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ABSTRACT 
 
The effect of vehicle emissions on the global climate has prompted increasing concern in the 
past few decades. Housing development patterns determine people’s travel behavior and 
related vehicle emissions. In this study, we consider a hypothetical city with several central 
business districts (CBDs) serving several classes of road users, which are continuously 
distributed over the city. The road network is relatively dense and can be approximated as a 
continuum. We establish a bi-level model to describe the relationships among housing 
allocation, traffic volume, and CO2 emissions with a continuum modeling approach. At the 
lower level, the model achieves the user equilibrium condition of a transport system. At the 
upper level, it optimizes housing allocation to achieve minimum CO2 emissions. The finite 
element method, Newton-Raphson algorithm, and convex combination approach are applied 
to solve the constrained optimization problem established in the bi-level model. A numerical 
example is then given to illustrate the effectiveness and efficiency of the proposed bi-level 
approach and solution algorithm in modeling transport demand, traffic intensity, and CO2 
emissions with an optimized housing development pattern. 
 
Keywords: Continuum modeling, transport emission, housing allocation pattern, bi-level 
programming, finite element method. 
 
 
1. INTRODUCTION 
 
Because of its negative effects on ecosystems, economies, and health, global warming has 
become one of the most acute problems of our time. Human activities, mainly those involving 
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the combustion of fossil fuels, have caused an increase in greenhouse gases (GHGs), 
particularly CO2, which has resulted in a rise in global temperatures. It is reported that the 
transport sector was responsible for about a quarter of global CO2 emissions in 2003, and this 
proportion is even higher in developed countries (ECMT, 2007). About three quarters of 
transport-related CO2 emissions are generated by road surface transport (IEA, 2006). 
 
Applying advanced technologies in the design of vehicles to increase the level of fuel 
efficiency is one way of reducing traffic-related emissions. However, regulating the emission 
rate alone may not be effective in reducing overall emissions, because the number of cars on 
the road and length of driving periods may increase rapidly. Transport policies such as 
changing land use, managing transport demand, and improving transit systems can have a 
significant effect on the behavior of travelers, and thereby on transport-related emissions 
(Nagurney and Ramanujam, 1998; Nagurney, 2000a; Nagurney, 2000b; Poudenx, 2008; 
Harwatt et al., 2011). In our study, we focus on such emissions. 
 
Many studies have attempted to analyze the effect of travel patterns and transportation system 
design on transport emissions. Congestion charges, the topology of transport networks, traffic 
control methods, the road environment, signal intersections, and the design and maintenance 
of road networks are all essential influencing factors (Rakha et al., 2000; Nagurney, 2000a; 
Nagurney, 2000b; Yin and Lawphongpanich, 2006; Chiou and Chen, 2010; Nagurney et al., 
2010; Chen et al., 2011; Li et al., in press). An analytical framework has been established to 
decompose the transportation emissions problem into the dimensions of population, transport 
intensity, energy intensity, and carbon intensity. This approach allows the aggregate effect of 
traveler activities, vehicle design, and fuel technologies on transport emissions to be 
estimated for different transport subsectors (Yang et al., 2009). Land-use patterns influence 
residential density, mixed land use, car ownership levels, commuting distance, and household 
travel demand and associated emissions (Cervero, 1989; Nowlan and Stewart, 1991; 
Messenger and Ewing, 1996; Cervero, 1996a; Cervero and Radisch, 1996b; McNally and 
Kulkarni, 1997; Badoe and Miller, 2000; Boarnet and Crane, 2001; Bento et al., 2003; Bhat 
and Guo, 2007; Brownstone and Golob, 2009); thus, they have diverse and significant effects 
on traffic-related emissions (Norman et al., 2006). Once a land use pattern is established, it is 
difficult to change, so the initial planning phase is highly important for minimizing transport-
related emissions. 
 
To better understand the relationship between land use and travel demand, more research is 
needed (Boarnet and Sarmiento, 1998). Previous studies have been implemented in a discrete 
manner, focusing on a specific road network, which requires a detailed understanding of the 
study’s objectives. Such an approach also makes it difficult to determine the interactions 
among urban form, land use, transport policies, transport systems, and transport-related 
emissions/energy consumption. Integrated models offer an alternative for improving our 
understanding of these issues and allow us to consider aggregate effects. A case study was 
carried out in Seattle to determine such interactions (Frank et al., 2000). It offered an 
effective model that integrated land use, transportation, and vehicle emission patterns, and 
reduced the complexity of the problem through the use of indirect discrete models. 
 
In this study, we apply the continuum modeling approach (Sasaki et al., 1990; Wong, 1998; 
Wong et al., 1998) to study the interactions among land use, transport, and emissions. In 
contrast to the discrete modeling approach, it focuses on the general trends and patterns of 
distribution and the travel choices of road users at the macroscopic rather than microscopic 
level. There are many benefits to using a continuum modeling approach, especially in the 
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initial planning stage. We use some smooth mathematical equations to describe the travel 
behavior of road users, which makes the problem more manageable (compared with the 
actual number of links required for discrete modeling) and can reveal how the characteristics 
of the road network are influenced by several parameters, such as the perceptions of road 
users. In addition, the continuum model does not require such intensive data collection, which 
is often labor intensive and sometimes infeasible, especially in the initial phase of planning. 
Ho and Wong established a continuum model to reveal the relationships among transport 
demand, urban form, and travel behavior, which satisfies the user equilibrium principle (Ho 
and Wong, 2005), and then extended it to a bi-level model with housing allocation optimized 
to obtain the minimal negative utility, which included housing and transportation costs (Ho 
and Wong, 2007). Based on earlier studies (Wong and Yang, 1999; Yang and Wong, 2000; 
Ho et al., 2006; Ho et al., in press), we extend the existing bi-level continuum transportation 
modeling approach to incorporate the multi-CBD problem and try to minimize transport-
related emissions in the upper level. We first review some typical emission modeling 
approaches in Section 2. In Section 3, we describe the formulation of the proposed bi-level 
continuum model, with user equilibrium achieved in the lower level and housing allocation 
optimized in the upper one. The finite element method (FEM) and convex optimization 
method are applied in this section. In Section 4, we present a numerical example to 
demonstrate the effectiveness and efficiency of the proposed model given a multi-class 
commuter scenario. Finally, concluding remarks are given in Section 5. 
 
