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ABSTRACT 

 
A brain–computer interface (BCI) P300 speller is a novel 

technique that helps people spell words using the 
electroencephalography (EEG) without the involvement of 
muscle activities. However, only time domain ERP features 
(P300) are used for controlling of the BCI speller. In this 
paper, we investigated the time-frequency EEG features for 
the P300-based brain–computer interface speller. A signal 
preprocessing method integrated ensemble average, 
principal component analysis, and independent component 
analysis to remove noise and artifacts in the EEG data. A 
time-frequency analysis based on wavelet transform was 
carried out to extract event-related spectral perturbation 
(ERSP) and inter-trial coherence (ITC) features. Results 
showed that the proposed signal processing method can 
effectively extract EEG time-frequency features in the P300 
speller, suggesting that ERSP and ITC may be useful for 
improving the performance of BCI P300 speller. 
 

Index Terms— Brain-computer interface, event-related 
potentials, event-related spectral perturbation; inter-trial 
coherence, P300 
 

1. INTRODUCTION 
 
A brain–computer interface (BCI) provides alternative 
communication and control channels to convey messages 
and commands from the brain to the external world [1], with 
the aim of assisting, augmenting, or repairing human 
cognitive or sensory-motor functions, especially for those 
patients with severe neurological or muscular diseases. At 
present, electroencephalogram (EEG) is the major type of 
brain signal used for non-invasive BCIs. One strategy of 
EEG-based BCI involves the use of event related potential 
(ERP) that exploits the brain responses to a certain event.  

The most robust feature of the ERP is a positive 
displacement occurring around 300 ms after infrequent 
stimuli, termed the P300 [2]. More precisely, a P300 
response is a positive EEG defection that occurs during 
200~700 ms (typically 300 ms) after stimulus onset, and is 
typically recorded over the central-parietal scalp. The 

response is evoked by attention to rare stimuli in a random 
series of stimulus events (i.e., the oddball paradigm). The 
P300 is used in the BCI P300 speller system as it appears to 
be closely associated with the cognitive processes [3-5]. To 
date, the P300 features (such as its peak latency and 
amplitude) have been widely utilized for designing a BCI 
speller [3-5].  

Recently, more and more evidences have shown that, 
infrequent stimuli induce not only time-locked and phase-
locked P300 response, but also several time-locked but non-
phased locked EEG oscillatory responses, like event-related 
spectral perturbation (ERSP) and inter-trial coherence (ITC) 
[6,7]. The ERSP reflects the influence of the stimulation on 
the power spectrum, and can prove the evoked response 
theory [8]. The ITC provides a measure of phase locking 
(with a range of 0-1 covering from no coupling to complete 
phase locking) [8]. These ERSP and ITC features exhibit 
certain patterns in the time-frequency domain and contain 
relevant and complementary information with P300, and 
might have the potential to provide new or extra features to 
increase the performance of conventional P300-based 
speller. This study focuses on the feature extraction part in 
the BCI system. In this paper, we aim to develop a signal 
processing approach for extraction of ERSP and ITC from 
EEG data recorded in a P300 BCI paradigm.  
 

2. MATERIALS AND METHODS 
 
2.1. Stimuli and data acquisition 
 

We used the EEG dataset from Dataset IIb (P300 
speller paradigm) obtained from the BCI Competition 2003 
data bank. The signals (band-pass filtered from 0.1-60Hz 
and digitized at 240 Hz) were collected from the subject in 
five sessions. Each session consisted of a number of runs. In 
each run, the subject focused attention on a series of 
characters. For each character epoch in the run, user display 
was as follows: the matrix was displayed for a 2.5 s period, 
and during this time each character had the same intensity 
(i.e., the matrix was blank). Subsequently, each row and 
column in the matrix was randomly intensified for 100 ms 
(i.e., resulting in 12 different stimuli of six rows and six 
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columns (Fig. 1). After intensification of a row/column, the 
matrix was blank for 75 ms. Row/column intensifications 
were block randomized in blocks of 12. The sets of 12 
intensifications were repeated 15 times for each character 
epoch (i.e., any specific row/column was intensified 15 
times, resulting in 180 total intensifications for each 
character epoch). Each character epoch was followed by a 
2.5 s period during which time the matrix was blank. This 
period informed the user that this character was completed 
and to focus on the next character in the word that was 
displayed on the top of the screen (the current character was 
shown in parentheses). 

