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We propose an experimental scheme to simulate the fractionalization of the particle number by using a
one-dimensional spin-orbit-coupled ultracold fermionic gas. The desired spin-orbit coupling, a kinklike potential,
and a conjugation-symmetry-breaking mass term are properly constructed by laser-atom interactions, leading to an
effective low-energy relativistic Dirac Hamiltonian with a topologically nontrivial background field. The designed
system supports a localized soliton excitation with a fractional particle number that is generally irrational and
experimentally tunable, providing a direct realization of the celebrated generalized Su-Schrieffer-Heeger model.
In addition, we elaborate on how to detect the induced soliton mode with the fractional particle number in the
system.
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I. INTRODUCTION

The idea of a fractional particle number (FPN) goes back
to the Jackiw-Rebbi model [1,2] in the relativistic quantum
field theory, where fractionalization of the fermion number
becomes apparent when a fermionic field is coupled to a
topologically nontrivial background field. The first physical
demonstration of this remarkable phenomenon was proposed
by Su, Schrieffer, and Heeger (SSH), who noted that a domain
wall in one-dimensional (1D) dimerized polymers, such as
polyacetylene, induces a zero-energy soliton state [3]. The
particle-hole ambiguity of the zero mode restricts the fractional
fermion number to be only ± 1

2 in this system [4,5]. Afterwards,
achievements were made to generalize it to an irrational
fermion number by introducing another field to break the
conjugation symmetry, such as different on-site energies [6–8].

Another famous example of FPN is illustrated in the
fractional quantum Hall effect regime [9], where the Laughlin
quasiparticles not only have fractional charges but also have
fractional (anyonic) statistics in two dimensions (2D). Recent
search for fractionalization in 2D systems has theoretically
demonstrated that fractionally charged excitations may exist in
graphenelike [10], square-lattice [11] and Kagomé-lattice [12]
systems with vortex-type order parameters (which describe the
mass of the analog Dirac fermions in the systems). The newly
discovered quantum spin Hall insulators were also proposed
for realizing the SSH model based on the proximity effect,
which introduces a magnetic domain wall [13,14]. Notably,
the edge electrons there with inherent chiral symmetry may
exhibit a direct signature of FPN [13].

On the other hand, quantum simulation of the relativistic
Dirac Hamiltonian by using ultracold atomic gases has
recently attracted great interest [15]. For example, ultracold
fermionic atoms trapped in a honeycomb optical lattice
(OL) were theoretically proposed to behave as massless
and massive Dirac fermions [16] and were confirmed in a
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recent experiment [17]. The atomic gases with the synthetic
spin-orbit (SO) coupling [18–21] through light-induced gauge
fields [22,23] were also proposed for investigating interesting
Dirac dynamics [24–29]. These cold-atom systems provide
a highly controllable platform for studying a wide range of
models in relativistic quantum mechanics and field theory [15].
Interestingly, Ruostekoski et al. presented an experimental
scheme to realize [30] and detect [31] the fractionalization
of the particle number by using a two-component ultracold
Fermi gas in a 1D optical superlattice. The low-energy effective
theory for the atoms in the system becomes relativistic under
certain conditions, and a laser-induced modulation of atomic
hopping between neighbor lattices with a kink profile gives rise
to a physical domain wall, leading to soliton modes with FPN.

Inspired by recent experimental achievements in the ar-
tificial SO coupling in ultracold bulk bosonic [18,19] and,
particularly, fermionic atoms [20,21], we here present an
alternative proposal for realizing the particle-number fraction-
alization using a 1D atomic Fermi gas with the synthetic SO
coupling. The required SO interactions and a kinklike potential
are properly constructed by dressing atoms with laser beams
in the system, such that the low-energy fermionic atoms can
behave as massless Dirac fermions coupling to a topologically
nontrivial background field. As a result, a localized soliton
excitation in the middle of the effective energy gap appears
on the domain wall, which is a direct quantum simulation of
the standard SSH model. Another two laser beams are used to
introduce an effective Zeeman term, which shifts the soliton
excitation from the zero energy. For a midgap state below
the zero-energy level, it takes more of the fractional fermion
number from the valence band and less from the conduction
band and vice versa for the opposite case, such that the soliton
state exhibits an irrational FPN in this general case; moreover,
its profile and FPN in the system are experimentally tunable.
Furthermore, we suggest experimentally available methods to
detect the induced soliton modes with FPN through measuring
the soliton density distribution and the local density of states
(LDOS) near the kink. We also discuss the possibility of
generalizing our proposal to the realization of the FPN in
higher spatial dimensions.
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This paper is organized as follows. In Sec. II, we propose an
experimental scheme to simulate the generalized SSH model
with an irrational FPN by using a 1D SO-coupled atomic Fermi
gas. The realization of a relativistic Dirac Hamiltonian with a
kink background field is shown, and the induced FPN in the
system is calculated and explained. In Sec. III, we elaborate
on how to detect the soliton modes with FPN in experiments.
Finally, in Sec. IV, we briefly discuss the generalization of the
system to higher dimensions and present conclusions.

