. How-
ever, the well-behaved solution can be undoubtedly achieved
at extremely low frequencies and the iteration numbers for the
CMP-based methods are much smaller than the other methods.

VI. CONCLUSION

In this paper, we have proposed the perturbation method for
the low-frequency problems in the CMP-EFIE. Both of the low-
frequency breakdown and inaccuracy problems have been well
addressed. Due to the null space of the square of the hypersin-
gular term, the low-frequency breakdown problem cannot be
avoided in the CMP-EFIE. By removing the last term from the
decomposed operator, the remaining three terms are in the
form of an identity operator plus a compact operator, making
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it the second-kind integral operator which is very stable at low
frequencies. Although the computational cost is increased, the
resultant impedance matrices are well-conditioned and easy to
converge in an iterative solver. However, it still has an inaccu-
racy problem, because of the machine precision in calculating
the imaginary part of the low-frequency electric current. By
using a perturbation method, the accurate imaginary part of total
electric current has been obtained. Numerical examples show
that the far-field results can be computed accurately at extremely
low frequencies.

APPENDIX
ACCURACY ESTIMATE OF THE PERTURBATION METHOD

To simplify the formulation during the perturbation process,
the second-order approximation has been used as

(38)

where any orders above has been ignored under the as-
sumption of . That means when approaches
1, the above approximation will lose the accuracy. For example,
we consider the case in Fig. 1 with a unit PEC sphere. When

, , we have

(39)

The addition of all subsequent terms from 4th term will
not affect the third decimal place (3 d.p.). Also, when

, , we have

(40)

Hence the value to 6 d.p. can be found for the second-order
approximation. Obviously, the series converges with the re-
maining term goes to zero. Therefore, in order to achieve the
desired accuracy to 7 d.p, in this example, the frequency can
be estimated by

(41)
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