Metadata, citation and similar papers at core.ac.uk

Provided by Theseus

_¥_Savonia

\‘.' ’ University of Applied Sciences
|
-

UML Based Requirement Management Process

in Mobile Multimedia Softwar e Projects

Jarno Kallio
Master's Thesis

Degree Programme in Welfare Technology

https://core.ac.uk/display/38016566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SAVONIA-AMMATTIKORKEAKOULU

Koulutusohjelma, suuntautumisvaihtoehto (jos on)
Hyvinvointiteknologia

Tekija

Jarno Kallio

Tyo6n nimi

UML Based Requirement Management Process in Mohilkimedia Software Projects
Tyon laji Paivays Sivumaara

Opinnaytetyo 18.10.2010 42

Tyon ohjaaja Toimeksiantaja

Yliopettaja Ari Suopelto PacketVideo Finland Oy
Tiivistelma

Vaatimushallinta on tarkea aliprosessi ohjelmistdjehityksessa. Sen tarkoituksena on varmistd
ettd projektin tuotos vastaa asiakkaan ja muidgiisten ja ulkoisten projektiin osallisten sovituj
odotuksia. llman toimivaa vaatimushallintaprosegs@ektit eivat onnistu pysymaan luvatuissa
aika, budijetti, laajuus ja laatukehyksissaan.

Vaatimuksiin liittyvien haasteiden ratkaisemisekskittiin viimeaikaisia laajennuksia UML
kuvauskieleen. Naitd UML laajennuksia kayttamabéaan mallintaa asiakkaan
liketoimintaprosessit ja vaatimukset. Nykyisin UM kaytetdaan laajasti
ohjelmistonsuunnittelussa. Mutta kun sita kaytet@gos mallintamaan liiketoimintaprosesesseja
vaatimuksia siitd seuraa useita parannuksia pesege tapaan hallita vaatimuksia: vaatimusten
jaljittdminen toteutukseen on paljon helpompaaetmgllisten asioiden ja niiden vaatimusrelaati
kommunikointi on tehokkaampaa, jarjestelman koksmaden hahmottaminen on jakautunut
laajemmalle projektitimissa ja toimitettavaa j&tglméaa kuvaavasta mallista tulee kattavampi,
integroiduimpi ja enemman todellisuutta vastaava.

Tutkimuksen tuotoksena on uudentyyppinen vaatinllistegprosessi. Tama aliprosessi on
sulautettavissa ja sovellettavissa mille tahangambintikielelle. Se sopii monentyyppisiin
ohjelmistonkehitysprosesseihin ja projekteihin. &vigaation taytyy myds hallita UML ja siihen
liittyvien tydkalujen kaytto.

\a,

L ja

Asiasanat
UML, SysML, vaatimukset, vaatimushallinta, projektallinta, ohjelmistotuotanto, mallinnus

Julkisuus
Julkinen

SAVONIA UNIVERSITY OF APPLIED SCIENCES
Degree Programme, option
Welfare Technology

Author
Jarno Kallio

Title of study
UML Based Requirement Management Process in Malikimedia Software Projects

Type of project Date Pages

Thesis 18 October, 2010 42

Supervisor of study Executive organisation

Mr Ari Suopelto, Principal Lecturer PacketVideo Finland Oy
Abstract

Requirements management is an important sub-pratssstware development lifecycle. Its
purpose is to assure that the project outcome nieeEsxpectations of the customers and other
internal or external stakeholders. Without a prapguirement management projects will certain
fail to deliver within the promised time, budgeatppe and quality.

To better cope with the requirement related chghsrextended Unified Modeling Language (UN
methodologies were studied. These UML extensiondeaused to model the business processe
and requirements. Currently the UML is extensiugded in the industry to design software syste
But when used also to model the business procasskeequirements a number of benefits over
tradional way of managing requirements result:abéddy from requirements to design and to
implementation is much easier, communication of gemissues and their relation to requiremel
Is much enhanced, understanding of the system hmiras distributed in the project team and th
system model describing the product is more corapietegrated and accurate.

As a result of this thesis new type of requiremmaahagement process was created. This proces
embeddable and applicable to any implementatioguage and many types of development
processes and projects. To succesfully deploy auymrocess one has to have the necessary tool
support and the organisation must be UML literate.

Yy

L)
S
ms.
the

nts

W

S is

Keywords
UML, SysML, Requirements, Requirement Managemerdjelet Management, Modeling

Confidentiality

Public

ACKNOWLEGDEMENTS

| want to thank the two supervisors of this thesis:Ari Suopelto, Principal Lecturer
from Savonia University of Applied Sciences for ba@nthusiastic and at the same
time patient support during the long process andPigkka Lyytinen, Vice President
of European Product line, for granting the possibtb study this topic and deploy it
into practice as a part of project work inside Fdideo.

18 October, 2010.

Jarno Kallio

1 INTRODUCTION

The motivation to study this topic comes from tixpexiences gained over ten years
of professional career on demanding multi-site rieolmiultimedia software projects in
two leading companies of the industry. | have Heldpportunity to work in various
roles: As a Developer, Tester, Test Manager, Qualianager, Release Manager,
Requirement Analyst, Senior Architect and Projectanislger. Based on my
experiences | share the opinion of many othergssibnals in the industry that
managing the outcome of software development iaydwery difficult. There are
many methods and processes developed that havevetpthe way engineers work
in project teams. However, | have personally fedtithere is a lack of methods and
processes to nit the complex requirements intoahgiactical implementation work.
There is all too wide a gap between typical reqnéet specification and architecture

not to mention code and test cases.

In the process of narrowing this information gap,tlas thesis will present, that by
extending the use of UML as a way to design théwssEé to model business
processes, requirements and use the advanced laggalink different diagrams in a
sophisticated way, significant improvements araeadd. \When this process has been
piloted in project teams they have better manadesl dcomplexity of building
demanding software applications. This has led foravement in the predictability of
the achievable outcome, leading to better produats,time and with increased

customer satisfaction.