II. SIMULATION OF FPN WITH SO-COUPLED
FERMIONIC ATOMS

In this section, we show how to simulate the fractional-
ization of the particle number by using atomic Fermi gases
with the synthetic spin-orbit coupling. Let us start with a brief
review of the celebrated model describing kink-soliton states
and the arbitrary fractional fermion number in the context of
relativistic quantum field theory [1,6]. For 1D massless Dirac
fermions subject to two static bosonic fields ϕ1 and ϕ2, the
relativistic Dirac Hamiltonian is given by [32]

HD = cσxpx − ϕ2(x)σy + ϕ1(x)σz, (1)

where c is the effective speed of light and σx,y,z are the
Pauli matrices. The background field with a kink potential
is described by [6,7]

ϕ1(x) = ϕ0
1 , ϕ2(x → ±∞) = ±ϕ0

2 , (2)

where ϕ0
1 and ϕ0

2 are constants. The kink ϕ2 acts as the
boundary of two degenerate vacuums [7]. The relativistic Dirac
Hamiltonian with such a topologically nontrivial background
potential supports an unpaired soliton state, which gives rise
to the fractionalization of the particle number [6]. Moreover,
the FPN is generally irrational and takes a value of ± 1

2 in the
standard SSH model with conjugation symmetry when ϕ0

1 is
vanishing.

A. Realizing the relativistic Dirac Hamiltonian in
cold-atom systems

Now we demonstrate how to realize the desired Dirac
Hamiltonian (1) with a SO-coupled atomic Fermi gas. We
consider an ensemble of quasi-2D noninteracting fermionic
atoms with three relevant spin components in the ground-
state manifold {|1〉,|2〉,|3〉}, which are resonantly coupled
to a common excited state |e〉 through the standard tripod
configuration [33,34], as shown in Fig. 1. The candidate for
the fermionic atoms can be 6Li or 40K. For 6Li atoms, the
hyperfine levels can be selected as∣∣1〉 = |22S1/2,F = 3

2 ,mF = − 1
2

〉
,

|2〉 = ∣∣22S1/2,F = 1
2 ,mF = 1

2

〉
,

|3〉 = ∣∣22S1/2,F = 3
2 ,mF = 3

2

〉
,

|e〉 = ∣∣22P1/2,F = 1
2 ,mF = 1

2

〉
.
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FIG. 1. (Color online) Schematic representation of the laser-atom
interaction configuration for generating an effective relativistic Dirac
Hamiltonian. (a) The three ground states, |1〉, |2〉, and |3〉, are
resonantly coupled to the excite states |e〉 by lasers with Rabi
frequencies �j , and two additional lasers �1y and �3y couple |1〉
and |3〉 to |e〉 with a large detuning �d . The choice for the three
ground states is that |1〉 and |3〉 are two degenerate Zeeman sublevels
which are addressed by laser beams with different polarization and |2〉
is another hyperfine level with different energy so that it is addressed
by a laser with a different frequency. (b) The spatial configuration
and propagating direction of the laser beams. The candidate for the
fermionic atoms can be 6Li or 40K.

For 40K atoms, the corresponding hyperfine levels can be
selected as

|1〉 = ∣∣42S1/2,F = 7
2 ,mF = − 1

2

〉
,

|2〉 = ∣∣42S1/2,F = 9
2 ,mF = 1

2

〉
,

|3〉 = ∣∣42S1/2,F = 7
2 ,mF = 3

2

〉
,

|e〉 = ∣∣42P1/2,F = 9
2 ,mF = 1

2

〉
.

(4)

The corresponding Rabi frequencies of the three resonantly
coupling laser beams can be parameterized as

�1 = � sin α cos θ e−iκx,

�2 = � cos α e−iηκz, (5)

�3 = � sin α sin θ eiκx.

