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An efficient solution of Liouville-von Neumann equation that is applicable
to zero and finite temperatures
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Application of quantum dissipation theory to electronic dynamics has been limited to model systems
with few energy levels, and its numerical solutions are mostly restricted to high temperatures. A
highly accurate and efficient numerical algorithm, which is based on the Chebyshev spectral method,
is developed to integrate a single-particle Liouville-von Neumann equation, and the two long-
standing limitations of quantum dissipation theory are resolved in the context of quantum transport.
Its computational time scales to O(N3) with N being the number of orbitals involved, which leads to a
reality for the quantum mechanical simulation of real open systems containing hundreds or thousands
of atomic orbitals. More importantly, the algorithm spans both finite and zero temperatures. Numer-
ical calculations are carried out to simulate the transient current through a metallic wire containing
up to 1000 orbitals. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767460]

I. INTRODUCTION

Quantum dissipation theory deals with the dynamics of
open systems. Master equation or Liouville-von Neumann
equation is normally used to simulate the open systems by
following the time evolution of the corresponding reduced
density matrix of the system. As the reduced density matrix
of a system is a product of two many-body wave functions,
the solution of the Liouville-von Neumann equation is time-
consuming as the computational time scales factorially with
the number of orbitals involved. As a result, the study of open
systems is limited to the model systems containing few lev-
els. Another long-standing problem is that the conventional
numerical methods in quantum dissipation theory are appli-
cable to either zero or finite temperature. No existing method
spans zero to high temperatures.

On the other hand, quantum chemistry methods includ-
ing first-principles methods have been highly successful in
calculating electronic structures containing hundreds or thou-
sands of orbitals. It may be constructive to combine both
fields, quantum dissipation theory and quantum chemistry, by
extending the realm of quantum chemistry to open systems,
or applying the numerical techniques developed for quantum
chemistry to quantum dissipation theory. Efforts along this di-
rection have been made, e.g., based on the holographic elec-
tron density theorem, a time-dependent density-functional
theory for open system was proposed.1 In this article, we rep-
resent a highly efficient numerical algorithm for a Liouville-
von Neumann equation, which is based on the Chebyshev
spectral method,2 a technique commonly adopted in the field
of quantum chemistry amongst many others. The computa-
tional time of the resulting method scales O(N3), with N
being the number of orbitals involved. Simulation of realis-

a)Electronic mail: tianheng@yangtze.hku.hk.
b)Electronic mail: ghc@yangtze.hku.hk.

tic open electronic systems is thus a reality. Moreover, the
method spans from zero to finite temperatures, solving yet an-
other long-standing challenge in quantum dissipation theory.

II. THEORY AND NUMERICAL FRAMEWORK

Our objective is to develop the first-principles quantum
dissipation theory by combining the Liouville-von Neumann
equation and density-functional theory. As density-functional
theory (DFT)3 or time-dependent density-functional theory
(TDDFT)4 is in essence an effective single-electron theory, it
is suffice to consider the effective single-electron model such
as Kohn-Sham (KS) Hamiltonian

HT = HC +
∑

α

(Hα + HαC), (1)

where, HC denotes the Hamiltonian for the device part, Hα for
the electrode (α = L,R), and HαC for the tunneling between
the device part and the electrode. In the language of second
quantization, they can be succinctly expressed as follows:

HC =
∑
μν

hμνa
†
μaν, Hα =

∑
k∈α

εαk d
†
αkdαk, (2)

HαC =
∑

μ

∑
k∈α

tαkμd
†
αkaμ + H.C., (3)

of which, a†
μ(aν) creates(annihilates) an electron in the cor-

responding orthonormal basis |φμ〉(|φν〉) of the device part,
and d

†
αk(dαk) creates(annihilates) an electron in the eigenstate

|kα〉 of the electrode α. And accordingly, hμν = 〈μ|ĥ(r, t)|ν〉,
εαk = 〈kα|ĥ(r, t)|kα〉, and tαkμ = 〈kα|ĥ(r, t0)|μ〉. Note that
for DFT or TDDFT, ĥ is the KS Fock operator.

