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Abstract The phase-plane analysis is used to study the traveling wave solution of a re-
cently proposed higher-order traffic flow model under the Lagrange coordinate system.
The analysis identifies the types and stabilities of the equilibrium solutions, and the over-
all distribution structure of the nearby solutions is drawn in the phase plane for the
further analysis and comparison. The analytical and numerical results are in agreement,
and may help to explain the simulated phenomena, such as the stop-and-go wave and
oscillation near a bottleneck. The findings demonstrate the model ability to describe the
complexity of congested traffic.

Key words traffic flow; Lagrange coordinates; phase-plane analysis; traffic congestion
patterns

1 Introduction

The instability of traffic flow has been studied for decades through observation and model-
ing, among which stop-and-go waves (especially jams) are currently an important subject. To
depict instabilities that are characterized by oscillations in congested traffic, time series loop
data in a certain location are often used for analysis in the flow-density phase plane. Usually,
the stop-and-go wave embodies wide moving jams, which constitute a stable non-trivial solution
and are distinguished from constant equilibrium traffic states. The phenomenon could be ana-
lytically described by studying traveling waves (including a shock) in most current higher-order
models under periodic boundary conditions [1–7]. However, there are some extended patterns of
congested traffic, which appear mainly in the upstream of a bottleneck with a fixed downstream
wave front. Helbing [8] demonstrated two typical patterns of such congested traffic: oscilla-
tory congested traffic (OCT) and homogeneous congested traffic (HCT). He attributed these
congested patterns to the changes in flow rates upstream the main road and ramp, according
to a detailed analysis on the observed flow-density phase plots. It has been widely regarded
that, given the same initial conditions, these congested patterns could be reproduced by varying
the aforementioned flow rates (being taken as the boundary conditions). As an instance, the
phenomena were reproduced by the macro- and micro- models in [9]. Nevertheless, unlike that
for the wide moving jams, few analytical properties are known for the aforementioned OCT
and HCT patterns.

The phase-plane analysis has proved a suited tool for analysis of complex traffic flow phenom-
ena [1, 10–13]. Kühne [10] predicted Hopf-bifurcation, solitary wave, and periodic oscillatory
solutions in a viscid higher-order model, which may suggest bistability and help well explain
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hysteresis in congested traffic. Kerner and Konhäuser [1], and Wilson and Berg [11], demon-
strated similar phenomena in the same fashion. In [12], more details were presented based on
a general viscid higher-order model, and the traveling wave was classified as seven types which
are in accordance with the reported observations. Moreover, Lee et al. [12] explained the mech-
anism for the existence of a limit circle solution showed in the so called inertia car-following
model [14]. More recently, Saavedra and Velasco [13] adopted numerical method for the study
and the results were compared with the analysis.

The present paper adopts a similar theory to study a recently proposed conservative higher-
order (CHO) traffic flow model [15]. Despite the consistency with the first-order Lighthill-
Whitham-Richards (LWR) model [16, 17], this model was able to reproduce many complex
phenomena, such as stop-and-go waves, oscillation near a bottleneck, and queuing and dissipa-
tion at a signal [15,18]. Thus, it is significant for further understanding and development of the
model to apply the theory. We emphasize on the classification and stability of the equilibrium
solutions which significantly influence the behavior of the nearby non-trivial traveling wave
solutions. It is also remarkable that the stability of these equilibrium solutions is discussed in
two directions under the Lagrange coordinate system, i.e., with the independent variable going
to both positive and negative infinite. Helpfully, similar types of equilibrium solutions together
with their stabilities are indicated; the numerical study is complemented to verify the analyti-
cal conclusions. This demonstrates that the CHO model is able to describe the complexity of
congested traffic and may further help explain more complicated phenomena.

The remainder of the paper is organized as follows. In Section 2, we briefly discuss the model
equations. In Section 3, the non-linear and the linearized systems for solving the traveling wave
are derived, and the classification and stability of the equilibrium points in the systems are
discussed. In Section 4, trajectories of numeral solutions near the equilibrium points are drawn
in the phase plane for comparison with the analytical results. Section 5 concludes the paper.