 
2. EMISSION MODELING APPROACHES 
 
The models currently used to estimate transport emissions can be classified into three 
categories. In the first category are emission factor models, which consist of two parts, the 
baseline emission rate and correction factors. Both are derived from the mean value of 
repeated measurements following a standard method, such as the Federal Test Procedure 
(FTP). Correction factors incorporate the influence of factors such as vehicle speed, 
temperature, fuel type, and vehicle age. The emission rate is obtained by multiplying the 
baseline emission rate and correction factors together. The widely used MOBILE and 
EMFAC models fall into this category (EPA, 1994; CARB, 2006). These models can be used 
to estimate the emissions of large-scale areas. However, they do not take into consideration 
either the vehicle operation state or the driving environment. The second category includes 
the physical power-demand models, which provide a more accurate way of estimating the 
second-by-second emissions for different driving conditions and vehicle types as they 
consider both the vehicle’s operational conditions and the driving environment. A research 
group at the University of California, Riverside, established the comprehensive modal 
emission model (CMEM) (Barth et al., 1996; An et al., 1997; Scora and Barth, 2006), which 
defines the vehicle emission rate as a function of vehicle operation characteristics, such as 
engine power, engine speed, air/fuel ratio, fuel use, engine-out emissions, and catalyst pass 
fraction, for each of six vehicle operation moduli. However, the difficulty of obtaining 
detailed information on operational characteristics at different vehicle speeds and acceleration, 
and for different vehicle types, hinders its application. The third category consists of the 
acceleration and speed-based models, in which the emission rate is defined as a function of 
the vehicle type, instantaneous speed, and acceleration. Earlier versions of these models 
derived the average emission rate based on estimates of fourteen typical driving moduli 
(Joumard et al., 1995). Then, based on the data obtained from the ORNL (Oak Ridge 
National Laboratory), the emission rate is denoted as a function of a combination of linear, 
quadratic, and cubic transforms of both the instantaneous speed and acceleration (Ahn et al., 



 

 4

1999; Ahn et al., 2002; Rakha et al., 2004). This microscopic model can also be extended to a 
mesoscopic model to estimate the influence of signal intersections and the number of stops 
during driving (Rakha et al., 2000; Dion et al., 2000). This modeling approach is promising, 
as less detailed engine operation and driving environment information is required, compared 
with the physical power-demand models, and the influence of vehicle movement is controlled, 
which it is not in the emission factor models. 
 
We apply the acceleration and speed-based modeling approach to estimate the transport 
emission rate with a bi-level continuum transportation model given optimized housing 
allocation, user equilibrium, and minimized CO2 emissions. This model provides a bridge 
between travel behavior and traffic-related emissions. The use of this emission modeling 
approach in a continuum transportation system is appealing. By applying the continuum 
modeling approach, we can describe the interactions among the road network, urban form, 
travel behavior, and transport-related emissions in a simple way. The integrated model can 
then reveal how the global road network characteristics influence transport demand, travel 
intensity, and traffic-related emissions. 
 
 
3. METHODOLOGY 
 
We formulate the problem as a bi-level program as follows. 
 
3.1 Lower-level subprogram 
 
3.1.1 Model formulation 
 
In this section, we study a city of arbitrary shape with more than one central business district 
(CBD), as shown in Figure 1. The road network outside the CBDs is assumed to be relatively 
dense and can be approximated as a continuum. Transport demand and housing provision are 
continuously distributed outside the CBDs, and all employment occurs within them. People 
travel between their homes and the CBDs along the least costly route during peak hours. 
Their choice of destination is determined by their perception of the travel cost and the 
externalities of the CBDs. Several classes of road users with different types of travel behavior, 
perceptions of the travel cost, and housing costs are considered in the housing allocation 
model, and the number of each class of road users is fixed. We denote the region of the city 
as  , the outer boundary of the city as  , the location of CBD n as nO , and the boundary of 

CBD n as cn . We assume that road users will not travel across the outer boundary ( ) of 

the city. 
 
At location ( , )x y , we define ( , ) ( ( , ), ( , ))mn xmn ymnx y f x y f x yf

 
as the flow vector of class m 

road users heading to CBD n (expressed as the number of commuters that cross a unit width), 
where ( , )xmnf x y  and ( , )ymnf x y  are the flow flux in the x and y directions, respectively. 

2 2( , ) ( , ) ( , )mn xmn ymnx y f x y f x y f  is the corresponding flow intensity. At a particular 

location ( , )x y  and for a given flow pattern ( , )mn x yf , we define the speed as a monotonic 

decreasing function of the total flow intensity 
1 1

( , ) ( , )
n mN N

mn
n m

v x y v x y
 

 
  

 
 f .  
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Next, we define the travel cost potential. Let ( , )c x y  be the local travel cost, which is related 
to the travel speed as 

 ( , ) 1/ ( , )c x y v x y , (1) 
where the travel cost is expressed in hours per unit length of movement at location ( , )x y . As 
travel speed is a monotonically decreasing function of the total flow intensity, we define a 
BPR-type relationship between local travel cost and traffic intensity as follows. 

