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ERROR MINIMIZATION OF MULTIPOLE EXPANSION∗
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Abstract. In this paper, we focus on the truncation error of the multipole expansion for the
fast multipole method and the multilevel fast multipole algorithm. When the buffer size is large
enough, the error can be controlled and minimized by using the conventional selection rules. On the
other hand, if the buffer size is small, the conventional selection rules no longer hold, and the new
approach which we have recently proposed is needed. However, this method is still not sufficient to
minimize the error for small buffer cases. We clarify this fact and show that the information about
the placement of true worst-case interaction is needed. A novel algorithm to minimize the truncation
error is proposed.
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1. Introduction. Electromagnetic scattering problems with a large number of
unknowns can be treated by the recent development of fast algorithms, such as the
fast multipole method (FMM) [1, 2, 3] and the multilevel fast multipole algorithm
(MLFMA) [4, 5, 6]. These methods are based on the multipole expansion which has
some error sources in numerical implementation. Although these errors are shown in
the previous discussions to be fully controlled, we have pointed out that the conven-
tional selection rules to control the truncation error do not hold under some condi-
tions [7, 8].

In this paper, we will consider this issue in detail and investigate the condition
to minimize the truncation error of multipole expansion. When the buffer size is
large enough compared to the machine precision, the error can be minimized by us-
ing the conventional selection rules. Namely, the total error from all the interaction
pairs is minimized if the error from the assumed worst-case interaction is minimized.
When the buffer size is small compared to the machine precision, it becomes a to-
tally different issue. To estimate the error bound, the truncation number is usually
selected for the assumed worst-case interaction in the nearest box pair. Although it
is possible to minimize the error for this interaction by using the new approach [7, 8],
the total error usually cannot be minimized. We will discuss this topic carefully and
show that the information about the placement of the true worst-case interaction is
also needed. Considering this fact, a novel algorithm to minimize the error will be
proposed.
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2048 SHINICHIRO OHNUKI AND WENG CHO CHEW

2. Error control method. The 0th order Hankel function can be expressed in
the Fourier space by using the integral representation of the Bessel function [9, 10]:

H
(1)
0 (kρji)

.
=

1

2π

∫ 2π

0

dαβ̃jl′(α)α̃l′l(α)β̃li(α),(1)

where

α̃l′l(α) =

P∑
p=−P

H(1)
p (kρl′l)e

−ip(φl′l−α+π
2 )(2)

and

β̃jl′(α) = e−ikρjl′ cos(α−φjl′ ), β̃li(α) = e−ikρli cos(α−φli).(3)

This two-level expression can be extended to the multilevel one [10]. Among numerical
error sources due to this expression, we focus on the error which comes from the
truncation process in (2).

One conventional way to select the truncation number is to use the excess band-
width formula [10, 11, 12, 13, 14]. Song and Chew recently proposed the following
refined formula [10, 14]:

P � kD + 1.8d
2/3
0 (kD)1/3,(4)

where kD is the maximum diameter of a group size to assume the worst-case inter-
action, and d0 is the desired number of digits of accuracy. If we assume a square box
as a group, the above can be rewritten using the box size ka as

P �
√

2ka + 1.8d
2/3
0 (

√
2ka)1/3.(5)

Considering the property of the Bessel functions and finite double precision accuracy,
this equation can be transformed into

d0 �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, P <
√

2ka,[
P −

√
2ka

2.0(ka)1/3

]3/2

,
√

2ka < P <
√

2ka + 12.3(ka)1/3,

15,
√

2ka + 12.3(ka)1/3 < P.

(6)

When the buffer size is large enough compared to the machine precision, the refined
excess bandwidth formula gives the proper truncation number.