TABLE OF CONTENTS

ACKNOWLEGDEMENTSt mmmmr et e e e e e e e eaans 4
L INTRODUCTION.utiiiieiiiiiiiiite et st e ettt e e e e e et e e e e e e s s e e e e eeens 5
2 INTRODUCTION TO SOFTWARE ENGINEERING ...t 8
2.1 Software ENgINEering PrOCESS...........commmmmneeeeeeeeeeeieeriiniinnnnaaaeeaaesaenaans 8
2.2 Requirements Management..........ooiiii et e e e e eeeeeeeees 9
20 3 I =2 T | o P 10
A [T o] (=T 4 U] o1 = Ui (o o R 11
28 T I =111V PN 11
2.6 MAINTENANCE.ottt eeee e ettt e e e e e e e e e e e ee e e eenans 12
2.7 Configuration ManagemeENt e eeeeeeeeennnnnnnasaa s e eeeaneeeesnnaeees 12
2.8 Software Engineering Management eeeeeeeeereimmmneeeeeeeennns 3.1
2.9 Methods, Tools, and QUAlItYueeermmiiieiiiiier e, 13
3 INTRODUCTION TO USE OF MODELS IN SOFTWARE ENGINBENG....... 15
3.1 Introduction to Unified Modeling LaNQUAQJE w.cceevvveveeeeiiiiiiieeeeiiieeeeainnnee, 16
3.1.1 UML DIagrams.......cccviiieeiueiiinninimmmmmeeeeeeeesseesessssssnsnnnnasaeaaeaaeaaseees 17
3.1.2 UML EXxtensions By Profiles.............cewereiiiiiiie e 18
3.2 Introduction t0 SYSML LanQUAQJEceueuuuuimmmiiiiiaaeeeeeeeeeeeeeiieeeeaiieeas 18
3.2.1 SysML's Extensions and Omissions t0 UML............cccceiiiiinneiinnnnnn. 19
4 MODELING BUSINESS PROCESSES.............cemmmmmmeeeeesiiiieeeeesasniiinnns e eens 21
v R 1 oo {3 ox (o] U UURRUPPPTP 21
4.2 Selection of Modeling LanguUAagE.......... o eeeerermmnmiiiiieeaeeeaeseeenineeeennnns 22
5 MODELING REQUIREMENTS. ...ttt e et e e et e s e e e e ees 5.2
5.1 Definition of REQUINEMENT...........uviiiemeceieeei e 25
5.2 Requirements Relationships and Rationale.................cccceeeiiiiiinieiiiiiieeeennnn. 26
6 UML ELEMENTS AND THEIR RELATIONS TO REQUIREMENTS.............. 29
5.1 USE CABSES. ... iiiiitiiieeei et e e ettt e e ettt e e e e e e et e e e e e e ab e e e en e e e eeans 29
6.2 SEQUENCE DIAQIAIMS.......ccceeeeeeeeeees et eeeeataananes s e e aeaeaeeeeeaaeeeeeannsnns 30
6.3 Allocations and Callout diagram...........ccceeeeeiiiiiiiiiiiiiiii e 31
7 CONCLUSIONS. ..ottt a e e e e e e e e e e e eenesnnnnnnns 32
7.1 UML Based Requirement Management ProCess..........cccoeevvvvnnieeiinneeennnn. 32
7. 1.1 ElICIALION. ... e e e e e e e e e bbb ennaneeeee 32
A N 4 F= 1)V T PP TPRRPP 34

T. 1.3 VaAlAtION. ... 35

7.1.4 Change CONrolueeiiiii e 36
7.2 Perceived Benefits of the UML-RM ProCeSS...ceeu e 37
7.3 Limitations of the UML-RM PrOCESS.o 38

REFERENCES

2 INTRODUCTION TO SOFTWARE ENGINEERING

"Software engineering is the engineering disciplitteough which software is
developed.'{1] Commonly the development of software produmtoives following
activities (i.e. tasks): finding out what the custr needs are, composing this into
requirements, designing these into a new or egsnchitecture, programming (i.e.
coding or implementing), testing (i.e. verifying amlidating), deploying and
maintaining the software. These activities are ietd by means of a software
development process, which gives development @tstel There is a multitude of
process models to choose from, each describingpappes to a variety of activities
that take place during the development procesdd téseninology is different between
process models. For example, depending on the sfesdlare development process,
activities are grouped into different phases @tages or steps) in the lifecycle of a

project.

To give an overview on topic of software enginegrand remain neutral to used
development process, categorization found in th&w@&ce Engineering Body of
Knowledge (SWEBOK), which is closest of being authed source of defining what
software engineering is, is used. SWEBOK dividewsme engineering into ten
knowledge areas: requirements (management), desiganstruction (i.e.

implementation), testing, maintenance, configuratimanagement, engineering

management, engineering process, tools and methodsty. [2]

2.1 Software Engineering Process

Each organization should adopt the most appropdatelopment process for their
line of business and projects. Each process moda is advantages and
disadvantages. Discussion on the subtle and naubtle differences between the
various software development processes is outeo$tbpe of this thesis.

The sub-process defined in this thesis to manageirements with UML based
methods can be embedded to be part of any devefdpprecess, which gives
emphasis on defining requirements. One particitample of iterative development

process could be Rational Unified Process (RURJngrevolution of that model (e.g.

9

OpenUP, ICONIX) [6]. An example of the approachest&dd in the RUP is presented
in Figure 1.
Iterative Development
Business value is delivered incrementally in
time-boxed cross-discipline iterations.

Inceplion | Elaboration Construction Transition

I1 El |E2 | C1 c2 C3 C4 | T1 | T2

Business Modeling h

Requirements —

Analysis & Design /,"'f I e

Implementation |]

Test — —— ——
Deployrent —""] |

Time =>
Figure 1. RUP phases and disciplines [6]

As can be seen in Figure 1 the RUP project stdriseption’ phase) with business
modeling and requirements and it is continued waitialysis and design activities,
followed by implementation, testing, and deploymemsks. Each continuing

concurrently and having their natural resource egagpks in different phases of the

project.

2.2 Requirements Management

Requirements management is the process of eliditiaggathering the requirements
from stakeholders), analyzing (i.e. checking fomsistency and completeness),
documenting (i.e. specifying), and validating (i.enaking sure the specified
requirements are correct) requirements and thentralmg the change and
communicating it to relevant stakeholders. It isamtinuous process throughout a
project. The purpose of requirements managementassure the organization meets

the expectations of its customers and other intennexternal stakeholders. [3], [4]

Proper requirement management is vital for progatcess. A widely referenced
CHAQOS study on software project failures revealeat & half (48,1%) of a project's

primary causes of failure link directly to requiremts management. Top three reasons

10

were 'lack of user input', 'incomplete requiremeantsl specifications' and ‘changing
requirements and specifications'. Table 1 listsrdgpirement related reasons out of

top ten reasons for project failure revealed byGRAOS study.

Table 1: Requirement related reasons for projelcirés [5]

1. Lack of User Input 12.8%
2. Incomplete Requirements & Specifications 12.3%

3. Changing Requirements & Specifications 11.8%

7. Unrealistic Expectations 5.9%
8. Unclear Objectives 5.3%

The primary focus of this thesis is to apply adeehdJML methodologies and
provide requirement process that aids the orgaoizéd overcome these challenging
factors. It is dealt extensively in following chaep. A description on one practical
approach to model business processes is describe@hapter 4. MODELING
BUSINESS PROCESSES. The visual modeling of requergm using the selected
technique is described in Chapter 5. MODELING REREMMENTS. The advantages
of using the requirement model tightly integrated¢hwstructural and behavioral
aspects of the system model is described in Chapt&dML ELEMENTS AND
THEIR RELATIONS TO REQUIREMENTS and the advantageoresults are
expressed in Chapter 7. CONCLUSIONS.