 
( , )

0
1 1

( , ) 1/ ( , ) ( , ) ( , ) ( , ) , ( , )
 

 
     

 


n m
x yN N

mn
n m

c x y v x y c x y x y x y x y


 f , (2) 

where 0( , )c x y  is the free-flow travel time, and ( , )x y  and ( , )x y  are congestion sensitivity 

parameters at location ( , )x y . Let mp  be the value of time for class m commuters. The travel 

cost of class m commuters can be expressed in dollars per unit length of travel at ( , )x y  as  

 ( , ) ( , ), ( , ) ,m m mc x y p c x y x y m N    . (3) 

For a given flow pattern ( , )mn x yf  and with the unit travel cost ( , )mc x y , we consider the 

function ( , )mnu x y , which is the transportation cost of class m commuters at location ( , )x y  

traveling to CBD n, and the following equation should be satisfied: 

 
( , )

( , ) ( , ) 0, ( , ) , ,
( , )

mn
m mn m n

mn

x y
c x y u x y x y m N n N

x y
     

f

f
. (4) 

Equation (4) is equivalent to equations (5) and (6), which are, respectively: 

  
( , ) ( , )

( , ) 0, ( , ) , ,
( , )

xmn mn
m m n

mn

f x y u x y
c x y x y m N n N

x y x


     

f
, and (5) 

 
( , ) ( , )

( , ) 0, ( , ) , ,
( , )

ymn mn
m m n

mn

f x y u x y
c x y x y m N n N

x y y


     

f
. (6) 

In equation (4), the flow vector is the direct opposite of the gradient of the scalar function 
( , )mnu x y ; that is, 

 ( , ) / / ( , ), 0,( , )mn mn mnx y u x y x y    f f  , (7) 

where “//” means that the two vectors are in the same direction. 
 
For each type of commuter, the flow vector and trip demand must satisfy the flow 
conservation conditions in the region of the city. 

 ( , ) ( , ) 0, ( , ) , ,mn mn m nx y q x y x y m N n N      f , (8) 

where ( , ) / /mn xmn ymnx y f x f y      f  is the gradient of the flow vector ( , )mn x yf , and 

( , )mnq x y  is the density of the demand of class m commuters at location ( , )x y  that will travel 

to CBD n, which is expressed as the number of commuters per unit area per unit time. 
 
In addition to the transportation cost are the costs that are incurred in each CBD, which are 
known as market externalities. An externality is specified as a function of the market share of 
the facility and represented as mnS  (expressed in the same unit as the transportation cost, 

HKD) for class m commuter perceptions of CBD n. It can be decreasing, indicating a positive 
externality (economies of scale, employment opportunities), increasing, showing a negative 
externality (congestion), or convex, when the positive externality is small and the negative 
externality is large. This is because some CBD costs are fixed (such as investment in 
infrastructure) and should be shared by all road users, so that the larger is the demand, the 
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smaller is the cost. However, greater demand causes severe congestion, which results in more 
delays and additional costs. In our model, mnS  can be defined as a function of nV  (the total 

demand for CBD n), where 
1

mN

n mn
m

V q d




  , and nV  is the sum of all classes of road users 

that will travel to CBD n. Then, the perceived cost of class m users traveling to CBD n can be 
denoted as mnC : 

 ( )mn mn mn nC S V  , (9) 

where mn  is the biased component that represents the preference of class m users for CBD n. 

 
Then, the total perceived cost for each class of road users traveling to the CBDs can be 
defined as mn : 

 ( , ) ( , ), ( , ) , ,mn mn mn m nx y C u x y x y m N n N       . (10) 

 
For any used route p  of class m from the location (H) to CBD n, the total perceived cost 
(including the transportation cost and the CBD’s externalities) is 

 (11) 

For any unused route p  of class m from the location (H) to CBD n, the total perceived cost 
(including the transportation cost and the CBD’s externalities) is 

 (12) 

The inequality in equation (12) is due to the fact that for route p , the vectors /mn mnf f
 
and 

ds  are not parallel, and thus ( / )mn mnds  f f ds . Hence, for the unused route, the total 

perceived cost is at least no less than that of the used routes. The model thus guarantees that 
users will choose the least costly route between their home and destination in a user-optimal 
manner. 
 
For a particular class of users, the probability of a user choosing a CBD as his destination 
depends on the total perceived cost from his home to his destination, which is governed by a 
logit-type distribution: 

 

1

exp( ( , ))
( , ) ( , ) , ( , ) , ,

exp( ( , ))
n

m mn
mn m m nN

m mi
i

x y
q x y q x y x y m N n N

x y

 

 



    


, (13) 

where m  is a positive scalar parameter that measures the sensitivity. 

Next, we define ( , )m x y  as a function of the log-sum cost of the users from the location 

( , )x y  to all of the CBDs. 

 
1

1
( , ) ln exp( ( , )), ( , ) ,

nN

m m mi m
im

x y x y x y m N 
 

       . (14) 

The interaction between housing allocation and traffic equilibrium is governed by the demand 
distribution function, which is used to describe the way in which road users choose their 

( ( ) ( ))

( )

mn
p mn m mn m mn mn mn mn n mnp p p

mn

mn mn

C C c ds C c C u C u O u H

C u H

         

 

  
f

ds ds
f

( ( ) ( ))

( )

mn
p mn m mn m mn mn mn mn n mnp p p

mn

mn mn p

C C c ds C c C u C u O u H

C u H C

         

  

  
f

ds ds
f
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home location in the city. Ho and Wong (2005, 2007) identified housing and travel costs as 
the basic variables that affect a commuter’s choice of where to live; in this case, we also take 
the externalities of the CBDs into consideration. The following equation is used to 
incorporate the housing allocation problem into the transportation equilibrium problem. 

 
exp( ( , ))

( , ) 0, ( , ) ,
exp( ( , ))

m m
m m m

m m

U x y
q x y Q x y m N

U x y d







    

 
, (15) 

where mQ  is the total demand of class m commuters, which is fixed in this model, mU  is the 

utility function perceived by class m commuters for all CBDs at the location ( , )x y , and m  is 

a positive scalar parameter that measures the sensitivity. 
 
The utility function ( , ) ( , ) ( , )m m mU x y x y r x y   consists of two components. The log-sum 

cost is obtained in equation (14) and the housing cost, which depends on the total demand 

density 
1

( , ) ( , )
mN

m
m

q x y q x y


  and the total housing supply density ( , )H x y , in the following 

equation. 
 ( , ) ( , )(1 ( , ) ( , ) / ( ( , ) ( , )))m mr x y x y x y q x y H x y q x y    , (16) 

where ( , )m x y  represents different commuter perceptions of housing costs, and ( , )x y  are 

scalar parameters that represent the demand-dependent components of the housing cost 
function at location ( , )x y . 
 