It is more convenient to work in the reservoir HB-
interaction picture,5 where HB = ∑

αHα . Hereinafter, any op-
erator in this picture is denoted with tilde on its top.

0021-9606/2012/137(20)/204114/6/$30.00 © 2012 American Institute of Physics137, 204114-1
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After transformation into this interaction picture, the
Hamiltonian HT becomes

H̃T(t) = HC +
∑

α

H̃αC(t), (4)

where

H̃αC(t) =
∑

μ

[
b̃†αμ(t)aμ + a†

μb̃αμ(t)
]
,

b̃†αμ(t) =
∑

k

tαkμd̃
†
αk(t) =

∑
k

tαkμei
∫ t

t0
[εαk+�α (τ )]dτ

d
†
αk,

in which �α(t) is the rigid uniform shift for all single-electron
levels in electrode α under the time-dependent voltage on this
electrode.6

Since Hα is bounded both from below and above, in
this article, the whole discussion is restricted to the case
where the spectral εαk’s are the same for different α and
at least piece-wisely continuously distributed in a finite
interval [ωmin, ωmax] = [ω̄ − 	, ω̄ + 	], where ω̄ = (ωmax

+ ωmin)/2, 	 = (ωmax − ωmin)/2.
Thus, we have

H̃αC(t) =
∑

μ

	

∫ 1

−1
dx

[
ei	x(t−t0)b̃†αμ(x, t)aμ + H.C.,

where

b̃†αμ(x, t) =
∑
k∈α

δ(	x + ω̄ − εαk) tαkμ d
†
αk ei

∫ t

t0
dτ (�α(τ )+ω̄)

.

After some algebraic manipulations, we can obtain the
following hierarchical equations of motion (HEOM) in
which the first one is the foremost Liouville-von Neumann
equation:5, 7–10

iσ̇μν(t) = −
∑

α

	

∫ 1

−1
dx

[
ei	x(t−t0)ϕα,μν(x, t) − H.C.

]

+ [h(t), σ (t)]μν, (5)

iϕ̇α,μν(x, t)=−[�α(t) + ω̄]ϕα,μν(x, t)+
∑
μ′

hμμ′ϕα,μ′ν(x, t)

−
∑
μ′

σμμ′(t)�α,μ′ν(x, t) + f̄α(x)�α,μν(x, t)

+ 	
∑
α′

∫ 1

−1
dx ′ e−i	x ′(t−t0)ψα′α,μν(x ′, x, t),

(6)

iψ̇α′α,μν(x ′, x, t) = [�α′ (t) − �α(t)]ψα′α,μν(x ′, x, t)

+
∑
μ′

�∗
α′,μμ′(x ′, t)ϕα,μ′ν(x, t)

−
∑
μ′

ϕ
†
α′,μμ′(x ′, t)�α,μ′ν(x, t). (7)

Here, f̄α(x) = fα(	x + ω̄) is the Fermi distribution function
for the electrode α being always at equilibrium,

σμν(t) ≡ trT
[
a†

νaμρ̃T(t)
]
, (8)

ϕα,μν(x, t) ≡ trT
[
b̃†αν(x, t) aμ ρ̃T(t)

]
, (9)

ψα′α,μν(x ′, x, t)= trT
{
b̃†αν(x, t) b̃α′μ(x ′, t)[ρ̃T(t)−ρ̃T(−∞)]

}
,

(10)

�α,μν(x, t) =
∑
k∈α

δ(	x + ω̄ − εαk)t∗
αkμ tαkνe−i	x(t−t0)

= �α,μν(x)e−i	x(t−t0), (11)

are the reduced single-particle density matrix (RSDM),
frequency-dispersed first- and second-tier auxiliary RSDM,
and the time-dependent line-width matrix, respectively, where
ρ̃T(−∞) corresponds to an extreme situation where there is
no tunneling between the device and the electrode. The tran-
sient current,

Iα(t) = i	trT

[∫ 1

−1
dx e−i	x(t−t0)ϕα(x, t) − H.C.