The wave numbers are κ and ηκ , as shown in Fig. 1(a), and

� =
√∑3

j=1 |�j |2 is the total Rabi frequency. Here η = 1 +
δη, with the deviation δη being for matching the resonant-
coupling frequency of the second laser beam. For the selected
atomic hyperfine states in Eqs. (3) and (4), δη ≈ 5 × 10−7

for 6Li atoms and δη ≈ 3.5 × 10−6 for 40K atoms. This can
be achieved in experiments by adjusting the laser frequency.
The deviation is negligible in our derivations; however, we still
use the notation η in the following discussions for consistency.
We further adopt uniform plane-wave laser beams where �,
α, and θ are all constants and particularly choose θ = π/4.

The single-particle Hamiltonian for each atom takes the
form Hs = p2/2ma + Hint, where p denotes the momentum
operator and ma is the atomic mass. The light-atom interaction
Hamiltonian Hint is given by Hint = h̄

∑3
j=1(�j |e〉〈j | + H.c.).

Diagonalizing Hint yields two orthogonal dark states,

|D1〉 = (eiκx |1〉 − e−iκx |3〉)e−iηκz/
√

2,

|D2〉 = (eiκx |1〉 + e−iκx |3〉)e−iηκz cos α/
√

2 − sin α|2〉. (6)
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The dark states are decoupled to the excited state |e〉 and thus
are immune to spontaneous emission. They span a degenerate
subspace, in which the full state of a single atom can be
written as |χ (r)〉 = ∑2

i=1 ψi(r)|Di(r)〉. The center-of-mass
amplitudes ψi(r) corresponding to the spatial wave functions
of the two dark states obey the Schrödinger equation ih̄∂t� =
H�, where the two-component spinor �(r) = (ψ1(r),ψ2(r))T

and the Hamiltonian reads

H = 1

2ma

(p − A)2 + φ + V. (7)

The gauge potential A arises from the position dependence
of the dark states and is given by Aj,n = ih̄〈Dj (r)|∇|Dn(r)〉
[22,23]. The projecting-induced scalar potential φ and the
external potential V are respectively determined by φj,n =∑2

l=1
�Aj,l

�Al,n/2ma and Vj,n = 〈Dj (r)|V̂ |Dn(r)〉, with V̂ =∑3
l=1 Vl(r)|i〉〈i| [22,23]. We consider the adiabatic motion of

atoms initially prepared in the dark-state subspace. It should
be noted that the two dark states are not the lowest-energy
states in this system, so that the adiabatic approximation works
well only for finite time scales (mainly due to collisional
relaxations), up to several hundred milliseconds under realistic
conditions [34]. To obtain a lowest-energy twofold (nearly)
degenerate subspace, one can adopt the optical dressing
scheme described in Ref. [27] (where atoms have a simpler
�-type configuration) or in Ref. [35] (where more atomic
internal states and coupling lasers are required).

The Rabi frequencies chosen in Eq. (5) can realize the first
term in Hamiltonian (1) with certain potentials; however, to
implement the required potentials exactly in Eq. (1), more
complicated laser configures are needed. One possible method
to generate the required potentials is that we further choose
two additional laser beams with frequencies ν1 and ν2, as
schematically shown in Fig. 2(a). The first laser beam (denoted
by frequency ν1) with the effective Rabi frequency �L (which
takes the real Rabi frequency and the detuning into account)
is blue detuned for atoms in the internal levels |1〉 and |3〉 but
red detuned for atoms in level |2〉, all of which are far-off-
resonantly coupled to another excited state |ee〉. This energy

1
2

3

)b()a(

e

12

L

L
L

ee

1

1
1

2 2 2

)(xL

x0

0L

0L

FIG. 2. (Color online) Schematic representation of (a) the cou-
pling lasers which generate the desired external potentials V1,2,3 in
Eq. (8) and (b) the spatial configuration of the Rabi frequency �L(x)
which forms the needed kinklike potential. The frequency difference
ω12 = 228 MHz for 6Li atoms and ω12 = 1186 MHz for 40K atoms
for the selected hyperfine levels in the text, both of which are much
larger than the natural linewidth of the excited state |ee〉 (about 6
MHz).

state can be selected as |ee〉 = |2 2P3/2,F = 3
2 ,mF = 1

2 〉 for
6Li atoms and |ee〉 = |4 2P3/2,F = 9

2 ,mF = 1
2 〉 for 40K atoms.