2.3 Design

Design is defined as both "the process of defirtimg architecture, components,
interfaces, and other characteristics of a systecomponent” and "the result of [that]
process.” Viewed as a process, software desigmeisdftware engineering life cycle
activity in which software requirements are anatiyireorder to produce a description
of the software's internal structure that will seras the basis for its construction.
More precisely, a software design (the result) ndescribe the software architecture -
that is, how software is decomposed and organiméd components - and the
interfaces between those components. It must asoridbe the components at a level
of detail that enable their construction [2]. Alis can be accomplished with UML
modeling which is introduced in Chapter 3 INTRODUON TO USE OF MODELS
IN SOFTWARE ENGINEERING.

11

Software design plays an important role in develgpsoftware: it allows software
engineers to produce various models that form d &frblueprint of the solution to be
implemented, analyze and evaluate these modelstéordine whether or not they will
allow us to fulfill the various requirements. Fuetmore, it makes it possible to
examine and evaluate various alternative solutiang trade-offs. Finally, the
resulting models can be used to plan the subseqdevelopment activities, in

addition to using them as an input of implementatiad testing.

In this thesis the linking of the design model itlte requirement model is studied at a
detail level in Chapter 6 UML ELEMENTS AND THEIR RETIONS TO
REQUIREMENTS.

2.4 Implementation

The term software implementation refers to the itbetacreation of working,
meaningful software through a combination of codirg programming), unit testing,
integration testing, and debugging. Detailed bouedeetween design, construction,

and testing will vary depending on the selectetisoke development process. [2]

The implementation of software can be significamilyed by the system model, some
tools allow a code being generated based on thelheodstructs or vice versa model
being generated from the code. Maintaining the Isgorazation of the system model
and the actual implementation in code is an imporitgsue but is out of scope of this

thesis.

2.5 Testing

Testing is an activity performed for evaluating gwot quality, and for improving it,
by identifying defects and problems. Software tegticonsists of the dynamic
verification of the behavior of a program on at@nset of test cases, suitably selected
from the usually infinite executions domain, agaite expected behavior. Software
testing is an activity which should influence theolke development and maintenance
process and is itself an important part of the agwoduct construction. Planning for

testing starts with the early stages of the requamg process, and test plans and

12

procedures must be systematically and continuadesleloped, and possibly refined,

as the development proceeds. These test plannthgesigning activities themselves

constitute useful input for designers in highligigtipotential weaknesses such as
design oversights or contradictions, and omissiams ambiguities in the

documentation. [2]

A Requirement model thriven project aids testinfpres by providing important
linkage of functional requirements to use casesthad further into test cases. Also,
non-functional requirements can be linked to te@stes thus through this method the
test coverage can be shown. This topic is briefscussed in Chapter 6. UML
ELEMENTS AND THEIR RELATIONS TO REQUIREMENTS.

2.6 Maintenance

Successful software development efforts lead ta#moyment of a software product,
which satisfies user requirements. Accordingly, sieétware product do change or
evolve. Once in operation, defects are uncoverngerating environments change, and
new user requirements surface. The maintenancee pbfighe life cycle begins
following a warranty period or a post-implementaticGcupport delivery, but

maintenance activities should occur much earli@r. [

The maintenance phase activities are not studidtuisrthesis. However, when system
model accurately represents the state of the systenmtenance will greatly benefit.
If new features are implemented they can be aduléaetmodel. Even in a case where
system under maintenance has not been modellaty dmdeling afterwords either in

part or full allows developers save time in the.dmfl

2.7 Configuration Management

Configuration management can defined as "a dismplapplying technical and
administrative direction and surveillance to: idgnand document the functional and
physical characteristics of a configuration itemonttol changes to those
characteristics, record and report change proagssnad implementation status, and
verify compliance with specified requirements." [2]

13

Configuration management of the model, code, tesa énd other items and the
dependencies between them is important activitynduthe life cycle of project. As

noted in the connection with implementation thisxsluded on the thesis scope.

2.8 Software Engineering Management

Software Engineering Management can be definetaspplication of management
activities: planning, coordinating, measuring, ntonng, controlling, and reporting.
These are performed to ensure that the developamehthe maintenance of software

is done in a systematic, a disciplined, and a giieghtmanner.

Finding the manageable scope for the project imifstgntly dependent on the
requirements. Management decisions are greatlyddigethe easily understandable
and consistent manner in which the model preseatsystem. This allows the
decisions makers to improve the quality of diraettyiven to the project team whether
it concerns the scope, time, cost or quality of freject. Especially change

management benefits from detailed impact analysidenpossible by the model.

The manner in which the management activities ariopned depends heavily on the
development process used to guide the softwareneeng as discussed earlier in

sub-chapter 2.1 Software Engineering Process.

2.9 Methods, Tools, and Quality

Software engineering methods impose structure ersdlftware engineering activity
with the goal of making the activity systematic amtimately more likely to be

successful. Methods usually provide a notation andocabulary, procedures for
performing identifiable tasks, and guidelines ftwecking both the process and the

product. UML methodologies are extensively appirethis thesis.

Software development tools are the computer-baseld that are intended to assist
the software life cycle processes. Tools allow titige, well-defined actions to be

automated, reducing the cognitive load on the sofwengineer who is then free to
concentrate on the creative aspects of the proCesss are often designed to support

particular software engineering methods, reducimg administrative load associated

14

with applying the method manually. Like softwaregeeering methods, they are
intended to make software engineering more systejraatd they vary in scope from
supporting individual tasks to encompassing the pieta life cycle. Model based
requirement management process is very dependetiabrsupport. The extent in

which this process can be applied is limited byf#eures found on selected tool as

stated in Chapter 7. CONCLUSIONS.

The quality benefits achieved by applying UML baseduirement management
process are discussed in Chapter 7. CONCLUSIONS.

15

3 INTRODUCTION TO USE OF MODELS IN SOFTWARE ENGINERRG

"A model is a simplified representation of certaspects of the reality, and this
simplification makes it easier to analyze the uhieg reality and ultimately
understand it better” [8].