2 Model equations

Anisotropic higher-order traffic flow models can be generally written in the following form:

∂ρ

∂t
+

∂ρu

∂x
= 0, (1)

∂u

∂t
+ u

∂u

∂x
=

ue(ρ)− u

τ
+ c(ρ, u)

∂u

∂x
, (2)

where ρ(x, t) and u(x, t) are the density and speed for solution, τ is the relaxation time, and
c(ρ, u) > 0 is the sonic speed. The two characteristic speeds of the model are easily indicated as
λ1 = u−c(ρ, u) and λ2 = u. If c(ρ, u) only depends on the density ρ, denoted by c(ρ, u) = ρp′(ρ)
with p(ρ) being the pressure, Eq. (1) is the Aw-Rascle [19] or Aw-Rascle-Zhang [20] model with
relaxation.

Zhang et al. [15] introduced a “pseudo density” w, which is determined through u = V (w),
where w 6 ρ, and V (·) denotes a desired velocity-density relationship. In this case, the mass
conservation of (1) can be rewritten as

∂ρ

∂t
+

∂ρV (w)

∂x
= 0. (3)

Moreover, by assuming c(ρ, u) = c(u), where c(u) = −wV ′(w), the acceleration of (2) can be
written as the following “pseudo mass conservation” equation:

∂w

∂t
+

∂wV (w)

∂x
=

V (w)− ue(ρ)

β
. (4)
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Here, the parameter β = −τV ′(w)
.
= τuf/ρjam, ρjam is the maximal density, and uf is the

free flow velocity. The system of (3) and (4) constitutes a so called conserved higher-order
(CHO) model under the Euler coordinate system. A remarkable feature of the CHO model is
its consistency with the well-known LWR model, namely, Eq. (4) will be equivalent to Eq. (3)
if we set ρ = w, and ue(·) = V (·).

Assume thatM(x, t) is the total mass not passing through position x at time t. Then, (M,T )
constitutes a Lagrange coordinate system through the relations: T = t, Mx(x, t) = ρ(x, t), and
Mt(x, t) = −ρ(x, t)u(x, t). For a solution variable A(x, t) ≡ A(M,T ), the first order derivatives
in the model are transformed through the formulas:

∂A(M,T )

∂x
= ρ

∂A(M,T )

∂M
,

∂A(M,T )

∂t
= −ρu

∂A(M,T )

∂M
+

∂A(M,T )

∂T
. (5)

See [7] for reference. According to the transformation of (5), the system of (3) and (4) becomes

∂s

∂t
− ∂V (w)

∂M
= 0, (6)

∂sw

∂t
=

s(V (w)− ue(s))

β
, (7)

where s(M,T ) ≡ 1/ρ(x, t) is the specific volume, and we retrieve the time variable t through
T = t. Under the Lagrange coordinate system, the two characteristic speeds of the system can
be easily indicated as λ1 = wV ′(w)/s < 0, and λ2 = 0, which clearly shows the anisotropy of
the model.

In general, the inviscid system of (1) and (2) is characterized by weak or discontinuous
solutions, thus the conservative form of (7) is essential. On the other hand, the phase-plane
analysis is applicable only to smooth solutions, thus we add a viscous term to Eq. (7) to derive
the following equation:

∂sw

∂t
=

s(V (w)− ue(s))

β
+ µ

∂2w

∂M2
. (8)

Equations (6) and (8) now constitute the viscid conserved higher-order (VCHO) model. We
note that an adequately large viscous coefficient µ > 0 can help smooth a shock or disconti-
nuity; moreover, it avoids the jump in velocity which unreasonably suggests an infinite traffic
deceleration across the shock. However, the smoothness is unlikely to significantly change the
solution profile of the original model in that the solution of a viscid model can sufficiently
approach that of the corresponding inviscid model for µ → 0. See [5] for detailed discussion.

3 Stability of equilibrium points in traveling wave solution

Consider a traveling wave solution s(ξ) and w(ξ), where ξ = M − ct, and c is the traveling
wave. Substituting these for the solution variables of (6) and (8), we derive

−c
ds

dξ
− dV (w)

dξ
= 0, (9)

−c
d(sw)

dξ
=

s(V (w)− ue(s))

β
+ µ

d2w

dξ2
. (10)

Integration of (9) over ξ yields

cs+ V (w) = const = u∗, (11)

where the parameter u∗ is actually the traveling wave under the Euler coordinate system.
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By applying Eq. (11), Eq. (10) turns out to be the following second-order ordinary differ-
ential (OD) equation for solving w(ξ):

d2w

dξ2
+G(w, u∗)

dw

dξ
+ F (w, c, u∗) = 0, (12)

with

G(w, u∗) =
u∗ − V (w)− wV ′(w)

