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Persistent current of one-dimensional perfect rings under the canonical ensemble

Man-Kit Yip, Jiu-Ren Zheng,* and Ho-Fai Cheung
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We have analyzed the harmonic contents of the persistent current at high temperatures under the canonical
ensemble. Results show that the behavior of each harmonic is different from that under the grand-canonical
ensemble. The persistent current of the multiring system is also presented.

I. INTRODUCTION

Modern studies on persistent current in mesoscopic rings
have been renewed by Bu¨ttiker, Imry, and Landauer1 in
1983. More detailed quantitative calculations have been
given by Cheunget al.2–4 Experimental measurements have
been reported by various authors.5–7One of the main discov-
eries not predicted by former theories at that time was that
for an ensemble of 107 three-dimensional~3D! rings the
persistent current varies with magnetic flux with a dominant
period ofh/2e (hc/2e in Gaussian units!. This contrasts to
that for a single ring whose dominant period ish/e (5F0 ,
the magnetic flux quantum!. This was subsequently
explained8–12 by assuming that the number of electrons in
each ring is fixed and independent of flux. That is, canonical
ensemble should be used if the average properties of these
rings are to be calculated.

The variation of the persistent current in one- and higher-
dimensional perfect and disorder rings as a function of tem-
perature has been studied by Cheunget al.2–4All these stud-
ies adopted the grand-canonical ensemble, so the chemical
potential is fixed and the electron occupation probability fol-
lows the Fermi-Dirac distribution. WhenT50 with the num-
ber of electrons fixed, studies have been carried out by Bou-
chiat and Montambaux,8 von Oppen and Riedel,9 Schmid,10

and Altshuler, Gefen, and Imry.11 Their calculation logic is to
allow the chemical potential to vary with magnetic flux such
that the number of electrons remains fixed. This procedure is
perfectly correct atT50. At TÞ0, the persistent current un-
der the exact canonical ensemble has not been calculated so
far. The reason is that the canonical-ensemble occupation
probability is complicated and sensitive to the details of the
energy levels. Most of the time the canonical-ensemble oc-
cupation probability is not known.

At high temperatures, if one approximates the canonical-
ensemble occupation probability by the Fermi-Dirac distri-
bution with a suitably chosen chemical potential, one might
expect to get a reasonable answer for the persistent current.
The reason might be that in the high-temperature limit, ca-
nonical ensemble and grand-canonical ensemble give the
same occupation probability. In this paper we present exact
analysis on the persistent current on 1D perfect rings under
the canonical ensemble. Our results show that replacing the
canonical-ensemble occupation probability with the Fermi-
Dirac distribution cannot lead to correct results for the per-
sistent current. Our results send warnings to those using the
above approximation.

II. THE MODEL

The model we consider is 1D perfect rings with noninter-
acting electrons threaded by a magnetic flux. The wave vec-
tor and energy of the eigenfunctions are given by
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whereF is the magnetic flux through the loop. The corre-
sponding current is given by

I n52
e\

mL F2p

L S n1
F

F0
D G , ~2!

where n50,61,62, . . . . Theenergy versus wave-vector
relation is described by a parabola. As the flux increases,
levels on the left-hand side move down the parabola, move
across to the right-hand side, and then move up the parabola
on the right-hand side. If there are many electrons in the
system, theE versusk parabolic relation near the Fermi
energy can be approximated by two linear branches. Let us
rewrite the energy levels on the left branch and right branch
as

Eleft5DS n2
F
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~3!
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D ,

wheren can take2` to 1` andD is the energy spacing on
either branch. The current of each level on the left branch
and right branch is1I 0 and2I 0 , respectively. Electron lev-
els have twofold spin degeneracy. In our analysis we con-
siderg-fold degenerate levels.

We noticed that the above model is equivalent to a model
of small metallic particles studied by Denton, Mu¨hlschleger,
and Scalapino.13 If the energy levels are uniformly spaced
and a magnetic field is applied, the effect of the magnetic
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field is to shift the spin-up levels downward and the spin-
down levels upward linearly. So the energies of the spin-up
and spin-down levels can be written as

Eup5nD2h,
~4!