A visual model plays a similar role in software d®pment as the blueprints and
other plans play in the construction industry. Toastruction of this model can be
considered as designing of software intensive Byst&/hen this model is done those
responsible for a software development projecteess can assure themselves on the
following factors: business functionality is comigleand correct, end-user needs are
met, and program design supports requirementscllalility, robustness, security,
extendibility, and other characteristics. This a®ject to avoid expensive and

difficult changes in the implementation phase. ®theluded benefits are:

» Shared understanding of system requirements esigrl

— Validation of requirements

— Common basis for analysis and design

— Facilitates identification of risks

* Assists in managing complex system development

— Separation of concerns via multiple views of gnééed model
— Supports traceability through hierarchical systeadels

— Facilitates impact analysis of requirements agigh changes
— Supports incremental development & evolutionagugsition
 Improved design quality

— Reduced errors and ambiguity

— More complete representation

» Supports early and on-going verification & vatida to reduce risk

* Enhances knowledge capture

[9]

16

There are number of different modeling languagesla@ve, none of them being ideal
for every domain and project. The Unified Modelibgnguage is the most accepted
modeling language in the software industry and ss&hdard. However, for complex
systems it's modeling capabilities are insufficigif]. To address these shortcomings
extension to UML Systems Modeling Language (SysMik created. In this thesis
SysML and particularly it's requirement and callodiagrams to extend the
capabilities of model are studied in Chapter 6. UMLEMENTS AND THEIR
RELATIONS TO REQUIREMENTS. Another important aspe€tdefining software
that meets the customer expectations is businesse$s modeling. To have this
aspect included in model another UML extension $5@n-Penker Business Modeling
Profile is applied, this is discussed in detailGhapter 4 MODELING BUSINESS
PROCESSES.

3.1 Introduction to Unified Modeling Language

The Unified Modeling Language (UML) is a family gfaphical notations, which
provides system architects, software engineers] aiher team members tools for
analysis, design, and implementation of softwarsetlasystems as well as for
modeling business and similar processes. The UMIpshengineers to specify,
visualize, and document models of software systenwduding their structure and

design, in a way that meets all of these requirgésien

The initial version of UML originated with threedding object-oriented methods
(Booch, OMT, and OOSE), and incorporated a numUdebest practices from
modeling language design, object-oriented progrargmand architectural description
languages. Future revisions of UML have enhancaxdsird with significantly more
precise definitions of its abstract syntax ruled aamantics, a more modular language

structure, and a greatly improved capability fordeling large-scale systems. [11]
In UML 2.0 it is possible to zoom out from a detdlilview of an application to the

environment where it executes, visualizing conmasi to other applications.

Alternatively, it is possible to focus on differeadpects of the application, such as the

Figure 2: UML 2.2 Diagram types

17

business process that it automates, or a busioéss riew. The new ability to nest
model elements supports this concept directly. [12]

Modeling almost about any type of application, rimgnon any type and combination
of hardware, operating system, programming language network, is possible with
UML. It is built upon fundamental object orientati@oncepts including class and
operation, making it designed for object-orientadgluages and environments but it

can also be used to model non- object orientedctians.

3.1.1 UML Diagrams

It is very important to distinguish between the UMiodel and the set of diagrams of
a system. A diagram is a partial graphical repriediem of a system's model. UML
diagrams represent two different views of a systeadel: Static (or structural) and
Dynamic (or behavioral). The static view emphasihesstatic structure of the system
using objects, attributes, operations and relakignss The dynamic (or behavioral)
view emphasizes the dynamic behavior of the sydtgnshowing collaborations

among objects and changes in the internal statebjetts.

UML 2.2 has 14 types of diagrams divided into thiege categories. Seven diagram
types represent structural information, and theo#even represent general types of
behavior, including four that represent differergpects of interactions. These

diagrams can be categorized hierarchically as showigure 2. [13]

18

Diagram
Structure Behavior
Diagram Diagram
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Praofile C;;:_:Eﬁfr';e Deployment Package Interaction State Machine
Diagram Diagram Diagram Diagram Diagram Diagram

2

Interaction

E Sequence Communication ; Timing
Motation: LML Diagram Diagram Dyemew Diagram
Diagram

3.1.2 UML Extensions by Profiles

UML profiles provide generic extension mechanism fmstomizing UML for
particular domains and platforms. [14] As previgusientioned, in this thesis two

extensions are used: SysML and Eriksson-PenkenBssiModeling Profile.

3.2 Introduction to SysML Language

The SysML (Systems Modeling Language) is a genaugbose modeling language
for systems engineering applications that is defiag a profile of UML 2. It supports
the specification, analysis, design, verificatiomd avalidation of a broad range of
systems and systems-of-systems. These systems molyle hardware, software,

information, processes, personnel, and facilifies}]

In particular, the language provides graphical espntations with a semantic
foundation for modeling system requirements, bedra\structure, and parametrics.
SysML represents a subset of UML 2 with extensioreeded to satisfy the
requirements of the UML for Systems Engineeringndgcated in Figure 3. [16]

19

UML reused
by SysML

Not required
by SysML

Figure 3: Relationships between SysML and UML

UML captures well the software aspects of the sgstelowever, from the system
point of view also non-software components (e.grdare, information, processes,
personnel, and facilities) need to considered. Uidhnot satisfy this need because of
its software focus only. SysML extends UML's sernt@nto model requirements and
parametric constraints, though only the requirermeodieling of SysML is discussed

in this thesis.

3.2.1 SysML's Extensions and Omissions to UML

The most important change is that UML classes alled blocks in SysML, and the
class diagram is block definition diagram. The UNmposite diagram is called an
internal block diagram in SysML [10]. Seven UML Zagrams are inherited from
UML and two new diagrams are introduced, these gbsiare illustrated in Figure 4.

20

Sys#l Diagram

[L |
e Py 1
I]
Behavior Regquirement Structure
Diagram I Diagram 1 Diagram
e e = = A
I I I I | I
Activity Sequence State Machine Lige Case Block Definition Internal Block Package I
Diagrarm Diagram Dingram Disgram Diagram Diagram Diagrarm
e e
| Pammetnc |
y [Diegram
Same ag UML 2 fr eeea== 1
I Hew diagram type !

[terpett e g el

Figure 4. SysML Diagram Types

SysML allocation tables support common kinds ofoadtions. Whereas UML
provides only limited support for tabular notatipnSysML furnishes flexible
allocation tables that will support requirementeaition, functional allocation, and
structural allocation. This capability facilitatasitomated verification and validation
and gap analysis. This is discussed in detailhapfer 6 UML ELEMENTS AND
THEIR RELATIONS TO REQUIREMENTS. With SysML it isgssible to use
requirement diagrams to efficiently capture funcéih performance and interface
requirements. If UML is solely used team is subjedhe limitations of the Use Case
diagrams to define high-level functional requiretsen

21

4 MODELING BUSINESS PROCESSES

4.1 Introduction

"Business processes are the activities that a coomherganisation performs in order
to carry out its business. All organisations depérdtheir competitiveness on the

efficiency with which their business processes afer{17].

For any software project to achieve a commercietsss over the bare technical code
complete, the solution provider must have a sufitunderstanding about customer's
business processes. Unfortunately, this step i ofen neglected and as a result the
software solutions are ill adjusted to support ¢hstomer's business, and instead of
being enablers in the business they tend to disaypertunities for a organisation.
This occurs because from the software provider thdee is reluctance to study, so
called domain knowledge area of customer, and tostomer side there is often lack
of interest to understand the software solutio®. [Therefore, in order to narrow this
information gap and integrate the project's staldghts vision of the expected

outcome, modeling business processes is usefubsfepe requirements engineering.