µ
, (13)

F (w, c, u∗) =
u∗ − V (w)

cβµ
[V (w)− ue(

u∗ − V (w)

c
)]. (14)

We are now seeking for stable solutions of Eq. (12), which are physically meaningful with
bounded limits for ξ → ±∞. Here, the physics of Eq. (12) can be analogous to that for
one dimensional motion of a particle with unit mass. Taken ξ and w as the temporal and
spatial variables, Eq. (12) governs the motion of the particle in the force field −F (w, c, u∗),
where G(w, u∗) denotes the damping coefficient, and U(w, c, u∗) =

∫ w
F (w, c, u∗)dw denotes

the potential. Let y = dw/dξ, then Eq. (12) is transformed to the following first-order OD
system: {

w′ = y,

y′ = −G(w, u∗)y − F (w, c, u∗).
(15)

By setting the terms on the right hand side to be zero, we have y = 0 and F = 0, which
determine the equilibrium points (wi, 0) of (15). Further, let these terms be linearized through
the Taylor expansion at (w, y) = (wi, 0). Then, we derive the linearized system of (15):{

w′ = y,

y′ = −G(wi, u∗)y − F ′(wi, c, u∗)(w − wi).
(16)

The Jacobian characteristic equation of (16) reads:

λ2 +Giλ+ F ′
i = 0, (17)

where we denote by Gi = G(wi, u∗), and F ′
i = F ′(wi, c, u∗).

The equilibrium point (wi, 0) is classified as (i) a saddle point for F ′
i < 0; (ii) a nodal point

for G2
i − 4F ′

i > 0, and F ′
i > 0; (iii) a degenerate nodal point for G2

i − 4F ′
i = 0; (iv) a spiral

point for G2
i − 4F ′

i < 0, and Gi ̸= 0; and (v) a center for F ′
i > 0, and Gi = 0. According to the

qualitative theory of the differential equations, system (16) is always unstable at a saddle point
for ξ → ±∞; it is stable at a nodal or spiral point for ξ → +∞ (or ξ → −∞), if Gi > 0 (or
Gi < 0). That dU/dw = F = 0, and d2U/dw2 = F ′ > 0 at a nodal or spiral point suggests a
locally minimal energy of U . This physically explains the aforementioned stability in that the
damping effect should reduce the energy if the damping coefficient Gi > 0 (or Gi < 0), thus the
“particle” tends to move toward the point for ξ → +∞ (or ξ → −∞). Otherwise, the damping
effects oppositely and suggests the instability.

We note that the nonlinear system of (15) shares the same equilibrium points with the
linearized system of (16). Moreover, the two systems will be uniformly stable or unstable at
these points if the real component of the characteristic values of (17) is non-zero, which is implied
in the forthcoming discussion. The conclusion is due to the Hartman-Gorban linearization
theorem.
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4 Numerical simulation

The two velocity-density relationships in the model are specified as follows [1, 18]:

ue(s) = uf [(1 + exp(
l/s− 0.25

0.06
))−1 − 3.75× 10−6],

V (w) = uf
1− wl

[1 + bwl + a(wl)2]
,

where the length and free flow speed of a vehicle are taken as l = 4.5m, and uf = 30m/s, and
the other two parameters are given by a = 4, and b = −0.8. The other parameters (in Eqs.
(4) and (8)) are taken as ρjam = 1/l, µ = uf , and τ = 3s. For convenience in the forthcoming
discussion, the pseudo density w and its derivative y = dw/dξ are scaled by ρjam, c by ρjamuf

and u∗ by uf .

Table 1 Classification of the equilibrium points of system (16) with a number of model
parameters, where ∆i = G2

i − 4F ′
i .

(c, u∗) (-0.18, -0.35) (-0.18, -0.32) (-0.19, -0.35)

= 0.1764 = 0.1850 = 0.1959
w1 F ′

i < 0, saddle point F ′
i < 0, saddle point F ′

i < 0, saddle point
unstable for ξ → ±∞ unstable for ξ → ±∞ unstable for ξ → ±∞

= 0.6340 = 0.5544 = 0.5505
w2 ∆i < 0, Gi > 0, spiral point ∆i < 0, Gi > 0, spiral point ∆i < 0, Gi < 0, spiral point

stable for ξ → +∞, stable for ξ → +∞, unstable for ξ → +∞,
unstable for ξ → −∞. unstable for ξ → −∞. stable for ξ → −∞.

