Title	Polar Duals of Convex and Star Bodies
Author（s）	Cheung，WS；Zhao，C；Chen，LY
Citation	Journal of Inequalities and Applications，2012，p．2012：90
Issued Date	2012
URL	http：／／hdl．handle．net／10722／181667
Rights	Creative Commons：Attribution 3．0 Hong Kong License

Polar duals of convex and star bodies

Chang-Jian Zhao ${ }^{1 *}$, Lian-Ying Chen ${ }^{1}$ and Wing-Sum Cheung ${ }^{2}$

[^0]
Abstract
 In this article, some new inequalities about polar duals of convex and star bodies are established. The new inequalities in special case yield some of the recent results.
 MR (2000) Subject Classification: 52A30.
 Keywords: polar dual, L_{p}-mixed volume, dual L_{p}-mixed volume, the Bourgain and Milman's inequality

1 Notations and preliminaries

The setting for this article is n-dimensional Euclidean space $\mathbb{R}^{n}(n>2)$. Let \mathcal{K}^{n} denotes the set of convex bodies (compact, convex subsets with non-empty interiors) in \mathbb{R}^{n}. We reserve the letter u for unit vectors, and the letter B for the unit ball centered at the origin. The surface of B is S^{n-1}. The volume of the unit n-ball is denoted by ω_{n}.
We use $V(K)$ for the n-dimensional volume of convex body $K . h(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$, denotes the support function of $K \in \mathcal{K}^{n}$; i.e., for $u L S^{n-1}$

$$
\begin{equation*}
h(K, u)=\operatorname{Max}\{u \cdot x: x \in K\} \tag{1.1}
\end{equation*}
$$

where $u \cdot x$ denotes the usual inner product u and x in \mathbb{R}^{n}.
Let δ denotes the Hausdorff metric on \mathcal{K}^{n}, i.e., for $K, L \in \mathcal{K}^{n}, \delta(K, L)=\left|h_{K}-h_{L}\right|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C\left(S^{n-1}\right)$.
Associated with a compact subset K of \mathbb{R}^{n}, which is star-shaped with respect to the origin, is its radial function $\rho(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$, defined for $u L S^{n-1}$, by

$$
\begin{equation*}
\rho(K, u)=\operatorname{Max}\{\lambda \geq 0: \lambda u \in K\} . \tag{1.2}
\end{equation*}
$$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Let S^{n} denotes the set of star bodies in \mathbb{R}^{n}. Let $\tilde{\delta}$ denotes the radial Hausdorff metric, as follows, if $K, L L$ S^{n}, then $\tilde{\delta}(K, L)=\left|\rho_{K}-\rho_{L}\right|_{\infty}$ (See [1,2]).

$1.1 L_{p}$-mixed volume and dual L_{p}-mixed volume

If $K, L \in \mathcal{K}^{n}$, the L_{p}-mixed volume $V_{p}(K, L)$ was defined by Lutwak (see [3]):

$$
\begin{equation*}
V_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} h(L, u)^{p} \mathrm{~d} S_{p}(K, u), \tag{1.3}
\end{equation*}
$$

where $S_{p}(K, \cdot)$ denotes a positive Borel measure on S^{n-1}.
The L_{p} analog of the classical Minkowski inequality (see [3]) states that: If K and L are convex bodies, then

[^1]\[

$$
\begin{equation*}
V_{p}(K, L) \geq V(K)^{(n-p) / n} V(L)^{p / n} \tag{1.4}
\end{equation*}
$$

\]

with equality if and only if K and L are homothetic.
If $K, L \in S^{n}, p \geq 1$, the L_{p}-dual mixed volume $\tilde{V}_{-p}(K, L)$ was defined by Lutwak (see [4]):

$$
\begin{equation*}
\tilde{V}_{-p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n+p} \rho(L, u)^{-p} \mathrm{~d} S(u), \tag{1.5}
\end{equation*}
$$

where $d S(u)$ signifies the surface area element on S^{n-1} at u.
The following dual L_{p}-Minkowski inequality was obtained in [2]: If K and L are star bodies, then

$$
\begin{equation*}
\tilde{V}_{-p}(K, L)^{n} \geq V(K)^{n+p} V(L)^{-p}, \tag{1.6}
\end{equation*}
$$

with equality if and only if K and L are dilates.

