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Recently, a modified theory of gravity was presented, which consists of the superposition of the metric

Einstein-Hilbert Lagrangian with an fðRÞ term constructed à la Palatini. The theory possesses extremely

interesting features such as predicting the existence of a long-range scalar field, that explains the late-time

cosmic acceleration and passes the local tests, even in the presence of a light scalar field. In this brief report,

we consider the possibility that wormholes are supported by this hybridmetric-Palatini gravitational theory.

We present here the general conditions for wormhole solutions according to the null energy conditions at the

throat and find specific examples. In the first solution, we specify the redshift function, the scalar field and

choose the potential that simplifies the modified Klein-Gordon equation. This solution is not asymptotically

flat and needs to be matched to a vacuum solution. In the second example, by adequately specifying the

metric functions and choosing the scalar field, we find an asymptotically flat spacetime.

DOI: 10.1103/PhysRevD.86.127504 PACS numbers: 04.20.Jb, 04.50.Kd

I. INTRODUCTION

Wormholes are hypothetical shortcuts in spacetime and
are primarily useful as ‘‘gedanken experiments’’ and as a
theoretical probe on the foundation of general relativity [1].
In classical general relativity, it is well known that worm-
holes possess a peculiar property, namely, ‘‘exotic matter,’’
involving a stress-energy tensor T�� that violates the null

energy condition (NEC) at the throat, i.e., T��k
�k� < 0,

where k� is any null vector. However, it has been recently
shown that in the context of modified gravity, the stress-
energy tensor of standard matter can be imposed to satisfy
the usual energy conditions and it is the higher order curva-
ture terms that support these exotic geometries [2].

In fact, modified gravity [3] has mainly been revived to
explain the late-time cosmic acceleration. Indeed, general-
izations of these modified gravitational theories have also
been extensively analyzed in the literature, such as C
theories [4], nonminimal curvature-matter couplings [5],
etc. A natural way to obtain solely gravitational modifica-
tions of the behavior of matter emerges in the Palatini
formulation of extended gravity actions [6]. In the latter,
the relation between the independent connection and the
metric depends upon the trace of the matter stress-energy

tensor in such a way that the field equations effectively
feature extra terms given by the matter content. However,
since the extra terms are fourth order in (spatial) deriva-
tives [7], some models of these theories are problematical
both at the theoretical and phenomenological levels [8].
In this context, a novel approach to modified theories of

gravity was recently proposed, consisting of adding to the
metric Einstein-Hilbert Lagrangian an fðRÞ term con-
structed à la Palatini [9]. It was shown that using the
respective dynamically equivalent scalar-tensor represen-
tation, the theory passes the Solar System observational
constraints even if the scalar field is very light and also
leads to the late-time cosmic acceleration. Cosmological
applications have also been extensively analyzed [10].
In this brief report, we consider the possibility that

wormhole geometries are supported by the above-
mentioned hybrid metric-Palatini theory. We present the
generic conditions relative to the NEC and provide two
specific solutions.

II. HYBRID METRIC-PALATINI GRAVITY

The action for the hybrid metric-Palatini gravity is

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ fðRÞ� þ Sm; (1)

where �2 � 8�G, Sm is the matter action, R is the metric
Einstein-Hilbert term,R � g��R�� is the Palatini curva-

ture, and R�� is defined in terms of an independent

connection �̂�
�� as
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R �� � �̂�
��;� � �̂�

��;� þ �̂�
���̂

�
�� � �̂�

���̂
�
��: (2)

Varying the action (1) with respect to the metric, one
obtains the following gravitational field equations:

G�� þ FðRÞR�� � 1

2
fðRÞg�� ¼ �2T��; (3)

where the matter stress-energy tensor is defined as T�� �
�ð2= ffiffiffiffiffiffiffi�g

p Þ�ð ffiffiffiffiffiffiffi�g
p

LmÞ=�g��. The independent connec-

tion is compatible with the metric FðRÞg��, conformal

to g��; the conformal factor is given by FðRÞ �
dfðRÞ=dR. The latter considerations imply that

R�� ¼ R�� þ 3
2

1
F2ðRÞFðRÞ;�FðRÞ;� � 1

FðRÞ r�FðRÞ;�
� 1

2

1

FðRÞg��hFðRÞ: (4)

Note that R can be obtained from the trace of the field
equations (3), which yields FðRÞR� 2fðRÞ � R ¼ �2T.