The extent of a needed research depends generatlyeanature of the project: type,
size, complexity, criticality, and customer requoients and the chosen development
process of the software provider. For example ERRefprise Resource Planning)
projects require intimate understanding of theaustr's business [19]. In turn smaller
and simpler projects the time and energy speriyzing customer's business process
can be minute [20]. Furthermore, good analyst wstdads that business process
model has a broader and more inclusive range timgn saftware system being
considered. As a result, an effective business halttevs clearly map the scope of
the proposed system as well as pieces of the wdbes must be implemented in

other ways, such as manual processes that thessefsystem can not handle [21].

22

A business process model specification typicallysist of the following elements:
« Goal of the process

* Specific inputs and outputs

* Used resources

 Events that drive or affect the process

« Activities and the order in which they are penfied

Inputs and outputs often refer to data, but theyaiao be something that is processed
or worked upon. For example, a system requires idat# and typically outputs data
in return: a report, a completed customer order,Résources can be persons or parts
of a system that are involved in performing thevites. Events can be any number
of things, which trigger something that initiatedasiness process. For example a

deadline might trigger the start of an invoicinggess. [22]

4.2 Selection of Modeling Language

When documenting the process it is very importankdep in mind that a business
process model must be in the type of a format dhadtakeholders can understand it.
There exist a variety of ways to document busin@ssesses ranging from textual
descriptions to sophisticated models [21]. Four mam uses of modeling languages
in business processes context are briefly introduoere: UML Use Cases, UML
Activity Diagram, Business Process Modeling NotatifBPMN), and UML Extension
Eriksson-Penker Business Modeling Profile (EPBE).

Firstly, project utilizing Rational Unified SoftwarDevelopment Process (RUP) or its
variants, which gives emphasis to use cases, wmddel processes through user

interactions alone. This can be sufficient wayesdatibe them in many cases [21].

Secondly, the UML activity diagram can be appliedtisiness process modeling. As
it states in the UML standard "Activities may bebgd to organizational modeling
for business process engineering and workflow".[2Blt as brought out by a study
by Eloranta, Kallio, Terho (2006), the use of ahvay diagram requires the modeler
to carefully select, which elements are appropratebusiness modeling and it will

require the audience to be literate on the UMLvétgtdiagram notation [24].

23

Thirdly, Business Process Modeling Notation is wdased among the business
people and being designed for this sole purposeimdeed model the processes
accurately. It has it similarities to UML activithagram but at least while writing this
these to modeling languages have not converged #waungh there is growing

pressure to align these two modeling languages [25]

Fourthly, the model that is utilized in this thes$sa business processing model
extension from UML, the Eriksson-Penker Businessefsions also used in some
extent in software projects [24]. It presentatiereasy-to-understand and other UML
models can be conveniently linked to it in the uS&SE tool [22]. In Figure 5 is

illustrated a generic structure of process modali@dm using selected notation and in
Figure 6 there is an example how this is utilizedrtodel the process of creating

business process models.

analysis Process Model Generic/

Information «resource» «goal»
Resource Goal

«control» « ieve»

«\S,G pply»

ZZ
vent

Business process
«output»

Output

«supply»

«resource»
Resource

Figure 5: lllustration of a generic structure of process niatiggram

24

analysis Process Model of Creation of Process Model/

Hierarchy
charts,
Manuals,
Process
definitions,
etc.

s

«sup ﬁl\y&

«resource»
Business Analyst

«con|trol»

Accurate model that

«goal»

effectively describe
business logic

—A
« eve»

Requirement team
needsto understand
the domain aspects of

the SW project

L —

Business process of Creating Business Process Mode

«output»

Business process
model of a customer

\
/

«supply»

«resource»
Team that contributes

business process
modeling

in a form analysis
diagram

Figure 6: Example showing how an analysis diagram is uselsaribe a process

related to creating a model of business processes.

Figure 6 shows how the triggering event for thecpss is the need to understand the
domain aspects of the software project better. dinecipal stakeholder is a person
who acts as a Business Analyst who facilitatesptioeess by taking the information
input (hierarchy charts, manuals, existing procksmitions, etc.) and using the other
resources that contribute the process model creaf;o team may consist of
department heads, experts, project leads, etcg.dbal is to accurately model the

business as it is or how the team wants it to bermthe system is ready. This goal is

achieved by creating a business model diagranctrdains relevant information.

5

5.1

25

MODELING REQUIREMENTS

Definition of Requirement

In engineering, a requirement is a singular docuettmeed of what a particular

product or service should be or do. It is most camiyn used in a formal sense in

systems engineering or software engineering. laistatement that identifies a

necessary attribute, capability, characteristicquality of a system in order for it to

have value and utility to a user. Table 2 definbaracteristics of well-defined

requirement. [27]

Table 2: Characteristics of well-defined requireten

Characteristig

Explanation

Cohesive The requirement addresses one and onlhime

Complete The requirement is fully stated in one@lith no missing
information.

Consistent The requirement does not contradictoéimgr requirement and is fully
consistent with all authoritative external docunagion.

Correct The requirement meets all or part of arlrss need as authoritatively
stated by stakeholders.

Current The requirement has not been made obdnjdtee passage of time.

Externally The requirement specifies a characteristic of tieelyct that is
externally observable or experienced by the ug&gquirements” that

Observable e . L : :
specify internal architecture, design, implementator testing
decisions are properly constraints, and shoulddselg articulated in
the Constraints section of the Requirements doctimen

Feasible The requirement can be implemented will@rconstraints of the

project.

Unambiguous

The requirement is concisely statedowithecourse to technical
jargon, acronyms (unless defined elsewhere in gguRements
document), or other esoteric verbiage. It expresbgsctive facts, not
subjective opinions. It is subject to one and anig interpretation.
Vague subjects, adjectives, prepositions, verbssabgective phrases
are avoided. Negative statements and compoundretate are
prohibited.

Mandatory The requirement represents a stakehdlelaned characteristic the
absence of which will result in a deficiency thahoot be ameliorated.
Verifiable The implementation of the requirement & determined through or

e

of four possible methods: inspection, analysis, aestration, or test.

