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In this paper we give a simple proof that when the particle number is conserved, the Lagrangian of a

barotropic perfect fluid isLm ¼ ��½c2 þ R
Pð�Þ=�2d��, where � is the rest mass density and Pð�Þ is the

pressure. To prove this result, neither additional fields nor Lagrange multipliers are needed. Besides, the

result is applicable to a wide range of theories of gravitation. The only assumptions used in the derivation

are: 1) the matter part of the Lagrangian does not depend on the derivatives of the metric, and 2) the

particle number of the fluid is conserved (r�ð�u�Þ ¼ 0).
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I. INTRODUCTION

In order to obtain solvable equations of motion, recently
developed alternative theories of gravitation use some
specific forms of the perfect fluid Lagrangian [1–5]. Most
of these approaches start from the work of Brown [6],
where the on-shell perfect fluid Lagrangian Lm, without
elastic energy, is shown to reduce in general relativity (GR)
to Lm ¼ ��, where � is the energy density of the fluid.
This result is obtained by introducing various additional
fields, as well as Lagrange multipliers in order to effec-
tively be able to reconstruct a perfect fluid stress-energy
tensor concordant with the laws of thermodynamics,
such as the matter current conservation. However, because
of the additional fields, it turns out that the on-shell
Lagrangian can also be Lm ¼ P, where P is the pressure
of the fluid. This degeneracy of the Lagrangian has no
consequences in GR, since both Lagrangians lead to the
same equations of motion. In Ref. [7] an alternative perfect
fluid Lagrangian was proposed which is a function of the
hydrodynamic variables u�, �, and T, where u� is the fluid
four-velocity, and T the rest temperature of the fluid, and of
the gravitational field variables g��. Also, the equations of

hydrodynamics for a perfect fluid in general relativity have
been cast in Eulerian form, with the four-velocity being
expressed in terms of six velocity potentials in Ref. [8].
The velocity-potential description leads to a variational
principle whose Lagrangian density for the perfect fluid
is the pressure P. Let us also note that a matter Lagrangian
of the form Lm ¼ ��ð1þ �Þ, where � is the elastic po-
tential (or the internal energy), was considered in Ref. [9]
to derive the equations of motion of the perfect fluid from a
variational principle. Otherwise, variational principles for
perfect and imperfect general relativistic fluids were con-
sidered in Ref. [10].

However, it turns out that in some alternative theories
of gravity, the matter Lagrangian appears explicitly in the

field equations. Therefore, the field equations of those
theories seem to be different whether one considers
Lm ¼ �� orLm ¼ P. Hence, in these models the physics
seem to be different depending on this choice, which is not
satisfactory with respect to the monistic view of modern
physics, which requires a unique mathematical description
of the natural phenomena.
The first obvious thing one can claim about this situation

is that there is absolutely no reason why the results ob-
tained in GR by Brown [6] should be applicable in the
theories where the matter Lagrangian enters directly into
the field equations. Even more than that, the simple fact
that the laws of physics depend on the considered
Lagrangian should be viewed as a proof of the nonapplic-
ability of Brown’s results in theories where the degeneracy
of the matter Lagrangian leads to a variety of different field
equations. Therefore, all works [2–5,11] considering that
one can write Lm ¼ P for their on-shell perfect fluid
Lagrangian—or any linear combination of �� and P—
may be incorrect as long as they deal with theories where
the matter Lagrangian enters directly into the field equa-
tions (unless one can prove the opposite in some specific
situation).
To be more specific, two main theories have been con-

sidered where Lm enters directly into the field equations:
fðRÞ theories with some nonminimal matter/curvature cou-
pling [1–4,12], or Brans-Dicke-like scalar-tensor theories
with some nonminimal matter/scalar coupling [5,11].
In a recent work [12], instead of using the results of

Brown [6] and trying to apply them to the theory under
consideration, the Lagrangian for a barotropic perfect fluid
was derived from the equations of motion induced by the
adopted action. In addition, the conditions of the conser-
vation of the matter fluid current [r�ð�u�Þ ¼ 0, where u�

is the four-velocity of the fluid, and � is the rest mass
energy density], as well as of the nondependency of the
matter Lagrangian with respect to the derivatives of the
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metric were also imposed. By using these assumptions one
can show that for the considered modified gravity model
one has Lm ¼ ��½1þ R

Pð�Þ=�2d��.
In the following, we extend the result of Ref. [12] to any

gravitational theory that satisfies the conditions of the
conservation of the matter fluid current as well as the non-
dependency of the matter Lagrangian with respect to the
derivatives of the metric. Besides, the present demonstra-
tion is actually much simpler than in Ref. [12]. Also, in the
Appendix we show that in the case of scalar-tensor theories
with scalar field/matter coupling the result is compatible
with a Brown-like way of deriving the Lagrangian.