By combining equations (13) and (15), we can find ( , ) , ,m Nx y m N n N    : 

 

1

exp( ( , )) exp( ( , ))
( , ) 0

exp( ( , )) exp( ( , ))
n

m m m mn
mn m N

m m
m mi

i

U x y x y
q x y Q

U x y d x y

  
  



 
  

   
. (17) 

We also consider the boundary conditions that must be satisfied: 
 0, ( , ) ,mn cn m nu x y m N n N      ， , and (18) 

 0, ( , ) , , , , ,mn ck m nx y m N n k N n k       f .  (19) 

In equation (18), as users at cn  are already at the boundary of CBD n, they will incur no 

transportation cost in traveling to CBD n. In equation (19), we assume that there is no flow 
across the city boundary and that class m road users do not enter any CBD other than the one 
to which they are heading. 
 
3.1.2 Solution algorithm 
 
The problem can be written as a system of differential equations, including equations (5), (6), 
(8), and (17), which is solved using the finite element method (FEM) (Zienkiewicz and 
Taylor, 1989). We first adopt the Galerkin formulation of the weighted residual technique to 
transform the equations into the following expressions, where ( , )x y  is the weight function 

in the weighted residual technique and can take any value. For ( , ) , ,m nx y m N n N    , 
the following equations can be obtained. 

 
( , ) ( , )

( ( , ) ) ( , ) 0
( , )

xmn mn
m

mn

f x y u x y
c x y x y d

x y x


   

 f
, (20) 
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( , ) ( , )

( ( , ) ) ( , ) 0
( , )

ymn mn
m

mn

f x y u x y
c x y x y d

x y y


   

 f
, (21) 

 ( ( , ) ( , )) ( , ) 0mn mnx y q x y x y d

     f , and (22) 

 

1

exp( ( , )) exp( ( , ))
( ( , ) ) ( , ) 0

exp( ( , )) exp( ( , ))
n

m m m mn
mn m N

m m
m mi

i

U x y x y
q x y Q x y d

U x y d x y

  
  






 
    

  
  

.  (23) 

After the region is discretized, we can set the local interpolation function ( , )N x y  to ( , )x y , 
because ( , )x y  can be any value. For a specific node s , the governing equations for all 
classes of commuters are given as follows. 

( , ) ( , )
( ( , ) ) ( , )

( , )

( , ) ( , )
( ( , ) ) ( , )

( , )
( )

( ( , ) ( , )) ( , )

exp( ( , ))
( ( , )

exp( ( , ))

 

 

 


 




 




  






 

 

 

s e

s e

s e

xmn mn
m se T

mn

ymn mn
m se T

mn

smn

mn mn se T

m m m
mn

m m

f x y u x y
c x y N x y d

x y x

f x y u x y
c x y N x y d

x y y

x y q x y N x y d

Q U x y
q x y

U x y




f

f
r Ψ

f

1

exp( ( , ))
) ( , )

exp( ( , ))
 





 
 
 
 
 
 
 
 
 

     
 

   
ns e

m mn
sNe T

m mi
i

x y
N x y d

d x y

 

 

 (24) 
where e  denotes the region of the elements e , sT  is the set of elements that connects with 

node s , ( , )sN x y  is the local interpolation function of the element that connects with node s , 

and smnr  is the nodal residual vector for class m commuters with a preference for CBD n at 

node s. 0smn r  means that the governing equations (5), (6), (8), and (17) can be satisfied 

locally. 
 
For the global satisfaction of the governing equations, we require that 

 ( ) Col( ( )) = 0smnR Ψ r Ψ . (25) 

Boundary conditions (18) and (19) can be satisfied by forcing the specific variables to take a 
known value, which is very common in FEM. For this system of nonlinear equations, we can 
apply the Newton-Raphson algorithm with a line search to find a solution, for which we 
derive the iterative equation 

 1
1k k k k 
  Ψ Ψ J R , (26) 

where kJ  is the Jacobian matrix of vector kR  at iteration k , and   is the step size, which is 

obtained by a line search to achieve the minimum R(Ψ) . We compare the relative error 

/R(Ψ) Ψ  with the acceptable threshold  . If / R(Ψ) Ψ , then it is assumed that the 

solution to equation (26) is found. The solution procedure is summarized as follows. 
 
Solution Procedure A 
Step A1: Find an initial solution for 0Ψ . Set 0k  . 

Step A2: Evaluate kR(Ψ )  and kJ(Ψ ) . 
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Step A3: If the relative error /k kR(Ψ ) Ψ  is less than the accepted error  , then stop, and 

take kΨ  as the solution. 

Step A4: Otherwise, apply the line search method (with the smallest interval of  ) to 
determine the step size *  that minimizes the norm of the residual vector 

1
1| ( ) |k k k 
 R Ψ J R . Then, * 1

1k k k k 
  Ψ Ψ J R . 

Step A5: Replace kΨ  with 1kΨ . Set 1k k  , and go to Step A2. 

 
3.2. Upper-level subprogram 
 
3.2.1 Model formulation 
 
In this section, we estimate traffic-related CO2 emissions, and also try to minimize emissions 
by optimizing the housing allocation. The minimization problem of the upper level is 
modeled as follows. 