]
, (12)

which is of primary concern in time-dependent quantum
transport, can be obtained from this HEOM.

To integrate Eqs. (5)–(7), we propose the Chebyshev
spectral decomposition2 scheme by making use of the Jacobi-
Anger identity,11

e−i	x(t−t0) = J0(	(t − t0)) +
∞∑

n=1

2(−i)nJn(	(t − t0))Tn(x),

(13)
where Jn is the Bessel function of the first kind of the integer
order and Tn is the Chebyshev polynomial of the first kind.
Substituting Eq. (13) into the right hand side of Eqs. (5) and
(6), we re-discretize Eqs. (5)–(7) and reduce them into the
following set of coupled ordinary differential equations:

iσ̇ (t) = −
∑

α

∞∑
k=0

[	ikJk(	(t − t0))ϕα,k(t) − H.C.]

+ [h(t), σ (t)], (14)

iϕ̇α,k(t) =
∑
α′

∞∑
k′=0

(−i)k
′
	Jk′(	(t − t0))ψα′k′,αk(t)

+ [h(t) − ω̄ − �α(t)]ϕα,k(t)

+ (2 − δk,0)[�α,k(t) − σ (t)�α,k(t)], (15)

iψ̇α′k′,αk(t) = (2 − δk′0)�∗
α′,k′(t)ϕα,k(t)

− (2 − δk0)ϕ†
α′,k′(t)�α,k(t)

+ [�α′ (t) − �α(t)]ψα′k′,αk(t), (16)

where the discretized first- and second-tier auxiliary RSDM
are defined

ϕα,k(t) = (2 − δk,0)
∫ 1

−1
dx Tk(x)ϕα(x, t), (17)

ψα′k′,αk(t) =
∫ 1

−1
dx ′ Tk′(x ′)

∫ 1

−1
dx Tk(x)ψα′,α(x ′, x, t)

× (2 − δk′,0)(2 − δk,0), (18)
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and �α,k(t)’s and �α,k(t)’s, defined by Eqs. (19) and (20),
respectively, are similarly computed with the help of Eq. (13),

�α,k(t) =
∫ 1

−1
dx Tk(x)�α(x)e−i	x(t−t0), (19)

�α,k(t) =
∫ 1

−1
dx Tk(x)f̄α(x)�α(x)e−i	x(t−t0). (20)

The Bessel function decays to zero spectrally as n
increases12

Jn(t) ∼ 1√
2πn

(
te

2n

)n

as n → ∞, for a given t, (21)

therefore, the series in Eqs. (14) and (15) can be truncated
after M terms, with M being around 1.5	(t − t0), if 	(t
− t0) is large enough, and maybe much smaller than 1.5	(t
− t0) in view of the requirement of accuracy in practical sim-
ulations, thus there is no need to worry about the convergence
problem.

Besides, the correct initial condition should be pro-
vided in order to obtain physically meaningful result from
Eqs. (14)–(16). Since at t = t0 the total system is in the equi-
librium state, all RSDM can be reformulated in the single-
particle Green’s function language9 as follows:

	<
α (t1 − t2; x) = f̄α(x)�α(x)e−i	x(t1−t2),

	>
α (t1 − t2; x) = (1 − f̄α(x))�α(x)e−i	x(t1−t2),

σ (t0) = −iG<(t0, t0),

ϕα(x, t0) = i

∫ t0

−∞
dt̄

[
G<(t0 − t̄)	>

α (t̄ − t0; x)

− G>(t0 − t̄)	<
α (t̄ − t0; x)

]
, (22)

ψα′,α(x ′, x, t0)