Introducing an auxiliary field, the hybrid metric-Palatini
action (1) can be turned into a scalar-tensor theory given by
the following action (we refer the reader to Ref. [9] for
more details):

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ�R� Vð�Þ� þ Sm: (5)

Varying this action with respect to the metric, the scalar �
and the connection yields the following field equations:

R�� þ�R�� � 1

2
ðRþ�R� VÞg�� ¼ �2T��; (6)

R � V� ¼ 0; (7)

r̂ �ð ffiffiffiffiffiffiffi�g
p

�g��Þ ¼ 0; (8)

respectively. Note that the solution of Eq. (8) implies that
the independent connection is the Levi-Civita connection
of a metric h�� ¼ �g��. Thus we are dealing with a

bimetric theory and R�� and R�� are related by

R�� ¼ R�� þ 3

2�2
@��@��� 1

�

�
r�r��þ 1

2
g��h�

�
;

(9)

and consequently R ¼ Rþ 3
2�2 @��@��� 3

�h�, which

can be used in the action (5) to get rid of the independent
connection and obtain the following scalar-tensor repre-
sentation [11]:

S¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

ð1þ�ÞRþ 3

2�
@��@���Vð�Þ

�
þSm:

It is important to note that this action differs fundamentally
from the w ¼ �3=2 Brans-Dicke theory in the coupling of
the scalar to the curvature.

Now substituting Eqs. (7) and (9) in Eq. (6), the metric
field equation can be written as an effective Einstein field
equation, i.e., G�� ¼ �2Teff

��, where the effective stress-

energy tensor is given by

Teff
�� ¼ 1

1þ�

�
T�� � 1

�2

�
1

2
g��ðV þ 2h�Þ þ r�r��

� 3

2�
@��@��þ 3

4�
g��ð@�Þ2

��
: (10)

The scalar field is governed by the second-order evolu-
tion equation (we refer the reader to Ref. [9] for more
details)

�h�þ 1

2�
@��@��þ�½2V � ð1þ�ÞV��

3
¼ ��2

3
T;

(11)

which is an effective Klein-Gordon equation. This last
expression shows that, unlike in the Palatini (w ¼ �3=2)
case, the scalar field is dynamical. Thus, the theory is not
affected by the microscopic instabilities that arise in
Palatini models with infrared corrections [12].

III. WORMHOLES IN HYBRID
METRIC-PALATINI GRAVITY

Consider the following line element in curvature
coordinates, which represents a traversable wormhole
geometry [1]:

ds2¼�e�ðrÞdt2þ dr2

1�bðrÞ=rþr2ðd	2þsin2	d’2Þ; (12)

where the metric functions bðrÞ and �ðrÞ are functions of
the radial coordinate and denoted the shape and the redshift
functions, respectively. The radial coordinate r ranges from
a minimum value r0, the wormhole throat, to infinity. In
order to avoid the presence of event horizons, one imposes
that�ðrÞ is finite8 r. It is possible to construct asymptoti-
cally flat spacetimes, in which bðrÞ=r ! 0 and � ! 0 as
r ! 1. Now, a fundamental ingredient in wormhole phys-
ics is the flaring-out condition of the wormhole throat
bðr0Þ ¼ r0 [1], given by the condition ðb0r� bÞ=2b2 < 0.
In general relativity, the latter condition implies that
through the Einstein field equation, the stress-energy tensor
violates the NEC at the throat, i.e., T��k

�k�jr0 < 0.

In modified gravity, it is the effective stress-energy
tensor that violates the NEC at the throat, Teff

��k
�k�jr0<0.

The latter provides the following constraint in the present
hybrid metric-Palatini gravitational theory:

Teff
��k

�k�jr0 ¼
1

1þ�

�
T��k

�k� � 1

�2

�
k�k�r�r��

� 3

2�
k�k�@��@��

����������r0

<0: (13)
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Assuming that 1þ�> 0 and that standard matter sat-
isfies the energy conditions and, in particular, the NEC, i.e.,
T��k

�k� > 0, one finds the generic constraint for hybrid

metric-Palatini wormhole geometries

0< T��k
�k�jr0 <

1

�2

�
k�k�r�r��

� 3

2�
k�k�@��@��

���������r0

: (14)

Using the metric (12), the effective Einstein field equa-
tion provides the following gravitational field equations:

�2
ðrÞ¼b0

r2
ð1þ�Þ�

�
1�b

r

��
�00 �3ð�0Þ2

4�

�

þ�0

2r

�
b0 þ3b

r
�4

�
�V

2
; (15)

�2prðrÞ ¼
�
� b

r3
þ 2�0

r

�
1� b

r

��
ð1þ�Þ

þ�0
�
�0 þ 2

r
þ 3�0

4�

��
1� b

r

�
þ V

2
; (16)