 
 CO2 * *

*
1 1

( , ) ( , ), ( , )
Minimize ( ) d

( , )

n mN N
mn mn mn

n m

x y E x y x y
z

v x y
 

 
*

h

f f a
h , (27) 

subject to 
 max 0( , ) ( ( , ) ( , )) 0, ( , )H x y h x y h x y x y     , (28) 

 ( , ) 0, ( , )h x y x y   , (29) 

 ( , ) ( , ) 0, ( , )B P x y h x y d x y


     , (30) 

 *
0( , ) ( , ) ( , )d 0, ( , )h x y h x y q x y x y


      , (31) 

where *( , ) ( ( , )), ,mn m nx y col x y m N n N   *f f , and * ( , )mn x ya  is the acceleration vector for 

class m road users traveling to CBD n under the user equilibrium conditions. The superscript 
(*) denotes variables that are the optimal solution from the lower-level subprogram. 0( , )h x y  
is the existing housing provision, and ( , )h x y  is the additional housing provision at a 

particular location ( , )x y . max ( , )H x y  is the maximum possible housing density at location 

( , )x y , which is constrained by topography, the existing transportation infrastructure, and the 
planned land-use pattern. B  is the budget available for additional housing provision, and 

( , )P x y  is the cost of building a housing unit at location ( , )x y . In terms of the constraints, 
equation (28) ensures that the total housing development will not exceed the maximum 
possible housing density; constraint (29) means that there will not be any demolition of the 
existing housing supply; constraint (30) states that the total investment in housing provision 
cannot exceed budget B ; and constraint (31) guarantees that there is sufficient housing 
provision. 
 

CO2
mnE  is the CO2 emission rate function for class m users heading to CBD n, which is derived 

using the acceleration and speed-based model. The emission mode proposed by Ahn et al. 
(1999) is adopted to estimate the emission rate of each class of user as follows. 

 , (32) 

where a  is the acceleration (km/h2), v  is the speed (km/h), ,
k
i j  is the model regression 

coefficient for speed power i and acceleration power j, and kE  is the instantaneous fuel 

3 3

,
0 0

expk k i j
i j

i j

E v a
 

 
  

 

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consumption and emission rate, with the superscript (k) denoting different kinds of emissions, 
HC and CO (mg/s), and fuel consumption (gal/h). The speed is determined by equation (2) 
with ( , ) 1/ ( , )v x y c x y , and the acceleration can be evaluated from the continuum model as 
follows. 

 
( , )

( , ) ( , ) 0, ( , ) , ,xmn
xmn xmn m n

v x y
a x y v x y x y m N n N

x


     


, and (33) 

 
( , )

( , ) ( , ) 0, ( , ) , ,ymn
ymn ymn m n

v x y
a x y v x y x y m N n N

y


     

  
, (34) 

where ( , ) ( ( , ), ( , ))mn xmn ymnx y a x y a x ya
 
is the acceleration vector of class m commuters 

heading to CBD n, xmna  and ymna
 
are acceleration in the x and y directions, respectively,

 
( , ) ( ( , ), ( , ))mn xmn ymnx y v x y v x yv  is the velocity vector of class m commuters heading to 

CBD n, 
( , )

( , ) ( , )
( , )

xmn
xmn

mn

f x y
v x y v x y

x y


f
 and 

( , )
( , ) ( , )

( , )
ymn

ymn
mn

f x y
v x y v x y

x y


f  
are respectively the 

velocity in the x and y directions for class m commuters traveling to CBD n, mN  is the total 

number of user classes, and  is the total number of CBDs. Under the route choice 

governed by the user optimal conditions, commuters may accelerate or decelerate along their 
trajectory according to the spatial variation in traffic conditions in the neighboring area. The 
acceleration in the direction of movement is determined by 

 2 2( ) /x x y y x ya a f a f f f   . (35) 

 
Based on the limited parameters that we have, we cannot use this model directly, as we have 
only the parameters for HC, CO, and estimated fuel consumption. However, the CO2 

emission function, which is shown in equation (36), can be derived based on the carbon 
balance between fuel consumption and emissions. 

 CO2 HC CO2458.29 3.17 1.57E F E E   , (36) 
where  

 
3 3 3 3 3 3

1 CO 2 HC 3
, , ,

0 0 0 0 0 0

exp , exp , expi j i j i j
i j i j i j

i j i j i j

F v a E v a E v a  
     

     
       

     
   , (37) 

in which F is the instantaneous fuel consumption (gal/h), and HCE , COE , and CO2E are the 
relative gas emission rates (mg/s). The parameters in the expressions of equation (37) are 
summarized in Table 1. Also, we should make it clear that in this study, we consider just one 
type of vehicle and road. However, the model can easily be extended to incorporate different 
vehicle types and road classes. 
 
3.2.2 Solution algorithm 
 
The minimization problem is nonlinear. To reduce the difficulty in solving it, we first use the 
FEM to transform constraints (30) and (31) into linear ones. 

 
1

( ) 0
FN

e
en

N

n ei i n ej j n ek k n
n e

B h P N N P N N P N N d


 

       , (38) 

 0 *

1 1

1 1
( ) 0

3 3

FN FNN N

n n n n n
n n

h h q
 

      , (39) 

nN
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where FNN  is the total number of finite element nodes within the generated mesh, jN
 
is the 

interpolation function of the FEM for node j , eiP  is the cost of building a housing unit at 

node i  within element e , n  is the area of the finite elements that connect with node n , e  
is the region of element e , en  is the region that connects with node n , 0

nh  and nh  are 

respectively the existing and additional housing provision at node n , and *
nq  is the total 

demand at node n , obtained from the lower-level subprogram. 
 
Also, the total emissions in equation (27) can be written as 

 CO2 * *

*
1 1 1

( , ) ( , ), ( , )
( ) d

( , )

n n m

e

N N N
mn mn mn

e
k n m

x y E x y x y
z

v x y
  

 
*f f a

h  in the FEM scheme. 