If the buffer size is small compared to the machine precision, we also need to
evaluate the divergence rate of the Hankel functions involved in the translation op-
erator (2). Considering the property of the Hankel functions, it can be estimated
by [7, 8]

d1 �

⎧⎪⎨
⎪⎩

0, P < (n + 1)ka,[
P − (n + 1)ka

1.8[(n + 1)ka]1/3

]3/2

, (n + 1)ka < P,
(7)

where n is the number of buffer boxes. Here, d1 is related to the value of the Hankel
function [O(10+d1)] for p = P . Therefore, the true number of digits of accuracy is
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ERROR MINIMIZATION OF MULTIPOLE EXPANSION 2049

1

ka

ka

17 18 23 4022

Fig. 1. Forty contiguous boxes to study the absolute relative error. The enforced worst-case
interaction is placed between box 17 and box 23. The other elements are randomly distributed inside
dotted circles.

given by d0 − d1 for small buffer cases. This is what we call the new approach. If
d0−d1 is plotted for changing the truncation number P , the error convergence process
can be predicted.

Conventionally, we assume that the worst-case interaction exists in the nearest box
pair to estimate the error bound. Therefore, the maximum diameter

√
2ka is selected

in (5) and (6). This selection relates to predicting the slowest convergence process.
Later, we will show that it is also important to estimate the convergence process for
some specific interactions which are different from the worst case. To consider any
interactions in a box pair, it is convenient to replace

√
2ka for the maximum diameter

by
√

2δka, where δ is the interaction parameter which depends on distribution of
elements (0 ≤ δ ≤ 1).

Considering this parameter, the minimum error for any interactions is found when
the truncation number is selected for d0 = 15 in (5),

Pmin �
√

2δka + 12.3(δka)1/3.(8)

For this choice, the new approach predicts the number of digits of accuracy,

dmin � 15 −
[
Pmin − (n + 1)ka

1.8[(n + 1)ka]1/3

]3/2

.(9)

To find the minimum error for all the possible interactions, δ in (8) varies from 0 to
1. This numerical result is called the minimum error line.

3. Error minimized state. In this section, we will clarify the general property
of the error convergence process for changing the truncation number P and investigate
the condition to minimize the truncation error. The absolute relative error between
the original 0th order of Hankel function and its integral representation form in (1)
is studied when there is a row of 40 contiguous boxes. For simple discussion, each
box has only one element which is randomly distributed inside a circle whose radius
kr = 0.4ka by way of example. Here, ka is the box size and is fixed as ka = 5.

3.1. Large buffer case. The buffer size to apply the multipole expansion is
assumed to be 5 boxes large. For this parameter, the condition

√
2ka <

√
2ka +

12.3(ka)1/3 < (n + 1)ka is satisfied. Here,
√

2ka is the maximum box size,
√

2ka +
12.3(ka)1/3 is for d0 = 15 in the excess bandwidth formula, and (n + 1)ka is the
distance between two box centers determined by the number of buffer sizes n. The
elements are randomly distributed in all boxes except for boxes 17 and 23. We enforce
the worst-case interaction (δ = 1) for this pair, as shown in Figure 1. The slowest
convergence line for this pair and the minimum error line for a 5-box buffer case,
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1.4ka+12.3 (ka)1/3

5-box buffer

slowest convergence line
( δ = 1,n = 5)

minimum error line (n = 5 ) divergence line

Fig. 2. The slowest convergence line and the minimum error line for a 5-box buffer.

as shown in Figure 2, are predicted by using the new approach. Considering this
information, we will investigate the error distribution for all the possible pairs.

Figure 3 visualizes the error distribution for the four selections of P . The x-axis
shows the box number which varies from i = 1 to 40, and the y-axis shows the other
box number from j = 1 to 40 which makes a pair of the box i. The z-axis shows the
absolute relative error of the multipole expansion. We can see the following properties
for changing P :

(a-1) P = 5.
All the errors except those in the diagonal region are almost the same level and
large. The multipole expansion is not applied to interactions in the diagonal
region which are treated by the traditional method of moments. Therefore,
the errors are always zero.