We analyze the EEG signals acquired from the 
stimulation to 1 s after. For each character, it contains 15 
blocks. And each block contains 12 trials (i.e. the 
stimulation of 6 rows and 6 columns). The sample rate is 
240 Hz with 64 channels. So for each character, a 
64×180×240 matrix (64 channels×15 blocks×12 trials×240 
Hz) will be generated. 
 
2.2. Data preprocessing 
 

As it was difficult to identify the P300 in a single trial, 
and as there was also some noise in the signals, pre-
processing of the signals was required. As the frequency of 
the P300 signals was usually below 30 Hz, a Butterworth 
filter was used as the low-pass filter with a cut-off frequency 
of 30 Hz. The signals were then processed using ensemble 
average, principal component analysis (PCA), and 
independent component analysis (ICA) by EEGLAB 5.02 
(http://sccn.ucsd.edu/eeglab/) [8].  

 
2.2.1. Ensemble average 

The ensemble average technique is typically used to 
process weak signals, such as EEG-P300, with a strong 
noise and to improve the signal-noise ratio (SNR) of the 
signals. The SNR was defined as 2/δPSNR = , where P is 
the power of ideal P300 signal and 2δ  is the variance of the 
noise. After coherence an average of n trials with the same 
stimulus, the variance of the noise will be reduced to n/2δ , 
so the new SNR of P300 waveforms will become n times 
larger. 

 
2.2.2. Principle component analysis 

PCA involves a mathematical procedure that transforms 
a number of possibly correlated variables into a smaller 
number of uncorrelated variables termed principal 
components. The first principal component accounts for as 
much of the variability in the data as possible, and each 
succeeding component accounts for as much of the 
remaining variability as possible. PCA is theoretically an 
optimal linear scheme for compressing a set of high 
dimensional vectors into a set of lower dimensional vectors 
and then reconstructing the original set.  

The steps to process the EEG data by PCA are as 
follows. First, estimate the sample covariance matrix of the 

high-dimensional EEG signal after processed by coherence 
average. Second, calculate the eigenvalues and eigenvectors 
of the covariance matrix of EEG data. Third, choose P300-
related principle components (for example, based on the 
power of a component or its similarity to P300 response). 
Fourth, the new low-dimensional signal can be 
reconstructed from a few selected principal components. 

 
2.2.3. Independent component analysis 

ICA is a statistical and computational technique for 
revealing hidden factors that underlie sets of random 
variables, measurements, or signals. ICA defines a 
generative model for the observed multivariate data, which 
is typically given as a large database of samples. In the 
model, the data variables are assumed to be linear mixtures 
of some unknown latent variables, and the mixing system is 
also unknown. The latent variables are assumed non-
Gaussian and mutually independent, and they are termed the 
independent components of the observed data in the context 
of ICA. These independent components, also termed sources 
or factors, can be found by various ICA algorithm [9].  

In this study, we employed the Infomax ICA algorithm 
based on stochastic gradient learning rules [8]. The Infomax 
algorithm explicitly tries to maximize the joint entropy of a 
nonlinear function of the separated outputs; however, it 
implicitly minimizes the mutual information between the 
separated outputs so as to make them mutually independent. 
Note that we assume here that the number of independent 
components is equal to the number of observed variables 
(i.e., number of principal components for PCA-processed 
EEG data).  
 
2.3. Feature extraction 
 

The wavelet-based time-frequency analysis is used to 
clarify the time course of the evoked and phase-resetting 
EEG contributions to the ERPs. The ERSP indicates 
changes in power (in dB) as a function of frequency over the 
time-course of the ERP. The ITC provides a measure of 
phase locking again as a function of frequency over the 
time-course of the ERP. These two measures thus allow 
insight into the interplay of the evoked and phase locking 
mechanisms as a function of time.  