In addition, the second laser (denoted by frequency ν2), which
is also far of resonance, is use to create constant energy terms
in V1,3 and V2 in Eq. (8). The energy difference between
them [cf. Eq. (8)] can be realized by detuning the second
laser from the two-photon resonance with the frequency
h̄κ2(1 − η2 cos2 α)/2ma . Thus the resulting external potentials
are given by

V1 = V3 = h̄�L(x,z) − h̄2κ2

2ma

,

(8)

V2 = −h̄�L(x,z) − h̄2η2κ2

2ma

cos2 α.

After introducing all of the laser configurations, we can
obtain the total resulting potentials for the atoms in the laser
field as

A = −h̄κ cos α σx �ex + h̄ηκ

(
1 0
0 cos2 α

)
�ez,

φ = h̄2κ2 sin2 α

2ma

(
1 0
0 η2 cos2 α

)
,

V =
(

V1 0
0 V1 cos2 α + V2 sin2 α

)
, (9)

with φ + V = h̄�L sin2 ασz up to an irrelevant constant. Note
that atoms in such a synthetic non-Abelian gauge field behave
as electrons with SO coupling, which can be seen from the
term p · A in Hamiltonian (7).

By applying an additional extremely anisotropic trapping
potential to freeze the atomic motions along the z axis, we
arrive at the quasi-1D cases [36]. For ultralow temperature,
the momentum of atoms along the x axis px 	 h̄κ cos α, such
that the p2

x term in Eq. (7) may be safely neglected, leading to
the effective Dirac Hamiltonian

He ≈ cxσxpx + �(x)σz, (10)

where cx = h̄κ cos α/ma is the effective speed of light in this
system and �(x) = h̄�L(x) sin2 α. Hamiltonian (10) describes
a massive Dirac fermion having a position-dependent mass
�(x)/c2

x , or in another point of view, a massless Dirac fermion
coupling to a static background field �(x) [1]. If we choose the
intensity distribution of the laser beam with photon frequency
ν1 as a kink-type function along the x axis, then the standard
SSH model in the continuum limit [3] is realized in this
cold-atom system. It is interesting to note that the laser-atom
interaction with a � configuration [27] can also be used to
realize the relativistic Dirac Hamiltonian (10), and in this case
the experimental setup can even be simpler. However, it is
noted that such a simplified scheme cannot be extended to
realize the generalized SSH model described in Eq. (11) with
an irrational FPN.

To introduce the constant field ϕ0
1 in Hamiltonian (1), which

acts as a mass term and breaks the conjugation symmetry, we
can apply two additional laser beams to couple atomic states
|1〉 and |3〉 to the excited state |e〉 off-resonantly with the large
detuning �d , as shown in Fig. 1, with the corresponding Rabi
frequencies �1y = i|�y |eiκx and �3y = |�y |e−iκx [34]. Since
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|�1y |,|�3y | 	 �d , the effective Hamiltonian describes a per-
turbation coupling between states |1〉 and |3〉, which is given by
Hp = −ih̄�pe2iκx |1〉〈3| + H.c., with �p = |�y |2/�d [37].
We assume �p 	 �, so the Hamiltonian Hp cannot pump
the atoms outside of the dark-state subspace. Mapping Hp

into the subspace spanned by the basis {|D1〉,|D2〉}, we
obtain Hp = h̄�p cos ασy . Therefore, the total 1D effective
Hamiltonian for the ultracold atoms is H1D = He + Hp. By
introducing a unitary transformation �(x) → ei π

4 σx �(x), we
can obtain the Dirac Hamiltonian

H1D = cxσxpx + �(x)σy − �σz, (11)

where � = h̄|�y |2 cos α/�d . We note that the unitary transfor-
mation used here is for mathematical convenience but involves
no manipulation of the system. Compared to the original Dirac
Hamiltonian (1), here the effective field −� corresponds to the
constant background ϕ0

1 , and the field �(x) should present a
kinklike profile, which corresponds to −ϕ2(x). To this end, we
can choose the spatial profile of the Rabi frequency �L(x) with
the kink form, as shown in Fig. 2(b), and �L(x) = ±�L0 as
x → ±∞. Thus the asymptotic value of �(x) can be denoted
as �0 ≡ �(x → +∞) = h̄�L0 sin2 α.