(a-2) P = 15.
To increase the truncation number from P = 5 to 15, all the errors become
smaller. The dominant error comes from the worst-case interaction between
boxes 17 and 23.

(a-3) P = 20.
The errors for almost all the interactions converge. These values are a little
bit worse than the machine precision because of the roundoff error. For the
worst-case interaction and some related pairs, the errors are still recognized.

(a-4) P = 28: Error minimized state.
Considering the roundoff error, the errors for all the interactions completely
converge. We define this condition as the error minimized state when the
buffer size is large. The truncation number for this state is selected by P �√

2ka + 12.3(ka)1/3 using the excess bandwidth formula when d0 = 15.
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(a) P = 5.
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(b) P = 15.
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(c) P = 20.
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(d) P = 28: Error minimized state.

Fig. 3. Error-convergence process for a large buffer case.

3.2. Small buffer case. We will perform the same numerical experiment for
small buffer cases. Compared with the large buffer case, the difference of the error
minimized state will be clarified. The buffer size to apply the multipole expansion
is reduced from five boxes to one box. For this parameter, the condition

√
2ka <

(n+1)ka <
√

2ka+12.3(ka)1/3 is satisfied. Here, we consider two types of the worst-
case interaction. One is in a nearest box pair, and the other is not in a nearest box
pair. The error minimized state is different under these two conditions.

3.2.1. Worst-case interaction in a nearest box pair. The elements are
randomly distributed in all the boxes except for boxes 19 and 21. We enforce the
worst-case interaction (δ = 1) for this box pair, as shown in Figure 4. The slow-
est convergence line for the worst-case interaction and the minimum error line for a
1-box buffer case are predicted by the new approach in Figure 5. Considering this
information, we will investigate the distribution of errors in the contiguous 40-box
case. The five truncation numbers indicated by dots are selected, and the distribu-
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1

ka
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2 19 20 21 39 40

Fig. 4. Forty contiguous boxes to study the absolute relative error. The enforced worst-case
interaction is placed between box 19 and box 21. The other elements are randomly distributed inside
dotted circles.
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1.4ka+12.3(ka)1/3

slowest convergence line
( δ = 1, n = 1 )

minimum error line
( n = 1 )

divergence line

Fig. 5. The slowest convergence line and the minimum error line for a 1-box buffer.

tion of errors is illustrated in Figure 6. We can see the following error-convergence
process:

(b-1) P = 5.
This error distribution is almost the same as the previous result (a-1) for the
large buffer case except for the narrower diagonal region.

(b-2) P = 15.
To increase the truncation number, all the errors become smaller. The domi-
nant error comes from the pair between boxes 19 and 21. The errors for their
related boxes are also larger than those for other box pairs.

(b-3) P = 20.
Although the errors are still recognized for the worst-case interaction and
some related pairs, the errors for almost all the interactions converge.
However, we can recognize that other errors, which are not seen at the pre-
vious state for P = 15, come from all the nearest neighbor interactions.
These errors depend on the divergence property of the Hankel functions in
the translation operator.
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(a) P = 5.
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(b) P = 15.
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(c) P = 20.
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(d) P = 28: Error minimized state.
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(e) P = 35.

Fig. 6. Error-convergence process for a small buffer case. The worst-case interaction is assumed
to be in the nearest box pair.D
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Fig. 7. The slowest convergence line and the minimum error line for a 1-box buffer.

(b-4) P = 28: Error minimized state.
Increasing the truncation number, the errors from the nearest neighbors be-
come larger and the error from the worst-case interaction becomes smaller.
Finally, these two errors approach the same level. This state can be defined
as the error minimized state when the buffer size is small and the worst-case
interaction is in the nearest box pair.

(b-5) P = 35.
If the truncation number is still increased, the error from all the nearest
neighbor interactions tends to diverge.

3.2.2. Worst-case interaction not in a nearest box pair. We assume that
the worst-case interaction (δ = 1) is in the pair between boxes 17 and 23 (n= 5).
Figure 7 shows the prediction of the slowest convergence line for the worst-case inter-
action and the minimum error line for the 1-box buffer case. The numerical experiment
for a row of 40 contiguous boxes is shown in Figure 8.