= 0.9315 = 0.9737 = 0.9624
w3 F ′

i < 0, saddle point F ′
i < 0, saddle point F ′

i < 0, saddle point
unstable for ξ → ±∞ unstable for ξ → ±∞ unstable for ξ → ±∞

A certain pair of values of c and u∗ determines three equilibrium points of (16), which are
represented by wi (i = 1, 2, 3), and the types and stabilities of these points are shown in Table
1 according to the discussion Section 2. Here, we note that the choice of u∗ helps retrieve a
traveling wave speed around 10m/s, which is in accordance with the observed data. Since it is
unlikely to derive the analytical solution of the nonlinear system of (15), numerical solutions
with proper initial data are given to study the stabilities of the system at the equilibrium points,
which agrees with the conclusion in Table 1, as indicated in Figs. 1-3.

(a) (b)

Fig. 1 (a) Trajectories in w-y phase plane; (b) evolutions of w for ξ ∈ [−2000, 5000], with the initial
data (w(0), y(0)) = (0.5817, 0).

Fig. 1 corresponds to the first case in Table 1, which shows the instability of the system
at the equilibrium points (w1, 0) and (w3, 0) for ξ → ±∞, in that a nearby perturbed state
would go far way (Fig. 1(a)). The area that encompasses the spiral point (w2, 0) represents a
twisted trajectory starting from (0.5817, 0), which approaches the spiral point for ξ → +∞ and
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suggests the stability of the system at the spiral point for ξ → +∞. The system is unstable at
(w2, 0) for ξ → −∞, the trajectory in this trend leaves the spiral point and eventually evolves
into an oscillation with constant amplitude. Evolution of w(ξ) along this trajectory is shown in
Fig. 1(b). On the other hand, a twisted trajectory goes very closely to the aforementioned area
outside for ξ → −∞; it goes to infinite for ξ → +∞ (Fig. 1(a)). Therefore, there must exist
periodic a limit circle solution between the aforementioned two trajectories, and the solution
in Fig. 1(b) can be considered as a limit circle-spiral point solution.

(a) (b)

Fig. 2 (a) Trajectories in w-y phase plane; (b) evolutions of w for ξ ∈ [0, 1000], with the initial data
(w(0), y(0)) = (0.97365, 0).

Fig. 2 corresponds to the second case in Table 1, which similarly indicates the instability
of the system at the equilibrium points (w1, 0) and (w3, 0) for ξ → ±∞ (Fig. 2(a)). The spiral
point (w2, 0) is encompassed and approached by a twisted curve for ξ → +∞, which suggests
the stability of the system at this point in the trend. In the other trend, the curve travels very
close to (w3, 0) but eventually goes to infinite, which suggests the instability of the system at
(w2, 0) for ξ → −∞. See also the evolution of w(ξ) along this trajectory in Fig. 2(b). We note
that similar curves can be drawn among which the one passing through (w2, 0) is known as a
saddle-spiral point solution.

(a) (b)

Fig. 3 (a) Trajectories in w-y phase plane; (b) evolutions of w for ξ ∈ [−1000, 100], with the initial
data (w(0), y(0)) = (0.96, 0).

Fig. 3 corresponds to the third case in Table 1. We again observe the instability of the
system at (w1, 0) and (w3, 0). However, the curve that is shown to encompass the spiral point
(w2, 0) approaches and leaves away from this point respectively for ξ → −∞ and ξ → +∞.
This suggests that the system is stable and unstable at (w2, 0) respectively for ξ → −∞ and
ξ → +∞. See also Fig. 3(b) for comparison with Fig. 2(b), and similar curves could be drawn
to indicate the same stability or instability at (w2, 0), among which there exists a saddle-spiral
point solution.

5 Conclusions

We have studied the traveling wave solution of the VCHO model based on the phase-plane
analysis, which helps classify the three equilibrium points of the model, and thus indicates
the stability or instability of the system at these points. Numerical solution gives an overall
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structure of trajectories in the phase plane, which is sensitive to the model parameters. It
is significant to observe limit circle, limit circle-spiral point, and saddle-spiral point solutions,
which should be useful for a better understanding of many complex phenomena in congested
traffic.

Nevertheless, many have remained unknown for the discussed system or the like. For in-
stance, two varying parameters c and u∗ should pose more difficulty and complexity for the
discussion based on the bifurcation theory.
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