�2ptðrÞ ¼
��

�00 þ ð�0Þ2 þ�0

r

��
1� b

r

�

þ b� b0r
2r3

ð1þ r�0Þ
�
ð1þ�Þ

þ
�
�00 þ�0�0 þ 3ð�0Þ2

4�

��
1� b

r

�

þ�0

r

�
1� bþ rb0

2r

�
þ V

2
: (17)

The effective Klein-Gordon equation (11) is given by�
�00 þ�0�0 � ð�0Þ2

2�
þ 3�0

2r

��
1� b

r

�

þ�0

2r
ð1þ b0Þ�

3
½2V � ð1þ�ÞV�� ¼ ��2

3
T: (18)

Note that Eqs. (15)–(18) provide four independent equa-
tions, for seven unknown quantities, i.e., 
ðrÞ, prðrÞ, ptðrÞ,
�ðrÞ, bðrÞ, �ðrÞ and VðrÞ. Thus, the system of equations is
underdetermined, so that we will reduce the number of
unknown functions by assuming suitable conditions. We
will consider specific solutions in the next section.

IV. SOLUTION I

Consider for simplicity a zero redshift function and a
specific choice for the scalar field:

�ðrÞ ¼ 0; �ðrÞ ¼ �0

�
r0
r

�
�
: (19)

In order to simplify the modified Klein-Gordon equation,
consider 2V � ð1þ�ÞV� ¼ 0, which yields the potential

Vð�Þ ¼ V0ð1þ�Þ2: (20)

Now, substituting these choices into the expressions for the
stress-energy tensor components, one obtains the following
expression of the stress-energy tensor trace:

T¼ 1

2�2r2

�
3��0

�
r0
r

�
�
�
1�b0 þ

�
1�b

r

�
ð1��Þ

�

þ
�
V0r

2

�
1þ�0

�
r0
r

�
�
�
�b0

��
1þ�0

�
r0
r

�
�
��
: (21)

Finally, substituting these expressions into the modified
Klein Gordon equation, i.e., Eq. (18), the latter simplifies
to the following ordinary differential equation:

ð4� 3�Þb0 þ 3�

�
1þ ð1� �Þ

�
1� b

r

��

� 4V0r
2

�
1þ�0

�
r0
r

�
�
�
¼ 0; (22)

which yields the following solution for the shape function:

bðrÞ ¼
�

2V0�0r
3

3�2 � 8�þ 6

�
r0
r

�
� þ 3�ð�� 2Þr

3�2 � 6�þ 4

þ 4V0r
3

3ð�2 � 4�þ 4Þ þ r
3�ð��1Þ
3��4 C

�
; (23)

where C is a constant of integration, fixed by the boundary
condition bðr0Þ ¼ r0, which provides

C ¼ r0r
�3�ð��1Þ

3��4

0

�
1�

�
2V0�0r

2
0

3�2 � 8�þ 6
þ 3�ð�� 2Þ

3�2 � 6�þ 4

þ 4V0r
2
0

3ð�2 � 4�þ 4Þ
��
: (24)

For the case of � ¼ 1, the shape function is given by

bðrÞ¼4V0

3
ðr3�r30Þþ2r0V0�0ðr2�r20Þþ4r0�3r: (25)

For this case the stress-energy tensor profile is given by


ðrÞ ¼ 1

6�2r4
f21V0r

4 þ 28�0V0r
3 þ 6r2ðV0r

2
0�

2
0 � 3Þ

þ�0r
2
0½V0r

2
0ð2þ 3�0Þ � 6�g; (26)

prðrÞ ¼ � 1

6�2r4
f5V0r

4 þ 4�0V0r
3 � 6r2ðV0r

2
0�

2
0 þ 3Þ

� 4r0rð2V0r
2
0 þ 3�0V0r

2
0 � 6� 3�0Þ

þ�0r
2
0½V0r

2
0ð2þ 3�0Þ � 6�g; (27)

ptðrÞ ¼ � 1

6�2r4
f5V0r

4 þ 2�0V0r
3

� 2r0ð2V0r
2
0 þ 3�0V0r

2
0 � 6� 3�0Þ

��0r
2
0½V0r

2
0ð2þ 3�0Þ � 6�g: (28)

Note that this solution is not asymptotically flat, so that, in
principle, we need to match the interior wormhole solution
to an exterior vacuum spacetime, at a junction interface,
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much in the spirit of Ref. [13]. To avoid the presence of
exotic matter on the thin shell, one may also impose, in
principle, that the surface stresses, lying on the junction
interface, satisfy the energy conditions.