(c-1) P = 15.
All the errors are in the process of converging. We can recognize that the
dominant error comes from the worst-case interaction for boxes 17 and 23.
The error for the related boxes is still large.

(c-2) P = 20.
The errors for the worst-case interaction and their related boxes are still in
the process of converging. At this stage, we can recognize that another error
comes from all the nearest neighbor interactions.

(c-3) P = 22: Error minimized state.
This state is determined by the convergence rate of the worst-case interaction
and the divergence rate of the nearest neighbor interactions. When these two
errors are of the same level, the total error from all the interaction pairs is
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(a) P = 15.
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(b) P = 20.
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(c) P = 22: Error minimized state.
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(d) P = 28: Optimal worst state.

Fig. 8. Error convergence process for a small buffer case. The worst-case interaction is assumed
not to be in the nearest box pair.

minimized. To find this state, we need to know the information about the
placement of the true worst-case interaction.

(c-4) P = 28: Optimal worst state.
The error from the nearest neighbor becomes larger and the error from the
worst-case interaction completely converges. This state is the same as (b-4)
for the worst-case interaction in the nearest box pair. If there is no informa-
tion about the placement of the true worst-case interaction, we need to choose
this number under the assumption that the worst-case interaction exists in
the nearest box pair.

Next, we will investigate the error minimized state when the worst-case interaction
(δ = 1) consists of the farthest pair, that is, box 1 and box 40. There is a 38-box
buffer between this worst pair. Figure 9 shows the error minimized state when P = 22.
We can recognize that this state is determined by the worst-case interaction and the
buffer size.
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Fig. 9. Error minimized state determined by the farthest box pair (P = 22).
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Fig. 10. Slowest convergence line due to the interaction and the buffer size.

4. Difficulties of error minimization. We have clarified that the information
about the worst-case interaction is needed to minimize the truncation error for small
buffer cases. However, finding the worst-case interaction and selecting the proper
truncation number is not easy.

4.1. Worst-case interaction. We have used the term worst-case interaction
without much elaboration. Generally speaking, it is difficult to recognize which in-
teraction is the worst case. We investigate convergence processes of the interaction
parameter δ = 0.6 for a 1-box buffer pair and δ = 0.7 for a 2-box buffer pair. Figure 10
shows the numerical result for these parameters. We can see that the error for the
former case (δ = 0.6, n = 1) is larger than that for the latter case (δ = 0.7, n = 2)
on the minimum error line. This example suggests that the worst-case interaction for
small buffer cases is determined by the combination of the interaction parameter δ
and the buffer size n.
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Fig. 11. Difference of convergence processes between the assumed worst-case interaction and
the true worst-case interaction for a 1-box buffer case.

4.2. Truncation number. Even if we can find the worst-case interaction some-
how, selecting the proper truncation number is still a difficult problem. Two examples
are considered here.

We assume that the worst-case interaction is found for a 1-box buffer pair and its
interaction parameter δ = 0.7. Using this information, the convergence rate indicated
by the solid line in Figure 11 is predicted. The error can be minimized only for
the selection P = PT and becomes larger for PA. In this case, the number PT

can be easily found considering the interaction parameter, such as PT :=
√

2δka +
12.3(δka)1/3.

Next, we assume that a 2-box buffer pair has the worst-case interaction whose
parameter δ = 0.7. Figure 12 shows the prediction in this case. The same thing as
in the previous example happens. We need to select PT instead of PA to minimize
the error for the true worst-case interaction. However, this selection is not proper,
since the error from any 1-box buffer pair becomes larger than the error from the
worst-case interaction for this choice. Therefore, we need to select P = PT1

instead
of PT . This is another difficulty in minimizing the error. Since the selection depends
on the placement of the worst-case interaction, other cases may arise.