Finally, in this section, we note that the recent experiment
of generating SO couplings in Fermi gases [20] may also be
extended to realize the Dirac Hamiltonians (10) and (11). In the
experiment [20], two spin-1/2 states are chosen as two internal
hyperfine states instead of dressed states [see Eq. (6)] in our
scheme, and they are coupled by a pair of Raman beams with
spatially homogenous coupling strength �R . The synthetic SO
coupling is just one-dimensional, with the form pxσz, and there
is an additional term related to the Raman coupling �Rσx in
the single-particle Hamiltonian (see Refs. [18,20] for details).
If one uses Raman beams with spatially inhomogeneous
coupling strength and a kink-type profile along the x axis [i.e.,
�R(x) = �L(x)], the low-energy effective Hamiltonian for the
atoms takes the form of Dirac Hamiltonian (10) under a spin
rotation. To simulate the generated SSH model Hamiltonian
(11), one needs additional laser beams or radio-frequency
fields to couple the two spin states as a σy-coupling term.

B. Fractional particle number in this system

We now turn to calculate the FPN in the proposed system.
There is a number of methods for computing the FPN of topo-
logical solitons [2], including the well-known conjugation-
symmetry analysis for the zero modes with a one-half fermion
number [2,38]. It was first pointed out by Goldstone and
Wilczek [6] that, at zero temperature, the fractional fermion
number of the soliton in this model is determined by the kink
background field (2). The adiabatic condition was imposed
there for a valid perturbation calculation by assuming |∂ϕi | 	
m2 (i = 1,2), where m ≡

√
ϕ2

1 + ϕ2
2 . However, Yamagishi

showed that the exact result actually does not depend on the
adiabatic condition [39]. For simplicity, we here still employ
the adiabatic condition to derive the result in a new but simple
way. The current of this (1 + 1)D system is

jμ(x) = −〈x|trγ μĜ|x+〉, (12)

where the Dirac matrices γ 0 = σz, γ 1 = iσy , and γ 5 = σx and
the Green’s function of the relativistic Dirac Hamiltonian (1)

is given by

G = i

γ μp̂μ − (ϕ1 + iϕ2γ 5)
. (13)

Here μ = 0,1 correspond to the time and space components,
respectively.

In the derivation, we have used the adiabatic approximation
that ∂ϕi commutes with 1

p̂2−m2 and kept the first-order
approximation. Thus the Green’s function can be written as

G = [γ μp̂μ + (ϕ1 − iϕ2γ
5)]{G−1[γ μp̂μ + (ϕ1 − iϕ2γ

5)]}−1

≈ [γ μp̂μ + (ϕ1 − iϕ2γ
5)]

i

p̂2 − m2
− [γ μp̂μ + (ϕ1

− iϕ2γ
5)]

1

(p̂2 − m2)2
γ ν∂ν(ϕ1 − iϕ2γ

5). (14)

After a straightforward calculation, given that the chemical
potential (the Fermi level) is zero, we can obtain the average
current in the background field as [6]

jμ(x) = − 1

2π
εμν∂ν�(x), (15)

where �(x) = arg(ϕ1 + iϕ2) denotes the angular field of the
background and εμν is the two-index totally antisymmetric
tensor. When the chemical potential μ̃ = 0, the particle density
is given by ρ0(x) = − 1

2π

∂�(x)
∂x

with respect to the density of the
kink-free system. Thus we obtain the FPN N0 = ∫

ρ0(x)dx in
this system, with ϕ0

1 = −� and ϕ2(x) = −�(x), as

N0 = 1

π
arctan

(
�0

−�

)
= − 1

π
arctan

(
�L0�d sin2 α

|�y |2 cos α

)
.

(16)

It is clear from Eq. (16) that N0 is generally irrational and
can be an arbitrary fractional number in the range (− 1

2 , 1
2 ) for a

finite �. Especially, the conjugation-symmetric Jackiw-Rebbi
model is obtained in the limit � → 0, i.e., without applying
the laser beams �1y and �3y . In this case, the soliton is a
zero-energy mode with a one-half fermion number N0 = ± 1

2 .
It is interesting to note that the FPN in this system is
widely tunable in experiments via laser-atom interactions
[cf. Eq. (16)], making it a controllable platform for simulating
fractionalization of the particle number.