Edown5nD1h ,

wheren takes the value2` to 1`. D is the energy spacing
for spin-up levels~or spin-down levels!, h is the external
magnetic field measured in suitable energy units. The mag-
netic momentM of each level is11 and21 ~measured in
suitable units! for spin-up and spin-down states, respectively.
The energy levels of the two models are equivalent. Further-
more, the magnetic moment of all the electrons in the
metallic-particle model is almost equivalent to the persistent
current in the 1D perfect-ring model. They are not exactly
equivalent because in the metallic-particle model the spin-up
energy levels are not linked to the spin-down energy levels,
whereas in the 1D perfect-ring model the left branch is ac-
tually connected to the right branch at the very bottom of the
branches. The correct relation between them is

^I &
I 0

5^M &2
2gh

D
. ~5!

When using this equation to find the persistent current for 1D
perfect rings, all the parameters in the metallic-particle
model should be substituted by the corresponding parameters
in the perfect-ring model~i.e., h→DF/F0).

In the following, we first work out the partition function
for the metallic-particle model under the canonical ensemble.
From that we can calculate the average magnetic moment
and subsequently we can deduce the persistent current. At
low temperatures the persistent currents from canonical and
grand-canonical ensembles are the same up to exponentially
small corrections. This limit will not be discussed any further
in this paper. Instead our objective is to investigate the high-
temperature limit. Since the persistent current is periodic in
the magnetic flux with periodF0 , we express the persistent
current as a Fourier series. We work out the Fourier coeffi-
cients of the persistent current in the high-temperature limit.

Consider the metallic-particle model with energy levels
given by Eq.~4!, wheren goes from2` to `. Let b denote
1/kBT, where kB is the Boltzmann constant andT is the
temperature. Following the calculation by Denton,
Mühlschleger, and Scalapino,13 which is also described in an
earlier paper by Chen and Cheung,14 the partition function
can be written as

Z~h!5
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wherer is the number of holes of the ground-state uppermost filled level. The value ofr is determined by the actual number
of electrons in the system. Without loss of generality we taker to be from 0 to (2g21). Higher or lower value ofr can be
deduced because the energy-level ladders are translational invariant. Following the procedures and the mathematical identity
mentioned in Denton, Mu¨hlschleger, and Scalapino,13,15 one obtains
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whereq5e2bD/2 andZB5)m51
` (12q2m)21. We calculate the sum overn by using the Poisson summation formula, then

Z(h) can be written as
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We put in the condition2g<((mj1nj ),g so that the integration limits could be extended from2` to `. After completing
the square with respect tof in the exponent, the integration can be carried out readily. The result is

Z~h!5
1

A2g S 2p

bD D g21/2

ZB
2gebDr /22bDr2/4g1gbh2/D (

2g<( j51
g

~mj1nj !,g

expS 22p2

bD (
j51

g

~mj
21nj

2!D
3expF p2

gbDS (
j51

g

~mj1nj !D 2Gexpi2ph

D (
j51

g

~mj2nj !)expS 2 irp

g (
j51

g

~mj1nj !D . ~9!

The second last term determines the order of the harmonics. Thel th harmonic comes from the term where
((mj2nj )56 l . After comparing their magnitudes and considering all possible combinations, the leading term for each
harmonic in the high-temperature limit can be sorted out. In this limitZ(h) can be expressed as
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wherep andk are defined byl5pg1k with p50,1,2, . . .
and k51,2, . . . ,g. This is the final expression for the
canonical-ensemble partition function. Next we deduce the
average magnetic moment and then the persistent current of
the 1D perfect-ring model.