5. Basic information. Before discussing algorithms to minimize the error, we
will consider the information without searching for any interactions.

5.1. Optimal worst case. The given conditions without searching for any inter-
actions are a box size ka and a buffer size (n+1)ka. The solid lines in Figure 13 corre-
spond to the minimum error lines for the fixed box size. Since the worst case (δ = 1) is
assumed to exist, the truncation number should be selected as P =

√
2ka+12.3(ka)1/3

to minimize the error. For this choice, the error for different box buffer cases is in-
dicated by dots. The dominant error comes from the 1-box buffer pair and the error
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Fig. 12. The way to find the proper truncation number to minimize the total error for a 2-box
buffer case.
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Fig. 13. Choice of the truncation number for the optimal worst case, n-box search, and projection.

from other boxes is smaller and negligible. The minimum error line converges to the
value 10−15 for 0 < P <

√
2ka+12.3(ka)1/3, when the number of buffer sizes satisfies

n > 0.4 + 12.3(ka)−2/3.
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5.2. Box search. If we search elements in all the boxes individually and find
the maximum distance rmax between an element and a box center, usually the error
becomes smaller than that for the optimal worst case. Using the value rmax, we
can substitute the interaction parameter δ = rmax/

√
2a (< 1), which is assumed to

be δ = 0.8 here. Compared with the optimal worst case, the errors for this choice
(indicated by circles in Figure 13) become smaller. The dominant error still comes
from the 1-box buffer pair.

5.3. Projection. If the truncation error is minimized, this value always should
be found somewhere on the minimum error line for the smallest buffer case, that is,
the 1-box buffer case for this example. After performing the box search, the largest
interaction parameter is assumed to be δ = 0.8. If this interaction truly exists for a 1-
box buffer pair, the truncation number should be selected as P �

√
2δka+12.3(δka)1/3

to minimize the error. However, we have not investigated all the interactions yet; there
are various scenarios.

Let us assume that a 2-box buffer pair has the worst-case interaction whose pa-
rameter is δ = 0.8. Although the error of this pair can be minimized for the same
truncation number P �

√
2δka + 12.3(δka)1/3 as that for the 1-box buffer pair, this

number cannot be selected. We should project this truncation number on the min-
imum error line for the 1-box buffer case indicated by triangles, as shown in Fig-
ure 13. To minimize the total error, we need to change the selection in this man-
ner.

Next, we will discuss the way to find the projected point which is at the in-
tersection between the minimum error line for the 1-box buffer case and the slowest
convergence line for the worst-case interaction. If the interaction parameter δ is given,
the convergence line for each buffer case can be predicted by the dashed-dotted line
in Figure 13. The truncation number P at the projected point satisfies the following
condition:

15 −
[

P − (na + 1)ka

1.8[(na + 1)ka]1/3

]3/2

=

[
P −

√
2δka

2.0(δka)1/3

]3/2

−
[

P − (nb + 1)ka

1.8[(nb + 1)ka]1/3

]3/2

,(10)

where na is the smallest number of buffer boxes and nb is the number of buffer boxes
to find the slowest convergence line. Since the general solution does not exist for
finding P , the value should be found approximately. Here, we will give an example
for finding the intersection for the minimum error line for the 1-box buffer case and
the slowest convergence line for the 2-box buffer case. The errors at five points M1

to M5, shown in Figure 14, can be predicted as follows:
(k-1) err1 at M1.

The error for the truncation number P1 = (nb + 1)ka can be predicted by
using the transformed excess bandwidth formula,

log(1/ err1) =

[
P1 −

√
2δka

2.0(δka)1/3

]3/2

.(11)

(k-2) err2 at M2.
The error for the truncation number P2 =

√
2δka + 12.3(δka)1/3 can be

predicted by using the new approach,

log(1/ err2) = 15 −
[

P2 − (nb + 1)ka

1.8[(nb + 1)ka]1/3

]3/2

.(12)
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Fig. 14. The way to find the projected points.

