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Two-component optical conductivity in the cuprates: A necessary consequence of preformed pairs
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We address how the finite frequency real conductivity o (w) in the underdoped cuprates is affected by the
pseudogap, contrasting the behavior above and below 7. The f-sum rule is analytically shown to hold. Here we
presume the pseudogap is associated with noncondensed pairs arising from stronger-than-BCS attraction. This
leads to both a Drude and a midinfrared peak, the latter associated with the energy needed to break pairs. These
general characteristics appear consistent with experiment. Importantly, there is no more theoretical flexibility
(phenomenology) here than in BCS theory; the origin of the two component conductivity we find is robust.

DOI: 10.1103/PhysRevB.86.134518

I. INTRODUCTION

The behavior of the in-plane ac conductivity o(w) in
the underdoped high-temperature superconductors has raised
a number of puzzles' for theoretical scenarios surrounding
the origin of the mysterious pseudogap. At the same time,
there has been substantial recent progress in establishing
experimental constraints on the interplay of the pseudogap
and o(w).> A key feature of o(w) is its two component
nature consisting of a “coherent” Drude-like low-w feature
followed by an approximately T -independent midinfrared
(MIR) peak.'= The latter “extends to the pseudogap boundary
in the phase diagram at 7*. Moreover a softening of the MIR
band with doping [scales with] the decrease in the pseudogap
temperature T7*.”> Crucial to this picture is that “high 7.
materials are in the clean limit and that ... the MIR feature
is seen above and below 7...”* Thus, it appears that this feature
is not associated with disordered superconductivity and related
momentum nonconserving processes, but rather it is “due to
the unconventional nature of the [optical] response.”!

It is the purpose of this paper to address these related
observations in the context of a preformed pair Gor’kov-based
theory that extends BCS theory to the strong attraction
limit.> The theoretical basis was presented in more detail
in the previous accompanying paper and even earlier in the
literature®’ at a more microscopic level. Our expressions for
o (w) are equivalent to their BCS analog when the pseudogap
vanishes.

At its core, this approach is microscopically based, and
the level of phenomenological flexibility®® is no more than
that associated with transport in strict BCS superconductors.
Alternative mechanisms for the two-component optical re-
sponse include Mott-related physics'® and d-density wave!!
approaches, which have acknowledged inconsistencies,'? as
well as approaches that build on inhomogeneity effects.'
Distinguishing our approach is its very direct association
with the pseudogap. In an evidently less transparent way, a
two-component response arises numerically!? in the presence
of Mott-Hubbard correlations above T,. However, experiments
show how the MIR feature must persist in the presence of
superconductivity, suggesting that pseudogap physics affects
superconductivity below T, as found here.
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Unique is our capability to address both the normal (pseudo-
gap) and superconducting phases. Moreover, we are also able
to establish®® compatibility with the transverse f-sum rule
without problematic negative conductivity!” contributions.
Finally, our approach is to be distinguished from the phase
fluctuation scenario that appears problematic in light of recent
optical data related to the imaginary THz conductivity.'* In
experimental support of our scenario is the claim based on
o(w) data" that the “doping dependence suggests a smooth
transition from a BCS mode of condensation in the overdoped
regime to a different mode in underdoped samples, [as] in the
case of a BCS to Bose-Einstein crossover.”

Our analysis leads to the following physical picture: The
presence of noncondensed pairs both above and below T,
yields an MIR peak. This peak occurs around the energy
needed to break pairs and thereby create conducting fermions.
Its position is doping dependent, and only weakly temperature
dependent, following the weak 7' dependence of the excitation
gap A(T). The relatively high-frequency spectral weight from
these pseudogap effects, present in the normal phase, is
transferred to the condensate as T decreases below T, leading
to a narrowing of the low w Drude feature, as appears to be ex-
perimentally observed. Even relatively poor samples are in the
clean limit,"* so that an alternative pair creation/annihilation
contribution associated with broken translational invariance
cannot be invoked to explain the observed MIR absorption.

