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Persistent current of one-dimensional perfect rings under the canonical ensemble

Man-Kit Yip, Jiu-Ren Zhend, and Ho-Fai Cheung
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
(Received 12 April 1995; revised manuscript received 18 August)1995

We have analyzed the harmonic contents of the persistent current at high temperatures under the canonical
ensemble. Results show that the behavior of each harmonic is different from that under the grand-canonical
ensemble. The persistent current of the multiring system is also presented.

I. INTRODUCTION Il. THE MODEL

The model we consider is 1D perfect rings with noninter-
ting electrons threaded by a magnetic flux. The wave vec-
r'%or and energy of the eigenfunctions are given by

Modern studies on persistent current in mesoscopic ringgC
have been renewed by "Biker, Imry, and Landauérin
1983. More detailed quantitative calculations have bee
given by Cheuncet al?>~* Experimental measurements have
been reported by various authdré.One of the main discov- K 2w
eries not predicted by former theories at that time was that Nt
for an ensemble of 10three-dimensional3D) rings the
persistent current varies with magnetic flux with a dominant ) ’
period ofh/2e (hc/2e in Gaussian unijs This contrasts to E :ﬁ_{z_ﬁ(mr 3” 1)
that for a single ring whose dominant periodhige (=®,, " 2m| L D) |’
the magnetic flux quantum This was subsequently
explained™? by assuming that the number of electrons inwhere® is the magnetic flux through the loop. The corre-
each ring is fixed and independent of flux. That is, canonicakponding current is given by
ensemble should be used if the average properties of these
rings are to be calculated.

L9
",

The variation of the persistent current in one- and higher- | =— e 2_7T<n+ 3) )
dimensional perfect and disorder rings as a function of tem- " mL| L Dy |’
perature has been studied by Cheengl?~*All these stud-
ies adopted the grand-canonical ensemble, so the chemiogheren=0,+1,+2,.... Theenergy versus wave-vector

potential is fixed and the electron occupation probability fol-relation is described by a parabola. As the flux increases,
lows the Fermi-Dirac distribution. Wheh=0 with the num-  |evels on the left-hand side move down the parabola, move
ber of electrons fixed, studies have been carried out by Bouacross to the right-hand side, and then move up the parabola
chiat and Montambaukyon Oppen and RiedélSchmid;®  on the right-hand side. If there are many electrons in the
and Altshuler, Gefen, and Imfy.Their calculation logic is to system, theE versusk parabolic relation near the Fermi
allow the chemical potential to vary with magnetic flux suchenergy can be approximated by two linear branches. Let us
that the number of electrons remains fixed. This procedure igewrite the energy levels on the left branch and right branch
perfectly correct al =0. At T+#0, the persistent current un- as

der the exact canonical ensemble has not been calculated so

far. The reason is that the canonical-ensemble occupation

probability is complicated and sensitive to the details of the E|eﬁ=A( n— 3)

energy levels. Most of the time the canonical-ensemble oc- @,

cupation probability is not known. 3)
At high temperatures, if one approximates the canonical- ®

ensemble occupation probability by the Fermi-Dirac distri- Erigh=A( n+ _)

bution with a suitably chosen chemical potential, one might Do

expect to get a reasonable answer for the persistent current.

The reason might be that in the high-temperature limit, cawheren can take— to +o andA is the energy spacing on
nonical ensemble and grand-canonical ensemble give thaither branch. The current of each level on the left branch
same occupation probability. In this paper we present exacnd right branch ist 15 and — 1, respectively. Electron lev-
analysis on the persistent current on 1D perfect rings undezls have twofold spin degeneracy. In our analysis we con-
the canonical ensemble. Our results show that replacing th&iderg-fold degenerate levels.

canonical-ensemble occupation probability with the Fermi- We noticed that the above model is equivalent to a model
Dirac distribution cannot lead to correct results for the per-of small metallic particles studied by Denton, Mschleger,
sistent current. Our results send warnings to those using thend Scalapind® If the energy levels are uniformly spaced
above approximation. and a magnetic field is applied, the effect of the magnetic
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field is to shift the spin-up levels downward and the spin-When using this equation to find the persistent current for 1D
down levels upward linearly. So the energies of the spin-ugperfect rings, all the parameters in the metallic-particle
and spin-down levels can be written as model should be substituted by the corresponding parameters
in the perfect-ring modeli.e., h—A®/dy).
Ep=na-—h, In the following, we first work out the partition function

@ forthe metallic-particle model under the canonical ensemble.