Using this information, the segment M1M2 can be approximated by the linear inter-
polation. Next, we approximate the minimum error line for the 1-box buffer case.

(k-3) err3 at M3.
We can predict the minimum error for P3 = (na + 1)ka by using the new
approach,

log(1/ err3) = 15 −
[

P3 − (na + 1)ka

1.8[(na + 1)ka]1/3

]3/2

.(13)

(k-4) err4 at M4.
The error for the truncation number P4 =

√
2δka + 12.3(δka)1/3 can be

predicted by using the new approach,

log(1/ err4) = 15 −
[

P4 − (na + 1)ka

1.8[(na + 1)ka]1/3

]3/2

.(14)

(k-5) err5 at M5.
Considering the truncation number P3 and P4, another number can be se-
lected as P5 = 0.5(P3 + P4). For this number, the error can be predicted
by

log(1/ err5) = 15 −
[

P5 − (na + 1)ka

1.8[(na + 1)ka]1/3

]3/2

.(15)

The segment M3M4M5 can be approximated by quadratic interpolation. The inter-
section point IS can be determined by using these approximated two segments. The
same method can be applied to finding the projected points for the other buffer pairs.
We do not need to continue this routine for all the buffer pairs, since the slowest
convergence line becomes the same one for increasing the buffer box size.
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Fig. 15. Buffer-based search for the 1-box buffer case: The worst error is found on Segment I.

Using the projected points, we can divide the minimum error line for the 1-box
buffer case into the following three segments (Figure 15):

(l-1) Segment I: between a and b.
If the minimized error is found on this segment, the worst-case interaction
should exist for a 1-box buffer pair.

(l-2) Segment II: between b and c.
The worst-case interaction should be found for 1-box buffer or 2-box buffer
pairs. The error for other box buffer pairs can be made smaller than this
value.

(l-3) Segment III: the rest of the line.
If the minimized error is found in this segment, the worst-case interaction can
exist for any box pairs.

6. Search algorithms. Considering the basic information, we propose search
algorithms to minimize the truncation error and clarify their advantages and disad-
vantages.

6.1. Buffer-based search. The buffer-based search stands for searching the
worst-case interaction in terms of changing the buffer size. Starting from all the 1-
box buffer pairs, we will increase the buffer size until the worst-case interaction is
found.

After searching all the interactions for 1-box buffer pairs, we can find the largest
interaction parameter δ1 among them. The truncation number to minimize this error
can be selected as P =

√
2δ1ka+12.3(δ1ka)

1/3. This error should be found somewhere
on the minimum error line for the 1-box buffer case. The following three cases may
arise, as shown in Figure 15:

(m-1) Case 1 (dot): error on Segment I.
If the error is found on Segment I, we do not need to search other box buffer
pairs. This is the minimized error.
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2062 SHINICHIRO OHNUKI AND WENG CHO CHEW

(m-2) Case 2 (triangle): error on Segment II.
The error can be considered as the lower bound. The upper bound is deter-
mined by the projected value for the 2-box buffer case. We need to search all
the 2-box buffer pairs, and then the worst-case interaction can be determined.

(m-3) Case 3 (square): error on Segment III.
The error can be considered as the lower bound. The upper bound is the
same as that for the projected one for the 2-box buffer case. We need to
search all the 2-box buffer pairs.

If the error is found on Segment II or III, we need to continue the search for all
the 2-box buffer pairs, and the largest interaction parameter for a 2-box buffer pair
can be found such as δ2. The projected value for P =

√
2δ2ka + 12.3(δ2ka)

1/3 can
be found on Segment II or III. Considering the previous conditions, there are the
following four possibilities:

(n-1) Case 2.1: error on Segment II.
In the previous step, the error is found on Segment II. The minimized error
is determined by the larger value, this one or the error for Case 2. We can
stop searching here.