= i

∫ t0

−∞
dt2

∫ t2

−∞
dt1

[
	<

α′(t0, t1; x ′)Ga(t1 − t2)	>
α (t2 − t0; x)

−	>
α′ (t0 − t1; x ′)Ga(t1 − t2)	<

α (t2 − t0; x)
]

+ i

∫ t0

−∞
dt2

∫ t0

−∞
dt1 	r

α′(t0 − t1; x ′)

× [
G<(t1 − t2)	>

α (t2 − t0; x)

− G>(t1 − t2)	<
α (t2 − t0; x)

]
. (23)

Thereby, the most straightforward way to determine the initial
condition is to make the best of the basic relations (17) and
(18) at t = t0, which has been elaborated on elsewhere.13

III. NUMERICAL CALCULATION
OF A SIMPLE SYSTEM

To demonstrate the validity of this scheme, it is very in-
structive to test this new scheme on an one dimensional infi-
nite nearest tight-binding chain illustrated in Fig. 1, of which,
N, neighboring sites in the centre are chosen as the device
part and the rest semi-infinite chain on the right/left side as
the right/left electrode, respectively.

1 2 3 N-2N-1 N
Λα

E − µ0

0

FIG. 1. An illustrative plot showing the 1-dimensional uniform infinite near-
est tight-binding chain. The left panel shows the line-width function �α .

It is assumed that the local orbitals |nj〉’s on each site
constitute a complete orthonormal basis set, and the electron
is spinless. Since the hopping happens only between nearest
neighboring sites, the total Hamiltonian for the whole infinite
chain is

HT =
∑
j∈N

μ0a
†
j aj + v

(
a
†
j aj−1 + a

†
j−1aj

)
, (24)

with v being the hopping term and μ0 being the on-site en-
ergy, also the Fermi level of the whole infinite chain, can be
written as an infinite-dimension tridiagonal real symmetric
matrix. Due to this special structure, the line-width matrix �α

is just a scalar function, and can be analytically calculated,14

�α(x) = |v|
√

1 − x2, x ∈ [−1, 1], (25)

and we have ω̄ = μ0,	 = 2|v|.
In the left panel of Fig. 1, we plot �α versus x. Indeed, it

is not uniform. This exact �α(x) is used in the calculation be-
low. In our simulation, we assume that v = 2.0, μ0 = 1.5 and
the desired length of propagation time is tmax − t0 = 15, then
the total number of ϕα,k(t)’s needed in this interval [0, 15] is
86, which results from the following criterion of truncation at
t = tmax:

Jkmax
(	(t − t0)) ≥ 10−8, Jkmax+1(	(t − t0)) < 10−8. (26)

After preparation of the initial condition, the bias voltage
�L(t) = 0.005ϑ(t − t0), �R(t) = −0.005ϑ(t − t0), where ϑ(t)
is the Heaviside step function, is symmetrically applied to left
and right electrode, and then the explicit fourth-order Runge-
Kutta algorithm is utilized to advance the HEOM (14)–(16)
with the fixed time increment being 0.05.

In fact, the criterion of cutoff, 10−8, which is quite mod-
erate, can guarantee the reliability of the result with the time
increment being 0.05.

In Fig. 2(a), two sets of transient currents are calculated
from the criterion of truncation being 10−8 (solid line) and
10−12 (crosses), respectively, with temperature kept at zero
and the time increment being still 0.05. The fact that the re-
sulting transient current does not exhibit any discernible dis-
crepancy even the criterion of cutoff is strengthened to 10−12,
as shown in Fig. 2(a), verifies that it is reliable to adopt the
criterion of cutoff, 10−8, which will be employed for the cal-
culations thereinafter, and that the accuracy of this scheme
can be immune to a wide range of criterion of truncation. The
current overshoots initially and approaches the steady state
value15, 16 with decreasing oscillation amplitude. Note that the
oscillation persists beyond t − t0 = 10, which can be seen in
Fig. 3(a).