 
Then, constraints (28), (29), (38), and (39) can be written as 

 Ah C , (40) 

where 1 2( , , , )
FNNh h hh 

 
is the vector of the additional housing provision. However, in the 

process of converting the nonlinear constraints into linear ones, we discretize the modeled 
city without considering the continuity of the housing provision policy. To maintain the 
continuity of local housing provision, if we provide it  units of housing at location ( , )i ix y , 

then its adjacent location ( , )j jx y  is also developed. Let the housing provision at location 

( , )j jx y , induced by the development at location ( , )i ix y , be ijh , which is related to the 

development intensity at ( , )i ix y  by ij ij ih g t
 
in which ijg is defined as 

 

33

23

(1 / ) 10
1

(1 / )
Ii

ij i ij
ij

i iij i

d I d
g

I Id I d 


  
   

   
,  (41) 

where ijd  is the distance between ( , )i ix y  and ( , )j jx y , iI  represents the influencing distance 

of the development at ( , )i ix y , and 
iI  represents the area of influence, which is a circular 

region with radius iI . Note that 1
Ii

ijg d


  . 

 
We first identify a certain number ( )K  of locations 1 2( , , , )Kl l l  as potential development 

areas with housing allocation as 1 2( , , , )Kt t tt  . Then, 

 
1 1

K K

j ij ij i
i i

h h g t
 

   , (42) 

or alternatively, in matrix form, 
 h Gt , (43) 

where G  is a FNN K  matrix, and the jth row and ith column element is ( , )g i j . Then, the 

optimization problem can be rewritten as follows. 
 

 Minimize ( ) ( )z z
h

h Gt  (44) 

subject to 
 AGt C . (45) 

 
Next, we apply the convex method to solve this problem as follows. 
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 Minimize ( ) z

w
t w  (46) 

subject to 
 AGw C , (47) 

 
where 1( , , )Kw ww   is a feasible solution that falls into the region governed by constraints 

(47). Gw h  is the direction of descent for the minimization problem (27). We use a line 
search method to find a step that will guarantee the largest descent.  
 
However, to solve this problem, we must first find the gradient of the object function ( )z h  
and the sensitivity of the lower-level variables * * * *( , , , )xmn ymn mn mnf f u q  to the upper-level ones 

( )h . By denoting the lower-level variables as *
lΨ  and the upper-level ones as *

uΨ , equation 

(25) can be modified to 
 *( , ) = 0l uR Ψ Ψ . (48) 

By taking a partial derivative of uΨ  on the left-hand side of equation (48), we have 

 * * 1 *( , ) ( , )
u ul l u l uJ R   Ψ ΨΨ Ψ Ψ Ψ Ψ . (49) 

Equation (49) is the matrix of the sensitivity of the optimized lower-level variables *( )lΨ  to 

the upper-level ones ( )uΨ  (Wong et al., 2006), and can be found for each solution of the 

lower-level subprogram. The following solution procedure is adopted to solve the problem.  
 
Solution Procedure B 
Step B1: Set 1k  . Take the initial solution for the upper level to be 1 1 0u  Ψ h . 

Step B2: With ukΨ , solve the lower-level subprogram, which is based on solution 

procedure A, to find the solution for the lower-level lkΨ . 

Step B3: Using lkΨ , evaluate the sensitivity matrix according to equation (49). 

Step B4: Use the sensitivity matrix from the lower level to find auxiliary vector kw . 

Step B5: Apply the golden section method (with the smallest search interval of  ) to find 
the step size * [0,1]

k   that maximizes the objective function 
*( ( ))k k k kz  Gwh h  from equation (31). Then, set * ( )k k k k k  d Gwh h . 

Step B6: If ( ) ( )k kz zd h , then set 1k k h d  and 1k k  , and go to Step B2; otherwise, 

stop and take kh  as the solution to the upper-level subprogram and lkΨ  as the 

corresponding solution to the lower-level subprogram. 
 
4. NUMERICAL EXAMPLE 
 
We now present a numerical example to illustrate the proposed bi-level model with multiple 
user classes in a continuum network. The hypothetical city has two CBDs, as shown in Figure 
1. The city spans about 35 km from east to west and 25 km from north to south. The CBDs 
are located at coordinates (14, 20) and (31, 26).  
 
In this example, we consider two classes of road users. The total demand of class 1 road users 
is 45000 units/h, and that of class 2 road users is 65000 units/h. The sensitivity parameters for 
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the housing choice functions in equation (17) are 0.0015 and 0.0020 for class 1 and class 2 
users, respectively. The sensitivity parameters in equation (15) are 0.012 and 0.010 for class 1 
and class 2, respectively. We assume that all users will travel to one of the two CBDs during 
the morning peak hour. The cost-flow relationship is specified as  

1.32 2
6

1 1

( , ) 0.0167 1.0 10 ( , )mn
n m

c x y x y

 

 
    

 
 f  h/km. 

The instantaneous speed function is then 
1.32 2

6

1 1

( , ) 1/ ( , ) 1/ (0.0167 1.0 10 ( , ) )

 

 
     

 
 mn
n m

v x y c x y x yf  km/h. 

The value of time mp  for class 1 and class 2 commuters is 25 HKD/h and 75 HKD/h, 

respectively. The housing cost functions are 
Class 1 commuter: 1 20 (1 40 / ( ))r q H q    HKD, and 

Class 2 commuter: 2 1 (1 40 / ( ))r q H q    HKD.  

Class 1 commuters are more sensitive to housing costs than are class 2 commuters, which 
means that they place a greater value on such costs when making a decision about where to 
live. In contrast, class 2 commuters value the time cost of transportation more, and are thus 
more sensitive to time.  
 
The perceived CBD cost function consists of biased and demand-related components. The 
biased coefficients are set as 11 70  HKD, 12 65  HKD, 21 250  HKD, and 22 170 
HKD. The market externalities of the CBDs are defined as 
Class 1 road users travel to CBD 1: 9 2

11 1( , ) 5.0 10 ( 25000)S x y V   HKD, 

Class 1 road users travel to CBD 2: 9 2
12 2( , ) 2.5 10 ( 20000)S x y V   HKD, 

Class 2 road users travel to CBD 1: 9 2
21 1( , ) 15.0 10 ( 25000)S x y V   HKD, and 

Class 2 road users travel to CBD 2: 9 2
22 2( , ) 7.5 10 ( 20000)S x y V   HKD. 