(n-2) Case 2.2: error on Segment III.
In the previous step, the error is found on Segment II. The minimized error
is the error for Case 2. We can stop searching here.

(n-3) Case 3.1: error on Segment II.
In the previous step, the error is found on Segment III. This value is the
minimized error. We can stop searching here.

(n-4) Case 3.2: error on Segment III.
In the previous step, the error is found on Segment III. Compared with the
error for Case 3, the larger one can be considered as the lower bound. The
upper bound becomes the projected value for the 3-box buffer case.

Only for Case 3.2 do we need to continue the search for all the 3-box buffer pairs.
After performing this, the projected value can be found in Segment III. Compared
with the lower bound in the previous step, the larger one can be set as the new lower
bound. If this value is not equal to the upper bound, we need to search all the 4-box
buffer pairs. We can stop searching only when the projected value becomes the same
as the upper bound or all the pairs are searched. This is the disadvantage.

6.2. Element-based search. The element-based search stands for searching the
worst-case interaction in terms of distribution. When we perform the box search in
section 5.2, it is possible to store the information about the distance of each element
from the box center. Starting from the box which contains the longest distance
element, we will search all the possible pairs. If we cannot find the pair for the worst-
case interaction, the same search is performed for the box which contains the second
longest distance element with other boxes.

This method is based on finding the largest interaction parameter δ. If a pair
which contains these elements is found for a large buffer pair, we cannot conclude
that this is the worst-case interaction, because there is a possibility that a smaller δ
for a smaller buffer pair becomes the worst-case interaction, as shown in Figure 10.
Therefore, all the possible pairs need to be searched in general. This is the disadvan-
tage.

6.3. Combination search. To combine the advantages of the above two algo-
rithms, we perform the buffer-based search first and then switch to the element-based
search when the upper bound is fixed. In section 6.1, we have shown that the mini-
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Fig. 16. Definition of range of the interaction parameter: δmax and δmin.

mized error can be determined by using only the buffer-based search for Cases 1, 2,
and 3.1. Here, we discuss the way to minimize the error for Case 3.2.

We perform the buffer-based search for the 1-box and 2-box buffer pairs. After
finishing the 2-box buffer pair search, the upper bound and lower bound are fixed. As
the next step, we project the lower bound, indicated by the square in Figure 16, on
the minimum error line for the 3-box buffer case, since the interaction parameter for
this value depends on the number of buffer boxes (see Figure 16). Therefore, we need
to estimate the equivalent interaction parameter δmin for the lower bound in terms of
the 3-box buffer case. The assumed largest interaction parameter δmax is the same
as δ = 0.8 in this case. Using these two values, the interaction parameter δ for the
worst-case interaction is bound by δmin ≤ δ ≤ δmax, as shown in Figure 16.

Next, we start the element-based search for the box that contains the longest
distance element and all other boxes except 1-box and 2-box buffer cases. After
this search, even if we do not find the interaction parameter which makes the lower
bound larger, the upper bound always becomes smaller, which is replaced by the
second largest element as the next search, since we exclude all the possibilities for
δmax = 0.8. The advantages of this method are as follows:

1. All the pairs for small box buffer cases are investigated first. The upper
bound can be made smaller after each search.

2. When the upper bound fully converges to a certain value, the element-based
search is applied. Again the upper bound always becomes smaller after each
search.

6.4. Computational verification. Here, we verify the advantage of our er-
ror minimization techniques to compare absolute relative errors for various control
methods. Errors are computed for randomly distributed elements inside the previ-
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Table 1

The number of searches to reach the error minimized state by various methods. The absolute
relative error is computed for randomly distributed elements inside 40 contiguous square boxes. To
vary the starting value of the pseudorandom process, three examples are considered for M = 1 and
4, where M is the number of elements in each box. P is the truncation number for the multipole
expansion given by each method. The prediction means the estimated error and the error shows the
true computational error.