Fractionalization has been widely investigated in relativistic
quantum field theory [2,40] and condensed-matter systems
[3,6–14], where it can give rise to interesting transport
phenomena. For example, the existence of fractionally charged
excitations greatly enhances the conductivity in the polymers
[3] and may induce quantized currents in the quantum spin
Hall insulators [13]. The interpretation of the FPN in these
kink-soliton systems is usually in terms of deformation (or
polarization) of the ground-state vacuum due to the kink, which
supports a single-soliton mode [2,40]. This fractionalization
mechanism is very different from that in the fractional quantum
Hall effect regime, where the fractional collective excita-
tions are described by a strongly correlated Laughlin wave
function [9].

To have a better understanding of this mechanism, we
consider another kind of background field with a simple, but
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FIG. 3. (Color online) Schematic representation of (a) a back-
ground field with a kink and an antikink, both of which support a
localized soliton state with the profile ∼exp (−�0|x ± a|/h̄cx), and
(b) the energy spectrum and a pair of solitons with energies E = ±�

and fractional particle numbers ±|N0|. The midgap soliton modes are
protected by an energy gap Eg = 2

√
�2

0 + �2 between the effective
conduction band and the valence band. At the kink, the soliton state
picks a FPN of |N0| from the effective valence band and another of
1 − |N0| from the effective conduction band and vice versa for the
opposite case at the antikink.

experimentally practical, configuration, that is, a kink and
antikink pair, both with a step-function profile, as shown in
Fig. 3(a). Here we assume �0 > 0 and a � h̄cx/�0 such that
the kink and antikink are almost decoupled. By solving the
energy spectrum of Hamiltonian (11) at the kink potential
(near x = −a) with �(x) = �0sgn(x + a), we find that there
is a localized midgap eigenstate in the kink at E = �, with
the wave function decaying as exp (−�0|x + a|/h̄cx) and the

energy gap Eg = 2
√

�2
0 + �2. It is understood that the isolated

state picks up a fractional fermion number (i.e., FPN) of |N0|
[see Eq. (16)] from the effective valance band and (1 − |N0|)
from the effective conduction band, as shown in Fig. 3(b). For
an antikink potential (near x = a) with �(x) = −�0sgn(x −
a), the localized soliton state is obtained at E = −�, with the
wave function decaying as exp (−�0|x − a|/h̄cx), as shown
in Fig. 3(a). It picks up (1 − |N0)| from the valence band
and |N0| from the conduction band. For a periodic system,
there must be pairs of kinks and antikinks. If both states are
unoccupied, the particle numbers are −|N0| at the kink and
|N0| − 1 at the antikink. When the chemical potential, i.e., the
effective Fermi level in this system, is tuned up, the E = −�

soliton state is occupied first, and the particle numbers at the
kink and antikink are ∓|N0|, respectively. When both states
are occupied, the particle numbers are (1 − |N0|) and |N0| at
the kink and antikink, respectively.

From Eq. (16), we can see that the FPN N0 depends
only on the asymptotic value of the kink �0 rather than the
detailed shape of �(x). In this sense, it is topological and
is insensitive to local fluctuations of the background field.
This property enables us to use laser beams of different and
imperfect intensity distributions compared to the ones with
the exact kink profile, as shown in Fig. 2(b), and with a wide
square-potential profile of a kink-antikink pair, as shown in
Fig. 3(a). In experiments, the intensity distribution of laser
beams can be well designed, and the desired ones with nearly

square-potential profiles have been realized [41]. Although the
value of N0 is obtained at zero temperature, the corresponding
FPN for finite temperature T defined as NT can also be
calculated by taking the thermal distribution (i.e., Dirac-Fermi
distribution) into account [42]. Interestingly, NT just depends
on the asymptotic value of the background field and the
temperature T [42]. At low temperatures, i.e., |ϕ0

1 |β � 1
with β = 1/kBT (kB is the Boltzmann constant), one has
NT ≈ N0 − e−|ϕ0

1 |β [42]. For our proposed cold-atom system
with the typical temperature T ∼ 0.1 μk and parameter �/h̄ ∼
0.1 MHz, the deviationN0 − NT ≈ e−�β ≈ e−10. Thus we can
conclude that the FPN in this system is very robust against the
finite-temperature modification due to the gap protection.