Before doing detailed calculations, it is possible to antic-
ipate the behavior of o(w) at a physical level. In addition to
the w = 0 condensate contribution, the @ # 0 conductivity
consists of two terms, the more standard one associated with
scattering of fermionic quasiparticles and the other associated
with the breaking of the pairs. The term associated with the
scattering of fermionic quasiparticles gives rise to the usual
Drude peak. In the presence of stronger than BCS attraction,
we observe this second contribution, a novel pair breaking
effect of the pseudogap. It reflects processes that require a
minimal frequency of the order of 2A(7). We associate this
term with the MIR peak. Sum rule arguments imply that the
larger this MIR peak is, the smaller the w &~ 0 contribution
becomes; that is, pseudogap effects lower the dc conductivity
o9¢? This transfer of spectral weight can be understood as
deriving from the fact that when noncondensed pairs are

©2012 American Physical Society
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present, the number of fermions available for scattering is
decreased; these fermions are tied up into pairs.

II. BACKGROUND THEORY

We note that the details of the background theory are
presented in the companion paper. This work is based on earlier
transport studies>®® which address the current-current cor-

DI
relation function ;=P +7- — C,, where C, is associated
with collective modes. The latter do not enter above 7, nor in

<>
the transverse gauge below 7,. Here P is the paramagnetic

and - the diamagnetic component. The real part of the

conductivity can be extracted from 7; (Q) using the definition
Reo(w # 0) = — limg_,¢ InP**(iQ,, — o +i07,q)/w.

For notational convenience we define E = Ex =
Vélf + A? as the fermionic excitation spectrum, & is the
normal state dispersion, f = f(FE) is the Fermi distribution
function, and the pairing gap A% = A2 + Af, is found>®
to contain both condensed (sc¢) and noncondensed (pg)
terms. In the d-wave case, we write Ag = Agk, & =
—2t(cosky + cosk,) — i, and Ex = V&2 + A}, where g =
(cosk, — cosky)/2 is the d-wave form factor.

The full expression for the current-current response kernel
was discussed elsewhere®® and summarized in the accom-
panying paper. It has been derived microscopically from
Maki-Thompson and Aslamazov Larkin diagrams® as well
as more directly as shown in the previous paper from Ward
identities based on the pseudogap self-energy. We find

< &ic+q/2 08ktq/2
P(Q)=2 E —  —a GkGkio
I3 ok ok

+ Fsc,KFsc,KJrQ - Fpg,K Fpg,KJrQ]« (1)

Here Q = (q,i2y), i 2, is a bosonic Matsubara frequency,
and the three forms of propagators, introduced in earlier work’
are

AZ Az —1
GK)=|iw, — & +iy — - pg,k. _ sc,k
o ( iy iw, +&+iy  iw,+E

A 1
Rl =~ e =

n ; — _ k

Kiog — &k — o5
— Apgk

Fpe(K) = ——=———G(K). @

Here K = (k,iw,) and iw, is the fermionic Matsubara
frequency. Here y represents the fermionic damping. This
parameter was identified in the pseudogap self-energy very
early on'®!” on the basis of a microscopic t-matrix theory
where there is coupling only between particles and pairs.
(All higher order couplings are ignored in generic t-matrix
schemes). In this sense the parameter y arises from the inter-
conversion of fermions and noncondensed pairs. Importantly
the noncondensed pairs are not abruptly affected by the onset
of superconducting coherence. Rather, they are converted
to condensed pairs as temperature is lowered. Because we
include in effect two types of self-energies associated with the
pseudogap and the condensate and because the condensate
pairs are infinitely long lived, there is no natural physical
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reason to contemplate changes in y as T passes below T..
Indeed, crucial to our physical picture is that our results appear
robust with respect to y without any detailed assumptions.
General orders of magnitude for y/A which we considered
range from about 0.1 to 1.0, depending on the assumed doping
level.

The first equation representing the full Green’s function
is associated with a BCS self-energy (o< A2,) and a similar
contribution from the noncondensed pairs (cx Agg). The latter
is fairly standard in the literature'>?" and importantly was
derived microscopically in our earlier work.'® This decom-
position into condensed and noncondensed pair components
was discussed in detail in the accompanying paper. Above,
F. represents the usual Gorkov-like function associated with
condensed pairs, and we can interpret Fy, as their noncon-
densed counterpart. The full excitation gap A(T') does not have
a strong temperature dependence in the underdoped regime;
below T, this is because of a conversion of noncondensed to
condensed pairs as T is reduced.