26

In the classical engineering approach, sets ofireaents are used as inputs into the
design stages of product development. When reqeimé&snare described manner
outlined in Table 2 they effectively show what edts and functions are necessary

for the particular project. [27]

In SysML standard [28] requirements are definediglo Requirement Diagram. A
requirement is defined as a stereotype of UML Clag® «requirement» stereotype
represents a text based requirement it includesnd text properties. Figure 7
illustrates this. It can be extended with userrdsdiproperties e.g. verification method

and user defined requirements categories (e.gtifurat, interface, performance).

req sysML Example Require... /

«requirement»
Requirement name

+ text = Description of ...
+ id=112

Figure 7: Simple example of SysML requirement diagram witke oequirement

5.2 Requirements Relationships and Rationale

Several requirements relationships can be specifi@dstereotyped dependencies in
UML that enable the modeler to relate the requimreinéo other requirements as well
as to other model elements. The «deriveReqt» aaisfs> dependencies describe the
derivation of requirements from other requiremerasd the satisfaction of
requirements by design, respectively. The «verdgpendency shows the link from a
test case to the requirement or requirements ifierin addition, the UML «refine»
dependency is used to indicate that an SysML mebighent is a refinement of a
textual requirement, and «a copy» relationshipsesduto show reuse of a requirement
within a different requirement hierarchy. [29]

The «rationale» concept can be used to annotatenadel element to identify
supporting rationale including analysis and tranglies for a derived requirement, a
design or some other decision. A rationale is aVihysnodel element that can be

27

associated with either a requirement or a relalignbetween requirements. As the
name implies, the rationale is intended to captbesreason for a particular design
decision. Although rationale is described hererémuirements, it is a model element
that can be applied throughout the model to capthesreason for any type of

decision. [28] Example of its usage can be seéfiguare 8.

A composite requirement can contain sub-requiresn@ntterms of a requirements
hierarchy, specified using the UML namespace caontant mechanism. This

relationship enables a complex requirement to loerdposed into its containing child

requirements. A composite requirement may statethesystem shall do A and B

and C, which can be decomposed into the child rements that the system shall do
A, the system shall do B, and the system shall dérCentire specification can be

decomposed into children requirements, which cafultber decomposed into their
children to define the requirements hierarchy. €hedations ships are illustrated in
Figure 8.

req Example Requirement Relationships /

Client shall
download live TV
metadata from
dedicated server

AN
<<rationale>> Live TV Metadata is
logical to splitinto Channel and
Program parts. Channel representing -
the provider (e.g. broadcaster) of flow Required
different programs. Programs present metadata for
e.g. part of TV seriesthat will be client live TV
available for viewing over certain sAvEe
durataion.
‘\
\\
AY
AY
Channel related Program related
metada metadata
Channel Channel Program Program Program times (i.e. Program
logo title title genre start and end time) description

Figure 8: Composition of Live TV EPG client requirements arsg of Rationale

The “derive requirement” relationship relates a derived requirement tosisirce

requirement. This typically involves an analysisdietermine the multiple derived

28

requirements that support a source requirement.deneed requirements generally
correspond to requirements at the next level ofylstem hierarchy.

The satisfyrelationship describes how a design or implementahodel satisfies one
or more requirements. A system modeler specifiesyistem design elements that are
intended to satisfy the requirement.

The verify relationship defines how a test case or other imeblnent verifies a
requirement. In SysML, a test case or other nant@aent can be used as a general
mechanism to represent any of the standard vdrditamethods for inspection,
analysis, demonstration, or test. Additional suks#s can be defined by the user if
required to represent the different verificationtinoels. A verdict property of a test
case can be used to represent the verificationtr@he SysML test case is defined
consistent with the UML testing profile to faciliéaintegration between the two

profiles.

Therefine requirement relationship can be used to desciawedmodel element or a
set of elements can be used to further refine air@ment. For example, a use case or
activity diagram may be used to refine a text-bagedctional requirement.
Alternatively, it may be used to show how a texsdzhrequirement refines a model
element. In this case, some elaborated text caeildsed to refine a less fine-grained

model element.

A generic trace requirement relationship provides a general-pwepodationship

between a requirement and any other model eleriiet.semantics of trace include
no real constraints and therefore are quite weakaAesult, it is recommended that
the trace relationship not be used in conjunctioith vihe other requirements

relationships described above.

29

6 UML ELEMENTS AND THEIR RELATIONS TO REQUIREMENTS

After modeling business processes, use cases aqdireiments are usually
concurrently modeled. After this developers needxiend the design with diagrams
describing the structure of system i.e. architectnd other design aspects such as the

dynamics using e.g. sequence diagrams.

6.1 Use Cases

Use case diagrams are useful for requirements reamag when kept in mind that
they are good for capturing interaction betweenemd user and the system.
However, there are not enough to describe exhalgtithe non-functional

characteristic of the system.

The core of a use case description is about ansgvéoi a simple questionsvho,
what, wherandhow, and being able to communicate this to the relestakeholders.
Thewhorefers to one or more actors that interact withdsstem. Thevhatdescribes
the actor's goal. Thehenrefers to the pre- and post-requisites. Whennthea started
and when it's completed. Finally, tiw describes the scenario of events that are
needed to accomplish the goal. Figure 9 describesxample use case where 'Mobile
TV application downloads EPG information on itarsup’.

uc EPG Use Cazes A

=<rationale=>0ne of =<goal=# All the EF&
initiliazation routines infarmation that is required
in application startup iz to enable basic live TW

=1 the download of initial usage are downloaded
EFG information

User -
et -

fronr Actors) winviokesy ~ -':\-Bk

Z<implementation note>>
initial EP & information =
_______ Basic metadata on currenthy
angoing programs on all
available (subscribed)
channels

initial EPG downlozad
(=

Figure 9: Use case diagram describing intial download of ERGmation

30

As can be seen in Figure 9 it is the user whossthd application which then triggers
the initial EPG download use case. Download of amgdive TV show's metadata
information is accomplished (for reference see &igore 8. Composition of Live TV
EPG client requirements and use of Rationale). Gasxecuted at the application
startup and it is completed when necessary EPG@nrdtion has been downloaded. To
further define how this accompished, the exprespower of use case can be

extended with a nested diagram such as sequergramia

6.2 Sequence Diagrams

A sequence diagram is an interaction diagram thatvs how processes or objects
operate with one another and in what order. Iralpgrare vertical lines (lifelines),

they are different processes or objects that limeukaneously, and, as horizontal
arrows, the messages exchanged between them, amdéein which they occur. This

allows the specification of simple runtime scengiil a graphical manner. Figure 10
is a nested sequence diagram that describes #radtion needed to download initial
EPG information. It describes how application comgas: main, user interface,

storage, EPG client communicate with EPG servactmmplish this goal.