In the present paper we use the Misner-Thorne-Wheeler
conventions [13]. Also, while c ¼ 1 has been used in the
Introduction in order to match previous studies’ notation,
we will explicitly keep c in the rest of the paper.

II. THE LAGRANGIAN OFA BAROTROPIC
PERFECT FLUID

We start with the usual definition of the stress-energy
tensor T��, given by

T�� ¼ � 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmÞ

�g�� : (1)

Considering the usual assumption that the matter part of
the Lagrangian Lm does not depend on the derivatives of
the metric, we obtain

T�� ¼ � 2ffiffiffiffiffiffiffi�g
p @ð ffiffiffiffiffiffiffi�g

p
LmÞ

@g�� ¼ Lmg�� � 2
@Lm

@g�� : (2)

Now, by considering a fluid with a barotropic equation
of state Pð�Þ, we can assume that Lm depends on � only.
If one considers that the matter current is conserved
(r�ð�u�Þ ¼ 0), then one can prove that [12,14]

�� ¼ 1

2
�ðg�� � u�u�Þ�g��; (3)

where u� is the four-velocity of the fluid, defined in a
system of coordinates x� as u� ¼ dx�=ds, where ds is
such that ds2 ¼ �c2d�2, with � the proper time of the fluid
particles, and with �c2 the rest mass energy density. Using
Eqs. (2) and (3) we obtain [12]

T�� ¼ �
dLm

d�
u�u� þ

�
Lm � �

dLm

d�

�
g��: (4)

Now, since we want to obtain the Lagrangian of a baro-
tropic perfect fluid, we have to equate this equation with the
usual stress-energy tensor of a barotropic perfect fluid,

T�� ¼ �½�ð�Þ þ Pð�Þ�u�u� þ Pð�Þg��; (5)

where �ð�Þ is the total energy density of the fluid. Therefore
we obtain the following two equations:

L m ¼ ��ð�Þ; (6)

dLm

d�
¼ � �ð�Þ þ Pð�Þ

�
: (7)

Using Eqs. (6) and (7), we obtain the following first-order
linear differential equation for the energy density of the fluid:

d�ð�Þ
d�

¼ �ð�Þ þ Pð�Þ
�

: (8)

The general solution of this equation is

�ð�Þ ¼ C�þ �
Z Pð�Þ

�2
d�; (9)

where C is an arbitrary integration constant. Therefore, we
have shown that the Lagrangian

L m ¼ �C�� �
Z Pð�Þ

�2
d� (10)

leads to an energy-momentum tensor of the form

T�� ¼ �f�½Cþ�ð�Þ� þ Pð�Þgu�u� þ Pð�Þg��; (11)

where

�ð�Þ ¼
Z Pð�Þ

�2
d� ¼

Z dP

�
� P

�
(12)

is the elastic compression potential energy per unit mass of
the fluid [14]. The integration constant is given byC ¼ c2. A
simple way to figure this out is to take the point-particle limit
of the considered action, and to equate it with the usual point-
particle action (Sm ¼ mc2

R
ds, where m is the rest mass of

the point particle). Therefore, the Lagrangian of a barotropic
perfect fluid is given by

Lm ¼ ��

�
c2 þ

Z Pð�Þ
�2

d�

�
: (13)

The corresponding stress-energy tensor can be written as

T�� ¼ �f�½c2 þ�ð�Þ� þ Pð�Þgu�u� þ Pð�Þg��; (14)

or, equivalently,

T�� ¼ f�½c2 þ�ð�Þ� þ Pð�ÞgU�U� þ Pð�Þg��; (15)

where U� ¼ c�1dx�=d� is the four-velocity of the fluid
divided by the speed of light.1 One can verify that this
stress-energy tensor is indeed of the form assumed, for
instance, in celestial relativistic mechanics [16–20].
Also, from the conservation of the rest mass density

[r�ð�u�Þ ¼ 0] and using Eqs. (9) and (12), one derives the
usual nonconservation equation for the total energy density:

r�ð�u�Þ ¼ �Pr�ðu�Þ: (16)

Let us note that, for a fluid satisfying a linear barotropic
equationof stateP ¼ ð	� 1Þ�c2with	 ¼ constant, onehas

1It also has to be pointed out that, conversely to other works, a
correct Lagrangian is used in Ref. [15].
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Lm ¼ ��c2
�
1þ ð	� 1Þ ln �

�0

�
; (17)

where �0 is an arbitrary constant of integration. The specific
example with the stiff fluid equation of state 	 ¼ 2 gives
Lm ¼ ��c2½1þ ln �

�0
�.