We may rewrite F (Q) in the regime of very weak
dissipation (y ~ 0) where the behavior is more physically
transparent. For simplicity we will illustrate this result for
s-wave pairing

< kk | E, + E_
P (0,q) = Zﬁ[L—E(I =i =)
k

E.E_—&& —8AN*> E,—E_
X —

w? — (Es + E_) E.E_
ELE_+EE +68A°
iy o f)] 3)

where fi = f(E+) and SA? = Afc — Agg, &+ = &k+q/2, and
E. = Ey4q/2- Importantly, one can analytically show that®
the transverse sum rule is precisely satisified, as was sum-
marized in the companion paper. This sum rule is inti-
mately connected to the absence above 7. (and presence
below) of a Meissner effect. The proof depends on the
superfluid density, which at general temperatures is given
by ns = (2/3)0(A2/m) Y k*/E*[(1 —2f)/2E + 3f/JE].In
addition, the total number of particles can be written as
n=7,[1—&(1—-2f)/E]. In this way, it is seen’ that
Reo(w — 0) = (wn,/m)d(w). Since Agc =A% — Agg, one
can see that pseudogap effects, through Agg, act to lower
the superfluid density; the excitation of these noncondensed
pairs provides an additional mechanism, beyond the fermions,
for depleting the condensate with increasing temperature. The
different signs associated with the pg and sc contributions
to the current response formally relate to vertex corrections
of a different nature in the condensed and noncondensed
components. Despite the simplicity of this expression, in no
sense are vertex corrections to the bare polarization bubble
ignored.

We introduce a
Eq. (3) via the

1

transport !

replacement

lifetime t =y~ into
8lo — (Ef £ E)] =

to yield (for the more general

. 1 =
llmf—>oo p [a)f(E;:tE;)]va%Z )
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d-wave case)

A2(T)pp 1 — 2f(Ex)
E} 2E)

Reo(w#0) = Z 4sin2kxt2{
k

T T
x [1 tw—2E) T Tt 2Ek)2t2]

B — Mok af (B T
—2 2 272 [ )
E; 0Ex 14wt

where we have dropped a small term associated with the deriva-
tive of the d-wave form factor gol%. Here Ay + = Age(T)@xtq/2
and Ape + = Ape(T)@itq/2- Because of their complexity, we
do not include self-consistent impurity effects, which, due to
bosonic contributions, will require a modification of earlier
work?! predicting d-wave fermionic quasiparticles in the
ground state. Moreover, it seems plausible that noncondensed
pairs may also be associated with these impurity effects,
thereby leading to incomplete condensation and finite Ape
in the ground state. In general, our calculations tend to
underestimate the very low T spectral weight away from
w=0.

III. NUMERICAL RESULTS

The upper panel in Fig. 1 displays a decomposition of the
normal state conductivity versus w. The top curve is Reo (w),
while the shaded (red) region labeled “PG” indicates the
contribution from noncondensed pairs arising from the Fp,
terms in Eq. (1). This figure shows clearly what is implicit in
Eq. (4), namely, that these pseudogap effects transfer spectral
weight from low to high w. Here the inset plots the resistivity
as a function of T'.

The lower panel in Fig. 1 plots the real part of the
optical conductivity versus w at the four different temperatures
T/T.=1.2,0.8,0.4, and 0.2. There are two peak structures in
these plots, the lower Drude-like peak, from the quasiparticle-
scattering contribution and the upper peak associated with the
breaking of preformed pairs. The “PG” contribution disappears
at the lowest temperatures, as all pairs go into the condensate.
Thus one sees in the figure once the condensate is formed
below T, the low-frequency peak narrows and increases in
magnitude. Conversely, the proportion of the spectral weight
residing at high energies on the order of 10* cm™! increases
with temperature.