=d initizl EPG dowmload
Main User Interface Storage EP& client EPG senver
T T T T T
| | 1 | |
| | getinitial EP GisubscribedChannels) | :
t T
| | |
| I getChannelsisubseribedChannels) |
| |
| |
: : = :channellist
| |
: ! g StoreChannels(fchannellist) :
| Lr|-- =<implementation note>> i
| H Because we want allow the user |
| notifyChannelListforailabled to browese channels as fast az |
|_"l] possible querny concerning the |
| channels is requested 1sts. |
readChannelData(zubscribedChannels) | 9 |
= |
| |
| I getProgramszubscribedChannels, |
| | [currentTime)
| |
| | :ProgramsD ata
| | ===
| | '
: ! _, storeFrograms &P rogramsData) :
-
| LI'| |
I L notifyfctiveProgramsfovailabled) <<implementation notex> After :
il | the channel list is made |
| available (and user can select |
readProgramD ata(programld) . channels and watch TWthe |
(] download of programs metadata |
| somplate : is started (and displayed to the :
et — —— — ——— — —————————- '__P_____.I_ ———————————————— user progressively). |
T | | T |
| | | | |

Figure 10: Sequence diagram (nested element of use casendefietails of initial
EPG download

31

6.3 Allocations and Callout diagram

Allocation is the term used by systems engineersld@note the organized cross-
association (mapping) of elements within the vagistructures or hierarchies of a
user model. The concept of “allocation” requiresxibility suitable for the abstract

system specification, rather than a particular tamed method of a system or a
software design. System modelers often associateugaelements in a user model in
abstract, preliminary, and sometimes tentative wAllscations can be used early in
the design as a precursor to more detailed rigor@pecifications and

implementations. The allocation relationship cawvpte an effective means for
navigating the model by establishing cross relatgos, and ensuring the various
parts of the model are properly integrated. Thbowh notation is used when

requirements do not appear on other kinds of dragrar when other model elements
do not appear on a requirement diagram [28]. Fidureresents an example of this
where in the use case presented earlier is assdcveith the requirements that it

realizes.

custom Callowt Initial EFG Use Case wvs Reqg /

There must be means to
dowwnload EFG information

/QSEPGJQ{

EFG download: All the
metadata needed by the
Ul'to papulate channel
selection functionality

EP doawnload: All the
metadata needed by

the Ul to display current
programs running in all

channels

E} e ERPG Slient)
\ P 4]96 Client)
il

A <zrationale=>0ne of

X initiliazation routines ¢
i in-application startup iz} ¢
e -y | the download of initial |/
5= 8 ERG information !

<sgoal== All the EPG
information that is
required to enable
bazic live TW uzage are
downloaded

U=ser - rl
#om EFG Use Cases! . ’
winrakess = -‘:\:k. 4

o Actors)

ZZimplementation notex>
initial EP G information =
_______ Basic metadata on cumrenthy
angoing programs on all
available (subscribed)
channels

initial EFG dowmload
L Can

foar EFPG Use Caees)

Figure 11: Callout diagram describing how ‘initial EPG dowrdbase case
implements the two sub-requirements of EPG download

32

7 CONCLUSIONS

7.1 UML Based Requirement Management Process

A typical requirement management process consi$tsseveral sub-processes:
elicitation, analysis, documentation (i.e. speaifion), validation, and change
control. This is valid also for the UML-RM procesgith the exception that
documentation is not really a separate activitpycaiin this UML-RM process the

model is created from beginning and updated cotigtan

A requirement analyst is the main responsible focuinentation efforts and the
principal owner of the requirement model [31]. Téfere, typically the analyst would
be the person that implements business processagse and requirement diagrams.
However, all users of the system model are applyaxgending, and connecting to
these diagrams and their elements. Connectingeitpgirement model to a design
model is an essential to provide added value orenstahding the problem to be

solved. The model that is one of the project oue®wwned by whole project team.

7.1.1 Elicitation

Gathering the requirements from stakeholders isadribe first activities that happen
in R&D projects. Figure 12 presents such a subge®evhere the requirement analyst
together with the requirement team compiles aiminiéquirement in place. Typically
this would happen in a manner where the analystldvaweet the customer in a

(series) of meetings where new product featuresercases would be discussed. [31]

33

analysis Process Requirement Elicitation /

Existing
i wlES0UTCE
Regquirement
analyst

rar keting
studies, etgl

wgodls

Effectively model
requirerments into diagrams

- tral =
wsupp s :\L occol?l'rrc- W /«'7

f..-ocachiexre»
Froject is started Requiremernt woutputs
and the Elicitation initial
! e
requirements f—————————= —== n
requiremert
needsto be
rnodel
gathered -

|

wSUp plys

wlES0UTGe
requirement team
representing project
stakeholders

Figure 12: Requirement elicitation process diagram

An existing product's requirement specificationgrket studies, customer requests
can help the analyst to determine what are théalniequirements for a software
product. A good analyst acts pro-actively to hdlp tisers to articulate the system
capabilities they need to meet their business tilgsc Users naturally emphasize the
system’s functional requirements, but discussionneeded to include quality
attributes, performance goals, business rules,rresdtanterfaces and constraints.
A well done elicitation can significantly reduceetheed for costly change requests
later in the project.

An organization must select how many times theitation sub-process happens in
the lifetime of the project: only once in the bagmyg of the project or at the start of
each iteration of development. If the developmewntess is similar to the waterfall
model then it would be natural to try to descrildetl@e requirements in one-time
effort and handle possible changes through a chang&ol process. On the other
hand, if the selected process has relatively stendtions, then elicitation would be
happening in the beginning of each iteration.

Depending on the project complexity an output cmsta varying number of business

processes, use case and requirement diagrams.

34

7.1.2 Analysis

When elicitation is completed requirements needeahecked for completeness and
consistency. This sub-process is effectively aeneprocess where the team inspects
the requirement model. Experts from developmestjrtg and other functional areas

of project are involved in auditing and approvihg tequirement set.

analysis Process Requirement Analysis /

Initial
equirement
rnodel

o MES0Urce s

wigodls

comments, Requirerment Cluality of requirement rmodel is
et analyst improwved
S /
s
Sy
"
.
wsUpplyo woontrols wachigwen
N V
Initial
requirement exist Requiremearit woutputs
but they are Analysis updated
e
needed to be | requiremert
EEHBIIE TNEmS
analysed for model
completeness and

consistenoy

wsUpphys

o MEE0 L TE
requirerment team
representing project
stakeholders + experts

Figure 13: Requirement analysis process diagram

In practice, this could be a scheduled meeting giten material (initial requirement
model) and time to give review comments that asewdised in the review meeting

where analyst could act as a chairperson and ataegr

Review participants should look for derived reqoiemts that are a logical
consequence of the customers requests, as welluagngy for those implicit

requirements that they expect but haven't verbdlizZgtention should be placed on
vague, weak words that cause ambiguity and confudditors should point out
conflicting requirements and areas that need metaild Functional requirements

should be described in a suitable level of detaitlie developers.

35

After one or more review meetings and approval frhrea customer and project
management the requirement model should be stablggl to be 'frozen' i.e. all the
new requirements or changes to existing ones goéemented under change control

process.

7.1.3 Validation

Analysis and validation sub-processes aim for thmes goal: Ensuring that the
documented requirements satisfy the customer resetithat they are clear, complete,
correct, feasible, necessary, traceable, unambgyuand verifiable. The subtle
distinction of the two sub-processes is in the time of the activity. An analysis
needs to happen after elicitation without the éxgstesign diagrams, code and test
cases. Whereas validation happens when the desigelpimplementation and test

model are at least partially ready. Figure 14 dessrsuch a process.

analysis Process Requirement Walidation /

PRS0 L TEE . ; a0k -
Require ment roject work is targeted on fullfilling
EsLIrermnent " .
= he requirerments + stetus of project
scope is knowr
) \
T
- 7
wSUpplye woontrols
~ -‘1\:& W xachiawes
-~
output
development Requirement ua-tn-gatz
model is “alidation rejmrr
integrated into

rmodel + input on
lessons learnt

requirament
model

!

wSUpplys
wresources
Walidation of requirements is project team and
an followup activity. It aids stakeholders

the project management to
close the deal with customer.