V. SOLUTION II: ASYMPTOTICALLY
FLAT SPACETIME

Consider the choices for the metric functions and scalar
field

�ðrÞ¼�0

�
r0
r

�
�
; bðrÞ¼ r0

�
r0
r

�
�
; �ðrÞ¼�0

�
r0
r

�
�
;

(29)

respectively, where �> 0, �>�1 and � > 0 are constant
parameters. We emphasize that general solutions for these
specific cases can be found; however, they are extremely
lengthy, so that without a significant loss of generality, we
consider � ¼ 0, � ¼ 0 and � ¼ 3.

As before, let us insert these functions into the field
equations, deduce the trace of stress-energy tensor, given
by T ¼ 1

2�2r2
f4VðrÞ þ 9�0ðr0r Þ3½1� 2 r0

r �g, and substitute

the latter into the modified Klein-Gordon equation, which
simplifies to

2r30V
0ðrÞ þ 27�0

�
r

r0

�
6
�
1� 2

�
r0
r

��
¼ 0: (30)

This ordinary differential equation yields the following
solution for the potential in parametric form, VðrÞ:

VðrÞ ¼ 9�0

10r20

�
r0
r

�
5
�
5

�
r0
r

�
� 3

�
: (31)

Now, from the definition of the scalar field, Eq. (29), and

with � ¼ 3, one obtains that r0=r ¼ ð�=�0Þ1=3, so that the
potential Vð�Þ is finally given by

Vð�Þ ¼ 9�0

2r20

�
�

�0

�
5=3

��
�

�0

�
1=3 � 3

5

�
: (32)

The stress-energy tensor components have the following
profile:


ðrÞ ¼ 21�0

10�2r20

�
r0
r

�
5
�
1� 5

7

�
r0
r

��
;

prðrÞ ¼ � 1

�2r20

�
r0
r

�
3
�
1þ 3�0

5

�
r0
r

�
2
�
1� 5

6

�
r0
r

���
;

ptðrÞ ¼ 1

2�2r20

�
r0
r

�
3
�
1þ 9�0

5

�
r0
r

�
2
�
1� 10

9

�
r0
r

���
;

which tend to zero as r ! 1. Note that assuming �0 > 0,
the energy density is positive throughout the spacetime,
and at the throat takes the value 
ðr0Þ ¼ 3�0=ð5�2r20Þ.
The NEC at the throat takes the form 
ðr0Þ þ prðr0Þ ¼
ð�0 � 2Þ=ð2�2r20Þ, which is positive, by imposing �0 > 2;
it is an easy matter to verify that this specific example
satisfies Eq. (14).

VI. CONCLUSION

The traditional approach of solving the Einstein field
equation consists in taking into account a plausible
stress-energy tensor and, consequently, deducing the
geometrical structure of the spacetime. However, one
can run the Einstein field equation in the reverse direc-
tion by first constructing the spacetime metric and then
deduce the stress-energy tensor components. Wormhole
physics is a specific example of adopting the latter
reverse philosophy of solving the Einstein field equation.
It was found that traversable wormholes possess a stress-
energy tensor that violates the null energy condition at
the throat. However, one may argue that this approach in
finding the stress-energy components lacks a physical
justification and motivation for the energy-momentum
distribution. Furthermore, in the case of modified theo-
ries of gravity, in principle, one may show that it is the
effective stress-energy tensor, containing higher order
curvature terms, that supports these geometries. Thus,
in modified gravity one may consider a specific mean-
ingful equation of state for the normal matter threading
the wormhole and that satisfies the energy conditions. In
this manner, with the physically meaningful distribution
of matter-energy at hand, one may in principle run the
gravitational field equations in the traditional manner
and solve for the remaining unknown functions.
However, it is extremely difficult to provide exact solu-
tions in the hybrid metric-Palatini theory outlined in the
present paper, although it is possible to find a plethora of
numerical solutions. Work along these lines is currently
underway.
In concluding, our primary concern in this paper was to

consider the possibility that wormholes be supported by
the recently proposed hybrid metric-Palatini gravitational
theory. We presented the general conditions for a worm-
hole relative to the null energy conditions at the throat
and found specific solutions. In the first solution, we
specified the redshift function, the scalar field and chose
the potential that simplifies the modified Klein-Gordon
equation. This solution is not asymptotically flat and
needs to be matched to a vacuum solution. We empha-
sized that the surface stresses of the junction surface may,
in principle, be imposed to satisfy the energy conditions.
In the second example, we chose a particular scalar field
and specified the metric functions, thus obtaining an
asymptotically flat spacetime. We stress that the energy
conditions for standard matter, in principle, may be
imposed to hold while the structure and stability of worm-
hole solutions are guaranteed by the effective stress-
energy induced by curvature terms. In fact, the issue of
stability is extremely important and despite the fact that
this was not a prime motivation for the present paper, the
stability analysis is certainly a fundamental issue that will
be explored in a future publication.
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