Before ending this section, we discuss briefly the modi-
fications on the soliton state and its FPN arising from the
neglected quadratic term in Dirac Hamiltonian (10). For this
system of bulk atomic gases, the effective cutoff momentum
is determined by the Fermi level, and the typical atomic
momentum can be one order less than the recoil momen-
tum of photons (for temperature T ∼ 0.1μk and κ cos α ∼
107 m−1). So we can treat it as a perturbation δH = p2

x/2ma .
This perturbation alters the energy spectrum and also breaks
the conjugation symmetry, but the Dirac point and the
energy gap opened by the kink background remain. From
the perturbation calculations, we find that both the spatial
profile and the energy of the soliton state are modified.
For the case of the step-function kink potential and when
� = 0, the spatial wave function of the soliton state decays
as [1 + �0

4mac2
x
(1 + �0|x+a|

h̄cx
)] exp (−�0|x + a|/h̄cx), which is

slightly broader than that in the absence of δH [cf.
Fig. 3(a)]. The corresponding energy is shifted from E = 0
to E = −�2

0/2mac
2
x up to the first-order perturbation. As

long as this energy shift is very small compared to the gap,
i.e., �0/2mac

2
x 	 1, one can expect that the soliton state is

robust against the breaking of conjugation symmetry induced
by the quadratic term [10]. In this case, the modification of

the FPN can be estimated as δN0 ≈ | 1
2 − 1

π
arctan( 2mac

2
x

�0
)|.

The situation is more complicated for � �= 0, but one
can still follow a similar perturbation argument and obtain
the corresponding modification of the soliton state at the
kink.

III. DETECTION OF THE SOLITON WITH THE FPN

In this section, we propose possible methods for detecting
the fractionalization of the particle number in the atomic
system mainly through the soliton density and the LDOS near
the kink (or the antikink) by using two standard experimental
detection methods for ultracold atomic gases, the in situ
absorption imaging technique [43] and spatially resolved rf
spectroscopy [44].

First, the density distribution of the soliton modes may
be extracted out of the atomic density measurement via
optical in situ absorption imaging [43]. In this continuum
model, we work in the soliton framework, and the physical
particle number in the soliton sector is equivalently defined
as being measured relative to the free sector without the kink
background [7,40]. Thus the density distribution of the soliton
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mode is given by [7,40]

ρ0(x) =
∫

dE[|�E(x)|2 − |ψE(x)|2]

= [ϒ̃(x) − ϒ(x)]
∣∣
EF =0 , (17)

where �E (ψE) and ϒ̃(x) [ϒ(x)] are the fermion single-
particle energy eigenstates and atomic density distribution
in the presence (absence) of the kink background ϕ2(x),
respectively. Note that here we have assumed the effective
Fermi level at EF = 0, which can be achieved by properly
tuning the chemical potential of the atomic gas. In this
sense, we can measure the spatial density distribution of the
SO-coupled Fermi gas both with and without the kink potential
by tuning the laser beam �L on and off, which corresponds to
ϒ̃(x) and ϒ(x), respectively. The integration of ρ0(x) gives the
value of FPN N0 in Eq. (16). This detection scheme provides
a clear physical picture of the FPN; however, it is hard to
implement in a practical experiment, as there is only one atom
in the soliton sector (kink and antikink) compared to Na − 1
atoms in the free sector, where the total number of fermions Na

is restricted by the chemical potential and is usually several
orders larger than unity. In addition, the number of soliton
modes cannot be scaled with increasing Na . However, the
occupation of the soliton state affects significantly the atomic
density distribution near the kink, which may be regarded as a
convenient feature to identify the existence of solitons.

An alternative but practical approach to probe the soliton
state is measuring the LDOS ρ(x,E) near the kink (or antikink)
by using spatially resolved rf spectroscopy [44], which has
been proposed to detect other midgap bound states in bulk
Fermi gases [45], including the zero-energy Majorana modes
[34,46,47]. The idea is that one first uses a probe rf field to
induce a single-particle excitation from the initial state |ai〉 to
an unoccupied fluorescent probe state |af 〉 and then images
the population in state |af 〉 to obtain the spatial information
about the LDOS [44,45,47]. If we assume that the probe field
is weak and is detuning δrf from the induced transitions, then
the population change in state |af 〉 can be calculated from the
linear response theory [45,47]

I (x,E) ≡ d

dt
〈a†

f (x)af (x)〉 ∝ ρai
(x,E − δrf)�(δrf − E),

(18)

where �(·) is a unit step function. For a harmonically trapped
gas, the chemical potential changes from μ̃ = 0 here to
μ̃(x) = 1