In Fig. 2(b), we plot the cubic root of the actual computa-
tional time on a single-core computer against various number
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FIG. 2. (a) Currents of 3 sites in the device part, subjected to two different
cutoffs; (b) the cubic root of the CPU time versus the number of sites N in
the device part.

of sites N in the device part with the same v, μ0, tmax − t0
and time increment. The perfect linearity of these data points
confirms that the computational time scales cubically with the
size of the device part, i.e., the central processing unit (CPU)
time ∝ O(N3), and confirms the efficiency of the Chebyshev
spectral decomposition scheme developed here.

To demonstrate that this Chebyshev spectral decomposi-
tion scheme is applicable to all temperatures, we simulate the
transient current for different N’s at a series of inverse tem-
peratures β = 1.0, 10.0, 100.0, and ∞. We start with N = 3.
The simulation results with N = 3 at different temperatures,
subjected to the bias voltage �L(t) = 0.005ϑ(t − t0), �R(t)
= −0.005ϑ(t − t0), are depicted in Fig. 3(a). The current at
zero temperature in Fig. 3(a) coincides with the current with
β = 100.0 or larger β, while the current with β = 10.0 can be
barely distinguished from the former two. It is clear that for
the system with N = 3, the higher the temperature is (or the
smaller β is), the lower the overshooting is and the faster the
current approaches its steady state value15 as if due to stronger
damping.

When 20 sites are in the device part with the same v, μ0

and bias voltage, as is shown in Fig. 3(b), it is found that at
high temperature, e.g., β = 1.0, the overshooting and oscilla-
tion of the transient current are completely suppressed. And
even at lower temperatures, the amplitude of oscillation of
transient current is much less than that in Fig. 3(a). It is noted
that the current reaches its steady state value15 at t − t0 ≈ 5.
Moreover, the steady state current is clearly smaller at higher

FIG. 3. (a) Currents of 3 sites at different temperature; (b) currents of 20 sites
at different temperature; (c) currents of 1000 sites at different temperature.

temperature for N = 20, which is far from obvious for N = 3.
This is because the energy intervals of the device part for N
= 3 are much greater than those for N = 20.

The results shown in Fig. 3(c) for N = 1000 with all other
parameters kept the same as Figs. 3(a) and 3(b) are even more
striking. The influence of the number of sites N in the device
part and temperature becomes distinct. At all temperatures,
the current increases linearly with time before reaching the
steady state values. This is indicated in Fig. 3(b), but not clear
in Fig. 3(a), i.e. , for N = 3. As N increases, this linearity be-
comes more and more evident, which has been observed and
explained in another work of ours.19 Note that for zero and
lower temperatures at t − t0 = 250, the steady state current
is reached, and the time needed is five times as much as that
for N = 20. This unexpected perfect linear increasing of the
transient current with time,19 gives further prominence to this
exquisite approach. Also note that at high temperature, e.g., β
= 1.0, the system approaches its steady state somewhat slower
than that at lower temperature, while the results for β = 10.0
and β = 100.0 are indistinguishable from that of zero tem-
perature, and that the dependence of the slope of the transient
current on temperature shows up only at high temperature.

IV. DISCUSSION

To the best of our knowledge, there have been several at-
tempts on the time-dependent quantum transport, which are
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also based on TDDFT.17, 18 However, our method is quite dis-
tinct from the schemes in Refs. 17 and 18.

In Ref. 17, Baer et al. aim to extract the alternating cur-
rent impedance and conductance of a molecular junction at
zero temperature from linear response TDDFT calculation
with adiabatic local density approximation. In their work,17

the leads are modelled as jellium slabs, which disregards
the atomic details of the leads, hence the absorbing poten-
tial, which amounts to the line-width matrix �α here, can
only be specified with some empiric expressions and param-
eters. As a consequence, their results may differ from the
calculations in the prevailing nonequilibrium Green’s func-
tion (NEGF) method in the direct current case. On the con-
trary, in our method this line-width matrix �α takes full ac-
count of the atomic details of the leads in the same manner as
the usual NEGF method combined with first-principles sim-
ulations, which is demonstrated in Sec. III. Moreover, our
method can work at both zero and finite temperatures, and
in both alternating and direct current cases.