To determine the phase and time course of oscillatory 
activity, we used the complex exponential form of the 
sinusoidal wavelet to analysis the power spectral and the 
phase spectral properties. The analytical expression of the 
complex exponential wavelet is ( ) ( ) ( )tjtWt πψ 2exp= , 
where W(t) is the window function. The definition of the 
time-frequency analysis for the signal x is: 
 ( ) ( ) ( )( ) ( )[ ]dutufjtufWuxtfF −−−= ∫ π2exp,  (1) 
where f and t stand for the frequency and the time, 
respectively.  

The wavelet transform was performed for each 
individual trial, and the absolute values of the resulting 
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transforms were averaged. The ERSP is delimited as 
follows: 
 

∑= ),(1),( tfF
n

tfERSP k  (2) 

where n is the total number of the trials.  ),( tfFk  is the 
time-frequency distribution of the kth trial. ERSP reflects 
the influence to the power spectrum by the stimulation. On 
the other hand, the definition of ITC is: 
 

∑ =
= n

k
k

k

tfF
tfF

n
tfITC

1 ),(
),(1),( . (3) 

The degree of phase-locking was calculated by ITC, which 
reflects the homogeneity of the instantaneous phase across 
single trials. ITC values between 0 for randomly distributed 
phases and 1 for phases are strictly phase-locked to stimulus 
onset across trials [4]. 

 
3. RESULTS AND DISCUSSION 

 
The EEG data of each electrode was separated after 

stimulation for 1 s. At sampling rate of 240 Hz, a 180×240 
data matrix (15 blocks×12 trials×240 Hz) was generated. 
Data from the row and column trial including the focused 
character were respectively averaged across all 15 blocks. 
The averaged row and column data were connected end to 
end. Then for each electrode there were a 1×480 vector 
(1×240 for row: 1×240 for column), and for each character 
there were a 64×480 matrix. 

The EEG data processed by PCA and ICA can be seen in 
Fig. 2. The signal dimension is successfully reduced from 
64 to 2 (two principal components) by PCA method. Then, 
two independent components are transformed from these 
two principal components by ICA method, as shown in Fig. 
2. According to the prior knowledge (such as latency and 
shape) of P300, the second component is considered to 
reflect the P300. Furthermore, from the component we can 
easily determine the time domain properties of the P300. 
However, we can only observe the time delay of the P300 
signals from the time analysis, without any information on 
the genesis of the P300 signals. 

The EEG signals, which have already been processed 
by PCA and ICA, are then analyzed. As we know there is 
only one component in each EEG signal, then there will be 
one set of ERSP and ITC results for the signals without the 
P300 and one set of results for the signals with the P300. 
The ERSP and ITC values of 20 respective signals without 
P300 and with P300 can be seen in Fig. 3, in which the 
difference between signals with P300 and signals without 
P300 is obvious. ERSP reflects the influence on the power 
spectrum by the stimulation, while ITC reflects the 
homogeneity of the instantaneous phase across single trials. 
In Fig. 3 (a), both the ERSP and the ITC obviously show the 
P300 components in these trials, while such P300-related 
components cannot be seen in Fig. 3 (b). Thus, overall the 

above analysis suggests that both phase resetting and evoked 
activity contribute to the genesis of the P300 component.  
 

4. CONCLUSION 
 
In this paper, we developed a signal processing approach to 
analyze time-frequency features of EEG data in a P300 BCI 
speller. By analysis of event-related EEG responses in the 
time-frequency domain via computing the ERSP and ITC of 
the P300, we determined that both time-locked and phase-
locked features existed in EEG responses recorded in the 
BCI P300 speller. The joint analysis of ERSP and ITC 
demonstrated the validity of our proposed feature extraction 
method. This study may be useful for not only improving 
the BCI P300 speller design and its signal processing 
strategies but also extracting and analyzing other visual and 
auditory or somatosensory evoked potentials.  

 
5. ACKNOWLEDGMENTS 

 
This research was partially supported by National Natural 
Science Foundation of China (No.60501005), The National 
High Technology Research and Development Program of 
China (No.2007AA04Z236), Biomedical Engineering Key 
Program (No.07ZCKFSF01300) and Intentional 
Cooperation Key Program (No. 08ZCGHHZ00300) of 
Tianjin Science Technology Support Plan, HKU CRCG 
Seed Funding Programme for Basic Research (No. 
201203159009). 
 