1.2 Mixed bodies of convex bodies

If $K_{1}, \ldots, K_{n-1} \in \mathcal{K}^{n}$, the notation of mixed body $\left[K_{1}, \ldots, K_{n-1}\right]$ states that (see [5]): corresponding to the convex bodies $K_{1}, \ldots, K_{n-1} \in \mathcal{K}^{n}$ in \mathbb{R}^{n}, there exists a convex body, unique up to translation, which we denote $b y\left[K_{1}, \ldots, K_{n-1}\right]$.
The following is a list of the properties of mixed body: It is symmetric, linear with respect to Minkowski linear combinations, positively homogeneous, and for $K_{i} \in \mathcal{K}^{n}, i=1, \ldots, n, L_{1} \in \mathcal{K}^{n}$ and $\lambda_{\mathrm{i}}>0$,
(1) $V_{1}\left(\left[K_{1}, \ldots, K_{n-1}\right], K_{n}\right)=V\left(K_{1}, \ldots, K_{n-1}, K_{n}\right)$;
(2) $\left[K_{1}+\mathrm{L}_{1}, K_{2}, \ldots, K_{n-1}\right]=\left[K_{1}, K_{2}, \ldots, K_{n-1}\right]+\left[L_{1}, K_{2}, \ldots, K_{n-1}\right]$;
(3) $\left[\lambda_{1} K_{1}, \ldots, \lambda_{n-1} K_{n-1}\right]=\lambda_{1} \ldots \lambda_{n-1} \cdot\left[K_{1}, \ldots, K_{n-1}\right]$;
(4) $\underbrace{[K, \ldots, K]}_{n-1}=K$.

The properties of mixed body play an important role in proving our main results.

1.3 Polar of convex body

For $K \in \mathcal{K}^{n}$, the polar body of K, K^{*} is defined:

$$
K^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leq 1, y \in K\right\} .
$$

It is easy to get that

$$
\begin{equation*}
\rho(K, u)^{-1}=h\left(K^{*}, u\right) . \tag{1.7}
\end{equation*}
$$

Bourgain and Milman's inequality is stated as follows (see [6]).
If K is a convex symmetric body in \mathbb{R}^{n}, then there exists a universal constant $c>0$ such that

$$
\begin{equation*}
V(K) V\left(K^{*}\right) \geq c^{n} \omega_{n}^{2} . \tag{1.8}
\end{equation*}
$$

Different proofs were given by Pisier [7].

2 Main results

In this article, we establish some new inequalities on polar duals of convex and star bodies.

Theorem 2.1 If $K, K_{1}, \ldots, K_{n-1}$ are convex bodies in \mathbb{R}^{n} and let $L=\left[K_{1}, \ldots, K_{n-1}\right]$, then the L_{p}-mixed volumes $V_{p}(K, L), V_{p}\left(K^{*}, L\right), V_{p}(B, L)$ satisfy

$$
\begin{equation*}
V_{p}(K, L) V_{p}\left(K^{*}, L\right) \geq V_{p}(B, L)^{2} . \tag{2.1}
\end{equation*}
$$

Proof From (1.1) and (1.2), it is easy

$$
\begin{equation*}
h(K, u) \geq \rho(K, u), \quad K \in \mathcal{K}^{n} \tag{2.2}
\end{equation*}
$$

By definition of L_{p}-mixed volume, we have

$$
\begin{equation*}
V_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} h(K, u)^{p} \mathrm{~d} S_{p}(L ; u), \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{p}\left(K^{*}, L\right)=\frac{1}{n} \int_{S^{n-1}} h\left(K^{*}, u\right)^{p} \mathrm{~d} S_{p}(L, u) \tag{2.4}
\end{equation*}
$$

Multiply both sides of (2.3) and (2.4), in view of (1.7) and (2.2) and using the Cau-chy-Schwarz inequality (see [8]), we obtain

$$
\begin{aligned}
& n^{2} V_{p}(K, L) V_{p}\left(K^{*}, L\right) \\
& \quad=\left(\int_{S^{n-1}} h(K, u)^{p} \mathrm{~d} S_{p}\left(K_{1}, \ldots, K_{n-1} ; u\right)\right)\left(\int_{S^{n-1}} \frac{1}{\rho(K, u)^{p}} \mathrm{~d} S_{p}\left(K_{1}, \ldots, K_{n-1} ; u\right)\right) \\
& \quad \geq\left(\int_{S^{n-1}} h(K, u)^{\frac{p}{2}} \cdot \frac{1}{\rho(K, u)^{\frac{p}{2}}} \mathrm{~d} S_{p}\left(K_{1}, \ldots, K_{n-1} ; u\right)\right)^{2} \\
& \quad \geq\left(\int_{S_{n-1}} \mathrm{~d} S_{p}\left(K_{1}, \ldots, K_{n-1} ; u\right)\right)^{2} \\
& \quad=n^{2} V_{p}^{2}(B, L) .
\end{aligned}
$$