In Ref. 18, Kurth et al. propose a practical propaga-
tion scheme of the time-dependent KS equation of an in-
finite dimension, and test it on some model systems. Both
their method and ours start to apply the bias voltage from
a well-defined thermodynamic equilibrium state, where the
device part and the electrodes are connected, and go beyond
the wide-band-limit approximation of the line-width matrix.6

However, in their approach, it appears that only the retarded
component of NEGF quantities has been employed, which
differentiates their method from ours9 fundamentally. It is be-
lieved that the lesser NEGF, or rather, the RSDM σ (t) in our
case, will provide necessary information about the dynamic
occupation number in the device part.

In both schemes of Refs. 17 and 18, the wave func-
tion plays an essential role, which leads to great difficulty,
if not impossible, to make connection with the standard de-
scription of open system in quantum dissipation theory.5

In contrast, in our method, we adhere to the standpoint
of the latter throughout and hence circumvent this obsta-
cle caused by wave function approach. Besides, regarding
the numerical scheme of advancing their respective EOM of
wave function, the absorbing boundary conditions or trans-
parent boundary conditions have been imposed, which, how-
ever, is irrelevant to our method. While in common with the
Baer’s scheme, we need the electrostatic and the exchange-
correlation potential of the device part to update HC, in our
method, the electrostatic potential is obtained as the solu-
tion of the Poisson equation with the boundary conditions
that arise naturally from requiring the continuity of the elec-
trostatic potential at the interfaces between the electrodes
and the device part.1 Moreover, in both schemes, the tran-
sient current through the molecular junction is calculated
from the surface integration of the current density, while
in our method, the current density is unnecessary since the
current is simply the trace of some matrices, as shown in
Eq. (12).

In our method, the explicit fourth-order Runge-Kutta al-
gorithm is utilized, which allows longer time increment at the
same level of accuracy compared to Crank-Nicholson algo-
rithm in Kurth’s method. Moreover, in several plots of time

evolution of the current in Ref. 18, strong oscillations of the
transient current are observed just after turning on the bias
voltage, which, however, do not show up in our simulations
with similar set up in Sec. III.

V. CONCLUSION

The Chebyshev spectral decomposition algorithm is pro-
posed and developed to integrate the single-particle Liouville-
von Neumann equation, which leads to a new set of HEOM
that are solved for a chain of atoms or quantum dots (QDs) de-
scribed by the tight-binding model. The computational time
of the new algorithm scales cubically with the system size,
i.e. , O(N3), thus, is highly efficient and applied to simu-
late the transient current through a chain of atoms or QDs
up to 1000 orbitals, while the conventional methods are nor-
mally applicable only to the systems with a few orbitals. More
importantly, the Chebyshev spectral decomposition algorithm
covers both zero and high temperatures, while no other ex-
isting methods in quantum dissipation theory are capable of.
Our simulation shows convincingly that temperature damp-
ens the overshooting and oscillation of the transient currents
and lowers the magnitude of the steady state current. Surpris-
ingly, the increasing size of the system has the similar effects
as temperature, such as dampening the overshooting and os-
cillation. Our calculation confirms that the transient current
increases linearly with time as N is large enough, a novel phe-
nomena found in another work.19 Although it is implemented
at the tight-binding level, the Chebyshev spectral decomposi-
tion scheme can be combined with first-principles methods,
e.g., TDDFT. The memory (non-Markovian) effect due to the
electrodes is fully accounted for, as the exact line-width ma-
trix is employed. It would also be interesting to extend the
method to other phenomena of open systems beyond quan-
tum transport.
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