Otherwise, for a fluid satisfying a polytropic equation of

stateP ¼ K�1þ1=n,where bothK andn are constant, onegets

L m ¼ ��½c2 þ K�1=n þ C�; (18)

where C is an integration constant.

III. CONCLUSIONS AND FINAL REMARKS

In this note, we have shown that as long as one considers
(generic) cases where both Eqs. (2) and (3) are valid, in the
Misner-Thorne-Wheeler signature the Lagrangian of a
barotropic perfect fluid is

Lm ¼ ��

�
c2 þ

Z Pð�Þ
�2

d�

�
; (19)

regardless of the nature of the theory otherwise considered.
However, it has to be emphasized that even if the con-

servation of the matter current is a legitimate assumption, a
nonconservation is conceivable as well. Indeed, the theories
considered for our purpose all lead to a nonconservation
of the stress-energy tensor. In the case of the scalar-field
theories with scalar field/matter coupling, for instance, it
means that there is an energy transfer between the scalar and
the matter fields. The energy transfer has two implications:
either it modifies the geodesic equation of motion of the free
particles, or it induces a nonconservation of the particle
number (or both at the same time). Therefore, it would be
interesting to relax the condition on the conservation of the
matter current in order to obtain a more general result.

Otherwise, in this paper we prove that the works
[2–5,11] that use Lm ¼ P, or any of the specific linear
combinations of �� and P for the Lagrangian, are incom-
patible with the matter current conservation. Also, let us
remark that it seems very unlikely that in the most general
case—where the matter current conservation constraint is
relaxed—the Lagrangian would reduce precisely to either
Lm ¼ P or any of the specific linear combinations of ��
and P that is used in many works. Therefore, we finally
argue that one should be very cautious before considering
any of the results of the works that used the results of
Brown [6] in alternative theories of gravity without ques-
tioning the validity of its extrapolation to these types of
models, as, for instance, in Refs. [2–5,11].
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APPENDIX: ON THE EXTENSION OF THE WORK
OF BROWN TO SCALAR-TENSOR THEORIES

WITH SCALAR/MATTER COUPLING

The action describing Brans-Dicke theory with a univer-
sal spin-0/matter coupling can be written as follows [15]:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�R� !

�
ð@��Þ2 � Vð�Þ þ 2fð�ÞLm

�
;

(A1)

where g is the metric determinant, R is the Ricci scalar
constructed from the metric g��, and Lm the matter

Lagrangian. One possible Lagrangian that describes a per-
fect fluid without elastic energy in GR is given by [6]

Lm ¼ ��ðjJj= ffiffiffiffiffiffiffi�g
p

; sÞ
þ J�ffiffiffiffiffiffiffi�g

p ½@�c þ s@�
þ �A@��
A�; (A2)

where J� is the particle flux (jJj � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g��J
�J�

p
), s is the

entropy per particle, �A is the three Lagrangian coordi-
nates, and c , 
, and �A are six spacetime scalars. Now, if
one directly inserts this Lagrangian into Eq. (A1), one
obtains the following density:

Lm ¼ ffiffiffiffiffiffiffi�g
p

fð�Þf��ðjJj= ffiffiffiffiffiffiffi�g
p

; sÞ
þ ð�gÞ�1=2J�½@�c þ s@�
þ �A@��

A�g: (A3)

However, it is easy to figure out that this density does not
lead to the required thermodynamic constraints, such as the
particle number conservation, (@�J

� ¼ 0), and the absence
of entropy exchange between neighboring flow lines
[@�ðsJ�Þ ¼ 0]. Hence, the Lagrangian density (A3) is not
suitable for describing a perfect fluid in the class of models
considered in this paper. On the contrary, the following
Lagrangian density not only leads to the perfect fluid
stress-energy tensor, but also satisfies the two previously
mentioned thermodynamic constraints:

Lm ¼ � ffiffiffiffiffiffiffi�g
p

fð�Þ�ðjJj= ffiffiffiffiffiffiffi�g
p

; sÞ
þ J�½@�c þ s@�
þ �A@��

A�: (A4)

Therefore, it seems that such a Lagrangian density is valid
in order to model a perfect fluid Lagrangian as long as one
wants to impose the matter current conservation
r�ð�u�Þ ¼ 0, as in the main part of this paper. But one
then has to notice that the second term in the right-hand side
of Eq. (A4) does not couple with either the metric or with
the scalar field. Hence, only the first term in the right-hand
side of Eq. (A4) will enter into the field equations.
Therefore, the on-shell perfect fluid is simply Lm ¼ ��,
which is in concordance with the main result of this paper.
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