Taking $p=n-1$ in (2.1) and in view of the property (1) of mixed body, we obtain the following result: If $K, K_{1}, \ldots, K_{n-1} \in \mathcal{K}^{n}$, then

$$
\begin{equation*}
V\left(K, K_{1}, \ldots, K_{n-1}\right) V\left(K^{*}, K_{1}, \ldots, K_{n}\right) \geq V\left(B, K_{1}, \ldots, K_{n-1}\right)^{2} \tag{2.5}
\end{equation*}
$$

This is just an inequality given by Ghandehari [9].
Let $L=B$, we have the following interesting result:
Let K be a convex body and K^{*} its polar dual, then

$$
\begin{equation*}
V_{p}(K, B) V_{p}\left(K^{*}, B\right) \geq \omega_{n}^{2} . \tag{2.6}
\end{equation*}
$$

Taking $p=n-1$ in (2.6), we have the following result which was given in [9]:

$$
W_{n-1}(K) W_{n-1}\left(K^{*}\right) \geq \omega_{n}^{2}
$$

with equality if and only if K is an n-ball.
Corollary 2.2 The L_{p}-mixed volume of K and $K^{*}, V_{p}\left(K, K^{*}\right)$ satisfies

$$
\begin{equation*}
V_{p}\left(K^{*}, K\right)^{n} \geq \omega_{n}^{2(n-p)} V(K)^{2 p-n} \tag{2.7}
\end{equation*}
$$

Proof In view of the property (4) of the mixed body, we have

$$
V_{p}(K,[K, \ldots, K])=V_{p}(K, K)=V(K) .
$$

Form (1.4) and taking for $K_{1}=K_{2}=\ldots=K_{n-1}=K$ in (2.1), we have

$$
\begin{aligned}
V(K) V_{p}\left(K^{*}, K\right) & \geq V_{p}^{2}(B, K) \\
& \geq V(B) \frac{2(n-p)}{n} V(K) \frac{2 p}{n} \\
& \frac{2(n-p)}{n} V(K) \frac{2 p}{n} .
\end{aligned}
$$

Taking $p=n-1$ in (2.7), we have the following result:

$$
V(K^{*}, \underbrace{K, \ldots, K}_{n-1})^{n} \geq \omega_{n}^{2} V(K)^{n-2}
$$

This is just an inequality given by Ghandehari [9]. The cases $p=1$ and $n=2$ give Steinhardt's and Firey's result (see [7]).
A reverse inequality about $\tilde{V}(K^{*}, \underbrace{K, \ldots, K}_{n-1})$ was given by Ghandehari [9].

$$
\tilde{V}(K^{*}, \underbrace{K, \ldots, K}_{n-1})^{n} \leq \omega_{n}^{2} V(K)^{n-2}
$$

Theorem 2.3 Let K be a star body in \mathbb{R}^{n}, K^{*} be the polar dual of K, then there exist a universal constant $c>0$ such that

$$
\begin{equation*}
V(K)^{n+2 p} \tilde{V}_{-p}\left(K^{*}, K\right)^{n} \geq\left(c^{n} \omega_{n}^{2}\right)^{n+p} \tag{2.8}
\end{equation*}
$$

where c is the constant of Bourgain and Milman's inequality.
Proof From (1.6) and (1.8), we have

$$
\begin{aligned}
\tilde{V}_{-p}\left(K^{*}, K\right) & \geq V\left(K^{*}\right) \frac{n+p}{n} V(K)^{-\frac{p}{n}} \\
& =\left(V\left(K^{*}\right) V(K)\right)^{\frac{n+p}{n}} V(K)^{-\frac{n+2 p}{n}} \\
& \geq\left(c^{n} \omega_{n}^{2}\right)^{\frac{n+p}{n}} V(K)^{-\frac{n+2 p}{n}} .
\end{aligned}
$$

The following theorem concerning L_{p}-dual mixed volumes will generalize Santaló inequality.
Theorem 2.4 Let K_{1} and K_{2} be two star bodies, K_{1}^{*} and K_{2}^{*} be the polar dual of K_{1} and K_{2}, then there exists a constant c, L_{p}-dual mixed volumes $\tilde{V}_{-p}\left(K_{1}, K_{2}\right)$ and $\tilde{V}_{-p}\left(K_{1}, K_{2}\right) \tilde{V}_{-p}\left(K_{1}^{*}, K_{2}^{*}\right) \geq c^{n} \omega_{n}^{2}$ satisfy
$\tilde{V}_{-p}\left(K_{1}, K_{2}\right) \tilde{V}_{-p}\left(K_{1}^{*}, K_{2}^{*}\right) \geq c^{n} \omega_{n}^{2}$.