 
We assume that the existing housing unit 0nh  is taken as a constant of 250 units per km2 over 

the whole city. The maximum possible housing development is assumed to be 600 units per 
km2, for all locations ( , )x y . The budget available for additional housing units is assumed to 
be 1 billon HKD, and the unit provision cost function is 

2 2 2 2

0.010 0.005
( , ) 10000 1.4

( 14) ( 20) ( 31) ( 26)
P x y

x y x y

 
   
         

HKD/unit. 

This value varies with the distance to the CBDs, as it is assumed that the cost of land 
acquisition is a function of this distance. 
 
For housing development, we assume that the influencing distance is 5 km all over the region, 

and thus  32
1 / 5

5ij ijg d


  . To ensure simplicity, we assume the potential housing 

development areas to be the same nodes on the generated mesh.  
 
We first consider the existing situation, in which the lower-level subprogram is used to obtain 
the travel choice and emission pattern. Then, we assume an uninformed scenario, in which 
the authority simply uses the budget to allocate additional housing uniformly over the entire 
city (increasing the housing provision by about 120 units/km2). In this case, only the lower-
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level subprogram is solved. Next, we consider the optimal housing allocation, in which the 
bi-level optimization is fully utilized. By taking the acceptable error 510   for the lower-
level model and the smallest search interval 0.02   for the golden section method in both 
the lower-level and the upper-level model, this numerical example can be solved in five 
iterations. The convergence curve for the housing provision model is shown in Figure 2. 
 
Table 2 shows the attractions to the two CBDs and the total emission rate under three 
different scenarios. For class 1 road users, there does not seem to be much difference between 
CBD 1 and CBD 2, in contrast to class 2 road users. Apart from the locations of the two 
CBDs, there are several explanations for this. First, for class 1 road users, the biased 
components of the CBD externalities, which serve as major factors in influencing road user 
decisions, are almost the same, but for class 2 road users, these components are much lower 
for CBD 2 than for CBD 1. Second, CBD 2 is less sensitive to the volume of demand, so 
congestion in CBD 2 will have less influence on the travel pattern than will congestion 
occurring in CBD 1. After the additional housing units are allocated, the attractions to the two 
CBDs do not vary much. Regarding CO2 emissions, if we allocate the housing units 
uniformly over the entire city, ignoring the user behavior characteristics, then total emissions 
may even be slightly worse, which reveals a “paradox” in that the system becomes worse 
with additional development and inappropriate resource expenditure. Next, we review the 
results for the optimal housing allocation. 
 
Figure 3 shows the optimal distribution of housing units when total CO2 emissions from the 
transportation sector are minimized. Understandably, almost all of the additional housing 
units are allocated around the two CBDs. The factors that most influence transportation 
emissions are speed and acceleration. CO2 emissions increase as acceleration changes from 
negative to positive, and both a higher and a lower speed result in more emissions than does a 
moderate speed. However, in our model, all road users must choose one of the two CBDs as 
their destination with no other choices, so the flow intensity in the areas adjacent to the CBDs 
is determined by the attraction to each CBD, which will not change much during the 
optimization process. If most of the housing units are located around the CBDs, then the 
speed around the CBDs will not change much but road users will generally travel shorter 
distances, thus producing fewer emissions. So, in this numerical example, the additional 
housing units are concentrated around the CBDs. The key issue for reducing CO2 emissions 
in this model is to reduce the commuting distance by allocating more housing units around 
the CBDs. We can also consider another extreme condition: if the biased components of one 
CBD (for example, CBD 2) are much larger than those of another (CBD 1), then almost 
everyone will travel to the latter (CBD 1). In this case, CBD 2 acts like an obstacle, such as a 
hill or a lake, and all of the additional housing units will be allocated in the west of the city, 
close to CBD 1. This scenario is similar to one that we implemented in a previous study, in 
which the city had only one CBD.  
 
Figure 2 shows that the reduction in CO2 emissions is not significant. There are several 
factors that can influence the extent to which the level of these emissions can be reduced, 
such as the maximum housing density, the budget for housing development, and people’s 
sensitivity to housing costs. As discussed earlier, the reduction in CO2 emissions is achieved 
by shortening the commuting distance: if the maximum possible housing development 
increases, then the areas adjacent to the CBDs can accommodate more people, thus resulting 
in a greater reduction in commuting distance and CO2 emissions. As the budget for housing 
development and people’s sensitivity to housing costs are deterministic, sensitivity analysis is 
conducted to illustrate their influence on emission levels (see Figure 8). In this numerical 
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example, the budget is used up; however, this does not mean that investing more in housing 
development will necessarily result in a greater reduction in CO2 emissions, and sometimes, 
even if CO2 emissions are reduced, the investment is not rewarded. First, increasing housing 
development only in the areas adjacent to the CBDs (where this is possible) can reduce the 
commuting distance, but if these areas are already developed, more investment will not help, 
and this constraint will not be bounded in the upper-level optimization problem. Second, for a 
certain budget, the closer is the development to the CBDs, the greater is the reward, so the 
reduction in CO2 emissions will become less sensitive to the budget as it increases. As shown 
in Figure 8a, when the housing allocation is optimized, the total emissions will decrease with 
the budget for housing development. The sensitivity decreases as the budget increases, such 
that budget increases beyond 1.02 billion make no difference. At the same time, if road users 
are more sensitive to housing costs, then the provision of additional housing will change the 
travel pattern to a greater extent, thus resulting in a larger reduction in traffic-related CO2 
emissions. For those who are not influenced by housing costs, such provision will have no 
effect. As shown in Figure 8b, total emissions change only slightly when people’s sensitivity 
to housing costs increases. In contrast, when total emissions are optimized, they decrease as 
people’s sensitivity to housing costs increases. The results are relevant to decision making 
about housing development. 
 