To more deeply analyze this redistribution of spectral
weight, the difference of the frequency integrated conductivity
between 1.47. and 0.67, of the present theory is plotted
as a function of w/t in the inset of the bottom panel in
Fig. 1. Here we define W(w,T) = (2/m) fow dw'o(w',T) and
AW(w) = W(w,1.4T,) — W(w,0.6T,). For comparison, we
plot a counterpart “BCS-like” spectral weight change which
is derived by effectively neglecting the terms involving Agg in
Eq. (4). Both conductivities are normalized by their indepen-
dently calculated change in superfluid densities, An,/m. The
present theory leads to the full integrated (normalized) spectral
weight by w &~ 1 eV, while the BCS-like curve counterpart
corresponds to w &~ 60 meV. One can see that the presence
of noncondensed pairs redistributes an appreciable amount
of spectral weight to higher energies. Experimentally, there
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FIG. 1. (Color online) Upper panel (top) curve plots Reo (w) for
T = 1.1T,, while the shaded (red) area labeled “PG” shows the
transfer of spectral weight from low to higher w associated with
noncondensed pairs. Inset shows the dc resistivity. Lower panel plots
o (w) at different indicated temperatures. Normalization is op = o(0)
at 1.27,. The inset shows the difference of spectral weight between
1.4 and 0.67, normalized by the difference in superfluid densities.
The present theory (red) is contrasted with a BCS-like case (blue)
where all explicit Ap, contributions are dropped.

have been claims that very high energy scales ranging from
1.5 to 2 eV may be needed to satisfy the sum rule. This figure
shows how pseudogap contributions can be, at least partly,
responsible for these high-energy scales.

We present a more detailed set of comparisons between
theory and experiment in Fig. 2, where, for the latter, we
reproduce the y = 6.75 plots in Fig. 4 from Ref. 2 in panels
(a)—(c) and the bottom panel of Fig. 5 from the same work in
panel (d). Panels (e)—(g) in Fig. 2 are associated with T/ T, =
1.4,0.4, and 0.2 and should be compared with the plots in (a)—
(c). Here one sees rather similar trends. Importantly the Drude
peak narrows and increases in height as T decreases. The MIR
peak position is relatively constant, (as seen experimentally)
and in the theory roughly associated with 2A, the value of
which is identified in each panel (e)—(g). That A(T) is roughly
constant through the displayed temperature range, reflects the
interconversion of noncondensed to condensed pairs.

134518-3
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It should be noted, however, that the height of the MIR
peak in the data is more temperature independent than
found in theory. This would seem to suggest that there are
noncondensed pair states at 7 = 0 perhaps associated with
inhomogeneity or localization?! effects. This interpretation of
the optical data appears consistent with our previous studies®>
of angle-resolved photoemission (ARPES) data from which
we have inferred that the ground state in strongly underdoped
samples may not be the fully condensed d-wave BCS phase.
Rather there may be some noncondensed pair or pseudogap
effects which persist to 7 = 0. In ARPES experiments one
could attribute this persistence to the fact that the 7 = 0 gap
shape is distorted relative to the more ideal d-wave form found
in moderately underdoped systems.?* Similar observations are
made from STM experiments.’*

We show in Fig. 2(h) a plot of the MIR peak location
Wmig as a function of T* as calculated in our theory; this plot
suggests that the MIR peak position scales (nearly linearly)

with the pairing gap or equivalently with 7. This observation
is qualitatively similar (within factors of 2 or 3) to Fig. 2(d),
reproduced from Ref. 2. Finally, we stress that we have
investigated the effects of varying y as well asits T’ dependence
and find that our results in Fig. 2 remain very robust, as shown
in the Appendix.

IV. CONCLUSIONS

At the core of interest in the optical conductivity is what
one can learn about the origin of the pseudogap. We earlier
discussed problematic aspects of alternative scenarios for
the two-component optical response. We reiterate that the
observed tight correlation with the two-component optical
response and the presence of a pseudogap® is natural in
the present theory, where the MIR peak is to be associ-
ated directly with the breaking of metastable pairs. Such
a contribution does not disappear below 7., until all pairs

134518-4
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FIG. 3. (Color online) Illustrative figure for the case of constant gamma. The numerical values indicated are quoted relative to those we

showed in the paper.

are condensed. In summary, our paper appears compatible
with the very important experimental conclusion in Ref. 2
that “Our findings suggest that any explanation [of the MIR
peak] should take into account the correlation betwen the
formation of the mid IR absorption and the development of
the pseudogap.”
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APPENDIX: FURTHER NUMERICAL STUDIES

In this appendix we present a comparison figure, Fig. 3,
for the optical conductivity in the case where we take the
parameter y to be constant in temperature for three different
values of y. The first column in Fig. 3 reproduces the
experimental data from Ref. 2. The remaining columns show
the theoretical results for decreasing values of y. Each row
corresponds to decreasing temperature from top to bottom.
This shows that are results are robust over a large range of
y and very much independent of what values or temperature
dependencies are assumed for the lifetime broadening.
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