Proof From (1.6), we have

$$
\begin{equation*}
\tilde{V}_{-p}\left(K_{1}, K_{2}\right) \geq\left(K_{1}\right)^{\frac{n+p}{n}} V\left(K_{2}\right)^{-\frac{p}{n}} . \tag{2.10}
\end{equation*}
$$

For K_{1}^{*} and K_{2}^{*}, we also have

$$
\begin{equation*}
\tilde{V}_{-p}\left(K_{1}^{*}, K_{2}^{*}\right) \geq V\left(K_{1}^{*}\right)^{\frac{n+p}{n}} V\left(K_{2}^{*}\right)^{-\frac{p}{n}} . \tag{2.11}
\end{equation*}
$$

Multiply both sides of (2.10) and (2.11) and using Bourgain and Milman's inequality, we obtain

$$
\begin{aligned}
\tilde{V}_{-p}\left(K_{1}, K_{2}\right) \tilde{V}_{-p}\left(K_{1}^{*}, K_{2}^{*}\right) & \geq\left(V\left(K_{1}\right) V\left(K_{1}^{*}\right)\right)^{-\frac{p}{n}}\left(V\left(K_{2}\right) V\left(K_{2}^{*}\right)\right)^{-\frac{p}{n}} \\
& \geq\left(c^{n} \omega_{n}^{2}\right)^{\frac{n+p}{n}}\left(c^{n} \omega_{n}^{2}\right)^{-\frac{p}{n}} \\
& =c^{n} \omega_{n}^{2} .
\end{aligned}
$$

Taking for $K_{1}=K_{2}=K$ in (2.9) and in view of $\tilde{V}_{-p}\left(K_{1}, K_{2}\right)=\tilde{V}_{-p}(K, K)=V(K)$, (2.9) changes to the Bourgain and Milman's inequality (1.8).

Acknowledgements

C.-J. Zhao research was supported by National Natural Sciences Foundation of China (10971205). W.-S. Cheung research was partially supported by a HKU URG grant.

Author details

${ }^{1}$ Department of Mathematics, China Jiliang University, Hangzhou 310018, China ${ }^{2}$ Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong

Authors' contributions

C-JZ, L-YC and W-SC jointly contributed to the main results Theorems 2.1, 2.3, and 2.4. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 17 December 2011 Accepted: 17 April 2012 Published: 17 April 2012

References

1. Schneider, R: Convex Boides: The Brunn-Minkowski Theory. Cambridge University Press Cambridge (1993)
2. Gardner, RJ: Geometric Tomography. Cambridge University Press New York (1996)
3. Lutwak, E: The Brunn-Minkowski-Firey theory-l: mixed volumes and the Minkowski problem. J Diff Geom. 38, 131-150 (1993)
4. Lutwak, E, Yang, D, Zhang, GY: L_{p} affine isoperimetric inequalities. J Diff Geom. 56, 111-132 (2000)
5. Lutwak, E: Volume of mixed bodies. Trans Am Math Soc. 294, 487-500 (1986)
6. Bourgain, J, Milman, V: New volume ratio properties for convex symmetric bodies in [ineq]. Invent Math. 88, 319-340 (1987)
7. Pisier, G: The volume of convex bodies and Banach space geomery. Cambridge University Press Cambridge (1989)
8. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press Cambridge (1934)
9. Ghandehari, M: Polar duals of convex bodies. Proc Am Math Soc. 113(3):799-808 (1991)
[^2]
[^0]: * Correspondence: chjzhao@yahoo. com.cn
 ${ }^{1}$ Department of Mathematics, China Jiliang University, Hangzhou 310018, China
 Full list of author information is available at the end of the article

[^1]: © 2012 Zhao et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^2]: doi:10.1186/1029-242X-2012-90
 Cite this article as: Zhao et al.: Polar duals of convex and star bodies. Journal of Inequalities and Applications 2012 2012:90.