6. REFERENCES 
 

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. 
Pfurtschellere, and T. M. Vaughan, “Brain-computer 
interfaces for communication and control,” Clin. 
Neurophysiol., vol. 113, vol. 6, pp. 767-791, Jun. 2002. 

[2] Luck, S. J., An Introduction to the Event-Related Potential 
Technique, The MIT Press, Cambridge, MA, 2005, pp.28-36. 

[3] B. Blankertz, K. R. Mueller, G. Curio, T. M. Vaughan, G. 
Schalk, J. R. Wolpaw, A. Schloegl, C. Neuper, G. 
Pfurtscheller, T. Hinterberger, M. Schroeder, and N. 
Birbaumer, “The BCI Competition 2003: Progress and 
perspectives in detection and discrimination of EEG single 
trials,” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 1044-
1051, Jun. 2004. 

[4] N. Xu, X. R. Gao, B. Hong, X. B. Miao, S. K. Gao, and F. S. 
Yang, “BCI competition 2003—data set IIb: enhancing P300 
wave detection using ICA-based subspace projections for BCI 
applications,” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 
1067-1072, Jun. 2004. 

 [5] E. W. Sellers, A. Kübler, and E. Donchin, “Brain-computer 
interface research at the University of South Florida cognitive 
psychophysiology laboratory: The P300 speller,” IEEE Trans. 
Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp.221-224, Jun. 
2006. 

[6] V. Kolev, T. Demiralp, J. Yordanova, A. Ademoglu, and U. 
Isoglu-Alkaç, “Time-frequency analysis reveals multiple 
functional components during oddball P300,” Neuroreport, 
vol. 8, no. 8, pp. 2061-2065, May 1997. 

65



[7] J. Yordanova, V. Kolev, and J. Polich, “P300 and alpha event-
related desynchronization (ERD),” Psychophysiology, vol. 38, 
no. 1, pp. 143-152, Jan. 2001. 

[8] A. Delorme and S. Makeig, “EEGLAB: An open source 
toolbox for analysis of single-trial EEG dynamics including 
independent component analysis,” J. Neurosci. Methods, vol. 
134, no.1, pp. 9-21, Mar. 2004. 

[9] A. Hyvärinen and E. Oja, “Independent component analysis: 
Algorithms and applications,” Neural Netw., vol. 13, no. 4-5, 
pp. 411-430, 2000. 

[10] D. Ming, X. An, Y. Xi, Y. Hu, B. Wan, H. Qi, Y. Cheng, and 
Z. Xue, “Time-locked and phase-locked features of P300 
event-related potentials (ERPs) for brain-computer interface 
speller,” Biomed. Signal Process. Control, vol. 5, pp. 243-
251, 2010. 

 

Fig. 1. User display and the assignment of Stimulus Code 
for this paradigm. In this example, the users’ task is to spell 
the word ‘SEND’ (one character at a time). For each 
character, all rows and columns in the matrix were 
intensified a number of times (e.g., the third row in this 
example) as described in the text. The right panel illustrates 
the assignment of the variable Stimulus Code to different 
row/column intensifications (from [10]). 
 

 
Fig. 2.  EEG components processed by PCA and ICA, 
which include the P300 responses when a word is spelt. 
Two components were retained after the PCA and ICA 
operations. According to the prior knowledge (for example, 
the latency of P300 peak and the shape of P300), the second 
component is considered to contain the P300 component 
and is used for subsequent analysis (redraw from [10]). 

Fig. 3.  The ERSP (in dB) of 20 averaged epochs processed 
by PCA and ICA. (a) ERSP of the epochs with P300; the 
ERSP towards 300ms are larger than for the other period. 
(b) ERSP of the epochs without P300; there were no 
differences towards different time and frequency and the 
ERSP values were random and low. 
 

Fig. 4.  The ITC of 20 averaged epochs processed by PCA 
and ICA. (a) ITC of the epochs with P300; the ITC towards 
300ms are larger than for the other period. (b) ITC of the 
epochs without P300; there were no differences towards 
different time and frequency and the ITC values were 
random and low. 
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