From that we can calculate the average magnetic moment
wheren takes the value-= to +=. A is the energy spacing and subsequently we can deduce the persistent current. At
for spin-up levels(or spin-down levels h is the external |ow temperatures the persistent currents from canonical and
magnetic field measured in suitable energy units. The maggrand-canonical ensembles are the same up to exponentially
netic momentM of each level ist1 and—1 (measured in  small corrections. This limit will not be discussed any further
suitable unitsfor spin-up and spin-down states, respectively.iy this paper. Instead our objective is to investigate the high-
The energy levels of the two models are equivalent. Furthergemnerature limit. Since the persistent current is periodic in

more, the magnetic moment of al! the electrons n thethe magnetic flux with period,, we express the persistent
metallic-particle model is almost equivalent to the persistent, ..ot as a Fourier series. We work out the Fourier coeffi-

current in the 1D pgrfect-rlng mpdel. They are not ex‘fj.ICtchients, of the persistent current in the high-temperature limit.
equivalent because in the metallic-particle model the spin-up . : . .

. ; Consider the metallic-particle model with energy levels
energy levels are not linked to the spin-down energy levels, . by Eq.(4), wh from— 2 10 %. Let 8 denot
whereas in the 1D perfect-ring model the left branch is ac-g'ven Y EQ.{%), wheren goes from 0. Let g denote

tually connected to the right branch at the very bottom of the//Ks T, Whereksg is the Boltzmann constant and is the

Edown: nA+ h y

branches. The correct relation between them is temperature.  Following the calculation by Denton,
Muhlschleger, and Scalapitdwhich is also described in an
(1) 2gh earlier paper by Chen and Cheulfgthe partition function
Ty =(M)- A (3 can be written as

1 dz [~ - 1, g
Z(h)y=s— 45 —7[] [1+ze mBA-AM 91+ ze MAAFAM9 ] (1+ —e npA-ph
2 Z a1 z

n"=0

1, 9
1+Ee—“ﬁ“ﬁh), (6)

wherer is the number of holes of the ground-state uppermost filled level. The valuésafetermined by the actual number

of electrons in the system. Without loss of generality we take be from O to (3—1). Higher or lower value of can be

deduced because the energy-level ladders are translational invariant. Following the procedures and the mathematical identity
mentioned in Denton, NVhischleger, and Scalapirtdl® one obtains

277 n=—o

n'=—w

1 _ m™ s < 2 . . 9 i 2 . . 9
Z(h)Z—Zngq glle d¢el(r g)d)( 2 q(n+1/2) el(n+1/2)(¢+|,3h)) ( E q(n+1/2) el(n+l/2)(¢ i Bh) , (7)

whereq=e #22 and Zg=TI",_,(1—g?>™ 1. We calculate the sum over by using the Poisson summation formula, then
Z(h) can be written as

9
1 2m\9 = ™ . (mj+n;j) 9 . )

z(h):_ZZBQeBAgM(_) > f dpe-99(—1)= H (e(—1/25A)(¢>+2mjw—|5h>Ze(—1/2,5A)(¢+2njw+|ﬁh)2)_
27T ﬂA mJ ‘nj:_m —a =1

tS)
We put in the condition-g<X(m;+n;) <g so that the integration limits could be extended frerw to «. After completing
the square with respect  in the exponent, the integration can be carried out readily. The result is

1 - g-—1/2
Z(h)= ( /ﬂ) ZégeﬁAr/Z— BAr2/ag+gBhiA E ex
V29 —gsz?zl(mj+nj)<g

-2 g 2
xex;{g"ﬁ( 2 (m;j+n;)

—272 3
BA le (m?+n?)

i2wh 2 irmd
expTzl(mj—nj))exp( g 2 (m;j+n;)

. 9

i=1 =1

The second last term determines the order of the harmonics. ITheharmonic comes from the term where
2(m;—n;)==1. After comparing their magnitudes and considering all possible combinations, the leading term for each
harmonic in the high-temperature limit can be sorted out. In this [#(it) can be expressed as