III. PERSISTENT CURRENT IN THE RING

It is possible to calculate the average magnetic moment
from the occupation probability of the levels. A more direct
approach is to find the magnetic Gibbs function
G*52(1/b)lnZ(h), then the average magnetic moment~or
magnetization up to some volume! can be found from the
relation ^M &52(]G* /]h)T . After expanding the logarith-
mic function, taking the derivative, and then considering all
the combinations carefully, we finally obtained the average
magnetic moment as

^M &5
2gh

D
1(
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`
~21!p11
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g
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g
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2p lh

D
. ~11!

As expected, the dominant term in the average magnetic mo-
ment is linear in magnetic field. Using the mapping between
the metallic-particle model and the 1D perfect-ring model
@i.e., Eq.~5!#, the persistent current of 1D perfect rings is

^I &
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The current is expressed as a Fourier series, showing all the
harmonics. Only the sine terms exist, reflecting the symme-
try of the persistent current when the magnetic flux is re-
versed. For the same model using the grand-canonical en-
semble ~keeping the same average number of electrons!
would lead to the following result:2

^I &
gI0

5
8p

bD (
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e22lp2/bD cos~ lkFL !sinS 2lpF
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D . ~13!

In both cases every harmonic decreases exponentially with
temperature. The dominant term is thel51 term. We note
that this term is proportional to exp@2(2g21)p2/bDg#
in the canonical ensemble, but is proportional to
exp(22p2/bD) in the grand-canonical ensemble. The cur-
rent amplitudes are very different even though the occupa-
tion probabilities of the levels at high temperatures approach
each other under the two ensembles. The two exponential
factors agree with each other only in the high-degeneracy
limit. We also noted that the amplitude of the harmonics is
roughly exp(22lp2/bD) in the grand-canonical ensemble.
The ratios of these exponential factors are the same for all
pairs of adjacent harmonics, whereas in the canonical en-
semble the amplitude of the harmonics is roughly exp

$2p2@ lg1k(g 2k)]/bDg%, and so the ratios of these ex-
ponential factors are not the same for different pairs of adja-
cent harmonics.

In experiments that measured persistent current,5–7 a con-
stant magnetic flux and a small time-varying flux are applied.
In this way the amplitude for the first few harmonics can be
deduced. The spin-degeneracy is usually lifted by the applied
magnetic field. But if the magnetic field does not act on the
ring ~only through the empty space enclosed by the ring!
then the levels would still have a spin degeneracy of 2. For
single-ring systems, our results show that ifg52, the ampli-
tude of the first two harmonics (l51 and 2! should be pro-
portional to exp(23p2/2bD) and exp(22p2/bD) in the
canonical ensemble, exp(22p2/bD) and exp(24p2/bD)
in the grand-canonical ensemble. If the amplitudes for the
first two harmonics are measured as a function of tempera-
ture, it would be possible to deduce whether canonical or
grand-canonical ensemble is more appropriate for the par-
ticular experimental condition. We believe this could be a
sensitive test.

For systems with many rings, the electron number in each
ring may not be the same. One has an ensemble of rings with
different r , where r can vary from 0 to 2g21. Taking an
average over all possible values ofr , most of the harmonics
shown in Eq.~12! vanish. However, some higher-order terms
which are not shown in Eq.~12! survive. We found that all
the odd harmonics of the average current are zero. All the
nonzero terms are described byl52l 8, where
l 851,2,3, . . . . Defining p8 and k8 by l 85p8g1k8 where
p850,1,2, . . . andk851,2, . . . ,g, the average persistent
current of multiring systems is

^^I &&
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bDg
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2p811
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Therefore the period would cross over fromF0 for single-
ring systems toF0/2 for multiring systems. This result
agrees with previous analysis8–10 on g51 perfect and disor-
der rings at zero temperature. Analysis starting from Eq.~9!
shows that this crossover of period is true over the whole
range of temperatures.

The realization of 1D perfect rings using semiconductors
may not be that far away. It would be most interesting to
have experiments on both single-ring and multiring systems
with the same type of rings. Right now the calculation is on
1D perfect rings. Whether similar features occur at higher-
dimensional rings with disorders is still open for investiga-
tion.
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