Figure 4 shows the transportation costs for different road users with the optimal housing 
distribution. We can see that, as road users live further from their destinations, they pay 
greater travel costs; also, in the areas close to the CBDs, the transportation cost becomes 
more sensitive to the commuting distance because of the relatively lower speed. Figures 4a 
and 4c indicate that if road users heading to CBD 1 live to the east of CBD 2, then the pattern 
of change in the transportation cost is slightly different and the transportation cost contours 
are not particularly smooth. CBD 2 acts like an obstacle, because road users cannot travel 
across CBD 2 directly. To travel to CBD 1, these people first need to travel around CBD 2, 
where the congestion is severe, and thus their travel costs increase. The actual situation 
regarding people’s travel behavior and routine choices might be very sophisticated, but we do 
not cover the microscopic mechanisms of how obstacles influence traffic flow in this study. 
The same situation occurs in Figures 4b and 4d. 
 
Figure 5 shows the demand of different classes of road users for different CBDs. Commuter 
choices are determined by the perceived cost of transportation, CBD externalities, and 
housing costs. We can see that class 1 road users consider housing costs to be more important 
than do class 2 road users, so the pattern of demand of the former differs more between the 
two housing development patterns. The decisions of class 2 road users are largely determined 
by the transportation cost and market externalities of the two CBDs, so their choices change 
only a little. By comparing the eight figures, we can also see that the reduction in CO2 
emissions is mostly related to class 1 road users, which coincides with the earlier discussion: 
the more sensitive people are to housing costs, the greater is the reduction that can be 
achieved. Demand forecasts can give the government guidance regarding infrastructure 
development. 
 
Figure 6 shows the distribution of emission rates for class 1 road users heading to CBD 1. For 
other types of road users, the emission rates are very similar but not the same. This is because, 
although the speed is the same, the flow trajectories are different, which affects the tangential 
acceleration in the emission rate estimation. Figure 7 shows the distribution of total emissions 
across the city, which is obtained by multiplying the flow intensities by the respective 
emission rates for all users. A higher concentration of emissions occurs around the CBDs due 
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to more severe congestion, and because more people decide to travel to CBD 2, the emissions 
there are higher. The emission rate will in turn affect people’s residential choice, which will 
be studied in the future. 
 
 
5. CONCLUSION 
 
In this study, the continuum modeling approach is extended to solve a bi-level problem to 
optimize housing allocation to achieve minimum transport-related emissions in an integrated 
land use and transportation modeling framework. At the lower level, the interaction between 
housing provision and travel behavior is described, with user equilibrium achieved. At the 
upper level, total CO2 emissions are estimated, and the optimal housing allocation pattern that 
minimizes traffic-related emissions is found. The FEM is applied to solve the system of 
differential equations and transform the nonlinear constraints into linear ones. Finally, a 
numerical example is given to show the effectiveness and efficiency of the solution 
algorithms.  
 
There are several possible extensions of the current modeling approach. We could, for 
instance, consider the housing provision problem with multiple housing types, and different 
classes of road users with different levels of car ownership. So far, we have studied the 
emission problem using a static continuum model, in which we can consider only the 
emission rate at peak hours. A dynamic continuum model will be established to incorporate 
multiple vehicle classes and time-varying transport demand emission levels into a land-use 
transportation modeling framework. 
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Table 1: Parameters for the CO2 emissions estimation model  
 

k 
(i,j) 

1 2 3 

(0,0) -6.79E-01 8.87E-01 -7.28E-01 
(0,1) 5.34E+02 5.88E+02 0.00E+00 
(0,2) 2.49E+05 4.77E+05 3.65E+05 
(0,3) -7.34E+07 -8.32E+07 -5.73E+06 
(1,0) 3.26E-02 7.79E-02 2.74E-02 
(2,0) -3.37E-04 -9.51E-04 -2.53E-04 
(3,0) 1.97E-06 6.10E-06 2.58E-06 
(1,1) 2.08E+01 1.68E+01 4.40E+01 
(2,1) -9.99E-02 4.43E-01 -4.76E-01 
(3,1) 2.89E-04 -3.71E-03 3.23E-03 
(1,2) 1.43E+03 -1.59E+04 -9.42E+03 
(2,2) 1.76E+01 9.24E+02 7.06E+02 
(3,2) -5.15E-01 -6.39E+00 -4.33E+00 
(3,1) -3.18E-01 0.00E+00 -5.74E-01 
(3,2) 6.27E+00 -2.27E+01 6.82E+01 
(3,3) -3.66E+02 0.00E+00 -1.38E+03 
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Table 2: The attractions to the two CBDs ( mnQ  veh/h) and CO2 emissions (E million g/h) 

 

 11Q  12Q  21Q  22Q  E  

Original situation 22710 22290 23542 41458 493.89 
Uniform housing allocation 22693 22307 23536 41464 494.00 
Optimal housing allocation 22648 22352 23567 41433 484.74 
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Figure 1: The modeled city and the finite element mesh generated. 
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Figure 2: Typical convergence plot for the solution. 
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Figure 3: Optimal distribution of housing units (units/km2). 
  



 

 25

(a) Class 1 users traveling to CBD 1 (b) Class 1 users traveling to CBD 2 

(c) Class 2 users traveling to CBD 1 (d) Class 2 users traveling to CBD 2 

 
Figure 4: Transportation costs (HKD). 
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Uniform housing allocation (a, c, e, g) Optimal housing allocation (b, d, f, h) 
(a) Class 1 users traveling to CBD 1 (b) Class 1 users traveling to CBD 1 

(c) Class 1 users traveling to CBD 2 (d) Class 1 users traveling to CBD 2 

 
(e) Class 2 users traveling to CBD 1 (f) Class 2 users traveling to CBD 1 

(g) Class 2 users traveling to CBD 2 (h) Class 2 users traveling to CBD 2 

 
Figure 5: Demand contours (veh/h/km2).  
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Figure 6: CO2 emission rate for class 1 commuters heading to CBD 1 (103mg/veh/s). 
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Figure 7: Distribution of total traffic-related emissions (g/h/ km2). 
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(a) Sensitivity to budget B. 

 
 

(b) Sensitivity to housing costs parameter  . 

 
Figure 8: Sensitivity analysis. 
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