Z(h)zizm 2m g_l/ZeBAr/2—ﬁAr2/4g+gBh2/A 1+§ Ci o~ m21BAG)12+2k(g— k)] cosw—rl cos@) (10
V29 51 8A =11+ 64 g A
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wherep andk are defined by=pg+k with p=0,1,2, ... {—a’[Ilg+k(g —k)]/BAg}, and so the ratios of these ex-
and k=1,2,...,9. This is the final expression for the ponential factors are not the same for different pairs of adja-
canonical-ensemble partition function. Next we deduce theent harmonics.
average magnetic moment and then the persistent current of |n experiments that measured persistent curteha, con-
the 1D perfect-ring model. stant magnetic flux and a small time-varying flux are applied.
In this way the amplitude for the first few harmonics can be
deduced. The spin-degeneracy is usually lifted by the applied
lll. PERSISTENT CURRENT IN THE RING magnetic field. But if the magnetic field does not act on the
ring (only through the empty space enclosed by the )ring
from the occupation probability of the levels. A more directn[Ihen the levels would still have a spin degeneracy of 2. For
y single-ring systems, our results show thag# 2, the ampli-

approach is to find the magnetic Gibbs function " - _
G* = —(1/8)InZ(h), then the average magnetic moméoit ';)uodrgocilf;hteofl;tptgv gﬁ;}g;gr;lc:n(; 1;23 2:2%%; ?r? Fhrg
magnetization up to some voluinean be found from the canonical ensemble, exp@w2/BA) and expl 42/ BA)
re_Iatlon(M>= —(_aG*/(?h)T._Aft_er expanding the nga_nth- in the grand-canonical ensemble. If the amplitudes for the
mic function, taking the derivative, and then considering a”first two harmonics are measured as a function of tempera-
the combinations carefully, we finally obtained the average[ure’ it would be possible to deduce whether canonical or
magnetic moment as grand-canonical ensemble is more appropriate for the par-
ticular experimental condition. We believe this could be a
® o a\p+1l g sensitive test.
(M)= 2ih+ E D 8—77| Ci For systems with many rings, the electron number in each
A Z1pdgtl BA 1+ 6y ring may not be the same. One has an ensemble of rings with
, =1l 2=lh different r, wherer can vary from 0 to 8— 1. Taking an
x e~ TRl k(-] cog— sin——. (11) average over all possible valuesrgfmost of the harmonics
g A shown in Eq(12) vanish. However, some higher-order terms
(yyhich are not shown in Eq12) survive. We found that all
rthe odd harmonics of the average current are zero. All the
jnonzero  terms  are described by=2I", where

As expected, the dominant term in the average magnetic m
ment is linear in magnetic field. Using the mapping betwee
the metallic-particle model and the 1D perfect-ring mode

[i.e., Eq.(5)], the persistent current of 1D perfect rings is I"’=1,23 .. .. Defining p’ andk’ by I"'=p’g+k’ wh_ere
p'=0,1,2,... andk’'=1,2,...,9, the average persistent
© o aiptil g current of multiring systems is
O s CD7 87l Ck(rpagiigrig-h
glo <1 pdkgtl BAG 1+ 84
rl 27ld o / 92 /
XCO% Sin%_ (12) (1) < 8al" (Cy) 2p'+1
o =

gIO =1 IBAg 1+ 5k’,g (2p’2+3p,)6kr’g+l

The current is expressed as a Fourier series, showing all the 41" 7
harmonics. Only the sine terms exist, reflecting the symme- x el ~27°1BAQIgl" +K' (g—k)] gjp—— (14)
try of the persistent current when the magnetic flux is re- @

versed. For the same model using the grand-canonical en-

semble (keeping the same average number of eleciron
would lead to the following resutft:

Iy 8m < (27@

STherefore the period would cross over fraby for single-
ring systems to®y/2 for multiring systems. This result
agrees with previous analy8i®on g=1 perfect and disor-
N/ 2T E LN cog kgL )sin I ) (13) der rings at zero temperature. Anglys_is starting from (@).
glp BA=1 ®y shows that this crossover of period is true over the whole
range of temperatures.
In both cases every harmonic decreases exponentially with The realization of 1D perfect rings using semiconductors
temperature. The dominant term is thel term. We note  may not be that far away. It would be most interesting to
that this term is proportional to ekp (2g9—1)m%BAg]  have experiments on both single-ring and multiring systems
in the canonical ensemble, but is proportional towith the same type of rings. Right now the calculation is on
exp(—27%/BA) in the grand-canonical ensemble. The cur-1p perfect rings. Whether similar features occur at higher-

rent amplitudes are very different even though the occupadimensional rings with disorders is still open for investiga-
tion probabilities of the levels at high temperatures approackion.

each other under the two ensembles. The two exponential

factors agree with each other only in the high-degeneracy

limit. We also noted that the amplitude of the harmonics is

roughly_ exp 2l 7%/ BA) in the_: grand-canonical ensemble. ACKNOWLEDGMENT
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