2maω
2x2, with ω being the trapping frequency

under the local-density approximation, and E in Eq. (18) is
thus replaced by E − μ̃(x). Due to the trapping potential,
the energy variation over the length scale l0 ≡ √

Eg/maω2

becomes comparable to the energy gap which protects soliton
modes. Therefore we could use a sufficiently weak trap
and experimentally control the size of the gap to reach the
nonvanishing gap and locally homogeneous limit. Thus the
previously presented physical picture about the soliton mode
persists. Since the soliton mode in the proposed system has
energy � inside the gap and is localized at the kink x = −a,
there will be a significantly enhanced population transfer
with frequency δrf/h̄ = [� − μ̃(−a)]/h̄ near the kink. The
contribution from the soliton mode would be clearly visible

and well separated from other quasiparticle contributions
by the energy gap Eg . Thus the soliton density distribution
ρ0(x,�) can be mapped and singled out in this way. Compared
with the previous detection method, the later scheme is
insensitive to the fluctuations in the initial number of fermions
Na since (i) the occupation of the soliton mode just depends on
the Fermi level (i.e., the chemical potential at the kink) and
the fluctuations of Na will not affect the topology of the Fermi
level and (ii) the soliton mode is an eigenstate that is robust
against thermal and local fluctuations in the presence of an
energy gap. Interestingly, even a single atom in the |af 〉 state
can be detected with the standard quantum jump technique
if |af 〉 is selected to be a different hyperfine state [34,46].
Furthermore, this rf spectroscopy technique works as an
analog of the powerful scanning tunneling microscope for
probing the atomic gases [44,45]: another atom will occupy
the soliton state after the original atom is scattered out by the
probing laser. Therefore, although there is only one atom in
the kink and antikink at a time, the population in |af 〉 increases
with the probing time. Therefore, this scheme can be easily
implemented in a practical experiment. In this method, the
FPN can be deduced from the population of the soliton state.

IV. DISCUSSION AND CONCLUSION

Before concluding this paper, we discuss briefly how to
realize the FPN in 2D and 3D relativistic quantum field theories
[38]. It has been shown that a 2D Dirac Hamiltonian with a
vortex-like spatially inhomogeneous mass term also supports a
zero-energy mode with a one-half fermion number [10–12,38].
The desired 2D SO coupling acting as the kinetic term in the
Dirac Hamiltonian can be generated in the previous laser-atom
interaction configuration, such as cxσxpx − czσzpz, with cz =
1
2ηh̄κ sin2 α. Other kinds of SO coupling terms can also be gen-
erated via appropriate optical dressing [22]. Another crucial
step is to simulate the position-varying mass term with vortex
profiles [38]. Specifically, in this cold-atom system, one needs
�L(x,z) with profiles of the vortex type, in contrast to the kink
type for 1D cases shown in Eq. (11). Fortunately, the necessary
laser fields with vortex-type defects can be created by using the
so-called optical vortex technique [48], which moreover has
been implemented in cold atomic gases in experiments [49].

The FPN can also be present in 3D Dirac systems, where the
topologically nontrivial background field should be replaced
by a 3D profile of a magnetic monopole [1,38]. For the 3D
cases, we need the SO coupling term, such as σxpx + σypy +
σzpz, which can be synthesized by the atom-light-interaction
scheme proposed in Ref. [50]. The desired mass term with
monopole profiles may be generated by using electromagnetic
field superpositions like those used to induce 3D Skyrmions
in atomic gases [51].

In summary, we have proposed an experimental scheme
to realize the fractionalization of the particle number with a
1D SO-coupled ultracold Fermi gas. A kinklike potential and
a conjugation-symmetry-breaking mass term are constructed
by proper laser-atom interactions, leading to an effective
low-energy relativistic Dirac Hamiltonian with a topologically
nontrivial background field. As a result, a localized soliton
mode emerges near the kink, with an FPN which is generally
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irrational and experimentally tunable. The proposed cold
atomic system provides a direct quantum simulation of the
famous generalized SSH model. We have also presented two
useful methods to detect the induced soliton modes and the
FPN in the system. In view of the fact that SO-coupled
Fermi gases were realized in two very recent experiments
[20,21], it is anticipated that the present proposal will be tested
experimentally in the near future.
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