Method P Prediction Error Number P Prediction Error Number P Prediction Error Number
Excess Bandwidth 28 1.0E-15 1.2E-05 0 28 1.0E-15 1.2E-05 0 28 1.0E-15 1.1E-05 0

New Approach 28 1.2E-05 1.2E-05 0 28 1.2E-05 1.2E-05 0 28 1.2E-05 1.1E-05 0
Direct Method 24 - 4.2E-09 20748 22 - 4.6E-10 20748 25 - 7.1E-08 20748

Buffer-Based Search 23 1.3E-09 4.6E-09 38 22 1.9E-10 4.6E-10 741 25 3.8E-08 7.1E-08 38
Element-Based Search 23 1.3E-09 4.6E-09 741 22 1.9E-10 4.6E-10 741 25 3.8E-08 7.1E-08 741
Combination Search 23 1.3E-09 4.6E-09 38 22 1.9E-10 4.6E-10 175 25 3.8E-08 7.1E-08 38

Case 1 Case 2 Case 3

(a) M = 1.

Method P Prediction Error Number P Prediction Error Number P Prediction Error Number
Excess Bandwidth 28 1.0E-15 1.2E-05 0 28 1.0E-15 1.2E-05 0 28 1.0E-15 1.2E-05 0

New Approach 28 1.2E-05 1.2E-05 0 28 1.2E-05 1.2E-05 0 28 1.2E-05 1.2E-05 0
Direct Method 25 - 6.0E-08 331968 24 - 7.8E-08 331968 26 - 1.7E-07 331968

Buffer-Based Search 25 9.7E-08 6.0E-08 608 25 9.5E-08 9.0E-08 608 26 2.7E-07 1.7E-07 608
Element-Based Search 25 9.7E-08 6.0E-08 11856 25 9.5E-08 9.0E-08 11856 26 2.7E-07 1.7E-07 11856
Combination Search 25 9.7E-08 6.0E-08 608 25 9.5E-08 9.0E-08 608 26 2.7E-07 1.7E-07 608

Case 1 Case 2 Case 3

(b) M = 4.

ously assumed 40 contiguous square boxes and the maximum value is picked up. It
is shown in the column “Error” in Table 1. To vary the starting value of the pseu-
dorandom process, three examples are considered for M = 1 and 4, where M is the
number of elements in each box. The number of elements N corresponds to 40M .

The excess bandwidth stands for selecting the truncation number P by (5) under
the condition d0 = 15. The same truncation number is given by (8) for δ = 1 in
terms of the new approach. Considering the prediction, the new approach is always
better. The number of searches to reach the error minimized state shown in the
column “Number” is zero for both methods.

The direct method consists of computing errors of all the possible pairs for chang-
ing the truncation number P and selecting the minimized one. It is much smaller than
the error given by the new approach. Although the error can be minimized by this
method, the number of searches is proportional to O(N2).

The advantage of the proposed algorithms clearly can be seen in the table. They
give the precise truncation number to reach the error minimized state and the excellent
error prediction for all the cases. The combination search is the most efficient, and the
number of searches is drastically reduced and proportional to O(N). The buffer-based
search is of the same cost except for Case 2 in Table 1(a).

7. Conclusions. We have studied the condition to minimize the truncation error
of the multipole expansion. For large buffer cases, the truncation number is selected
to control the worst-case interaction, which is assumed to exist. If the error is mini-
mized for the assumed worst case, the total error from all the interaction pairs is also
minimized. For small buffer cases, the truncation number is selected to control the
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ERROR MINIMIZATION OF MULTIPOLE EXPANSION 2065

worst-case interaction, which is assumed to be in the nearest box pair. However, the
truncation number which minimizes the error for the assumed worst case usually does
not minimize the total error from all the possible pairs.

Our computational results show that the combination search gives the excellent
error prediction and precise truncation number to reach the error minimized state
without searching through all the possible pairs. The cost is proportional to O(N),
where N is the number of elements. For many cases, the error can be minimized by
using the buffer-based search with the same computational cost.
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