Figure 14: Requirement validation process diagram

In practice, the requirement model is validatedcbgating the development model

based on the analyzed requirement model. Thisj@na effort of the developers,

36

analyst, and project manager. Furthermore, therghtmarise a need to involve
customer or other stakeholders to support the psoared adjust certain aspects.

This mapping of requirement model and developmerdiscussed in Chapter 6. UML
ELEMENTS AND THEIR RELATIONS TO REQUIREMENTS. Typaly
developers would create embedded sequence diagmamse cases, testers would
create (system) test cases from use cases andsighdes would create flows based
on use cases and user interface related requiremettt Diagrams that describe
structural aspects (i.e. architecture) would beeianto requirement elements so each
module would be responsible for fulfilling the rega to functionality. If those
connections were not to be found than either thengld be a missing requirement or

redundant code in a system

A validated model accurately pictures the system i@nthe process of update the
project team can learn many things. Such as thatwthole team can intimately
understand the relation between the implementadiwh the customer requirement.
Having a project team to work integrated for themmeacause and avoiding duplicate
work is a challenge in all projects especially inltimsite and technically demanding
ones [32]. The requirement validation sub-processtributes enormously to the

integrity of project.

Furthermore, a properly validated model gives angfrpromise that the product can
be built and delivered or if it actually revealsvsee challenges it aids the project

management to realize the risk of failure earlnethie project.

7.1.4 Change Control

There are entire books on this topic alone, mamgagihange in a controlled manor is
demanding in the pressures of project life. In th@ustry there is widely spread

culture for NOT accepting the self-evident factttbhange causes impact. Typical
phenomena of this is a scope creep where for exalydtomer pushes for scope
changes and would not accept the affect on thgatgltime and budget. These can be
avoided if the agreement for the project speciteeshange control process. An

example of such a process is presented in Figure 15

37

analysis Process Req Change Contral /

wresources w0 dlz
Requirement The impact of proposed change is
q n —
= studied and decission is made
N \
~. /
wsUpplys woontrol -
~ = W wachievas
Customer or other Requirement
stakeholder raises an Change Contral xoutputs
nead to — up-to-date require mernt
addfremovefmadify model + change log
requirement’s)

wsupphye

wlESOUTCEn
Reguiremernt team and
stakeholders

Figure 15: Requirement change control process diagram

The activating event for change control processgs customer's realization that there
is valid reason to add or remove or change sontleeoihitial requirements. Typically
meeting for such purpose would be arranged andirtigact of the change is
estimated. Actually, UML-RM process way of workingjves project team a
significant help on making sound decisions. Thibesause requirement are mapped
into use cases and software components thus chargye case/requirement can be
traced into module level and the work needed t@mccodate the extra work can

estimated.

Also, to ensure that change can be implementedapep fashion basic arrangement

for version control over the requirement model eiedbe in place.

7.2 Perceived Benefits of the UML-RM Process

The used UML-RM process solves many common problecesirring in traditional
requirement management processes such as tratyedbill example list based tools
rely on requirement ids to be attached to desighiaplementation components but
these ids have to be manually inserted into ded@puments making linking prone
for breaking. UML-RM has strong and easy to follawter-connectivity between

38

requirement, design, and software components. dllos/'s managers to check which
implementation component is responsible of whauiregnent. This again reduces

wasted effort on the project and makes teams asdlipt more integrated.

Modeling also allows team to check the design letmstly implementation work is

started reducing risk and wasted effort.

7.3 Limitations of the UML-RM Process

Since this process is based on UML notation it iregua project team to understand
the relevant diagrams. For example a customermjsined to understand only simple
use case and requirement diagrams. Addition tseth®vo diagrams project
management should also understand basic structiedrams describing the
architecture. Whereas the developers should knawtb@pply for example sequence
diagrams to model interaction between componerdsctass diagrams to specify the
system. UML is widely taught in universities so mamofessionals are familiar with
it. As a practical note requirement analyst miglit iseed to act as a instructor to the
customer about the use case and requirement diagadation when performing

requirement elicitation.

UML-RM is applicable to any implementation languaged fitting for many
development processes and types of projects. Tdsepted process is a custom fusion
of existing Use Case driven (ICONIX) and SysML naetblogies. It applies well in
the software development areas were complexityigh ior example multimedia

system projects.

39

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Software Engineeringviarch 1, 2010 [online].

http://en.wikibooks.org/wiki/Software_Engineering

Alain, Abran and James, Moor&uide to the Software Engineering Body of
Knowledge(SWEBOK 2004). IEEE. March 1, 2010 [online].

http://www.computer.org/portal/web/swebok/htmlfotma

Bashar, Nuseibeh and Steve, EasterbroBkequirements Engineering: A
Roadmap2000.
http://mcs.open.ac.uk/ban25/papers/sotar.re.pdf

Wikipedia. Requirements managementMarch 1, 2010 [online].
http://en.wikipedia.org/wiki/Requirements_managetnen

The Standish Group. ReporCHAOS 1995. April 13, 2010 [online].
http://www.projectsmart.co.uk/docs/chaos-report.pdf

Wikipedia. IBM Rational Unified Process.April 13, 2010 [online].
http://en.wikipedia.org/wiki/IBM_Rational_Unified rBcess

Karl E. Wiegers.Requirements When the Field Isn't Greéupril 27, 2010
[online].

http://www.processimpact.com/articles/reqs_not_igedf

Benoit MarchalWorking XML: UML, XMI, and code generation, PartMay
11, 2010 [online].

http://www.ibm.com/developerworks/xml/library/x-wm6/

Sanford Friedenthal, Alan Moore, and Rick SéeinObject Management
Group.OMG Systems Modeling Language (OMG SysML™) Tutdvialy 11,
2010 [online].
http://mwww.omgsysml.org/INCOSE-2008-OMGSysML-oual-Final-revb.pdf

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

40

Tim Weilkiens. Systems engineering with SysML/UML: modeling, aisly
design Morgan Kaufmann. 2007.

OMG Unified Modeling Language, Infrastructuigersion 2.2. February 2009.
May 11, 2010 [online]
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/

Object Management Grouplntroduction To OMG's Unified Modeling
Language July 2005. May 11, 2010 [online].

http://www.omg.org/gettingstarted/what_is_uml.htm

Wikipedia.Unified Modeling LanguageMay 11, 2010 [online].
http://en.wikipedia.org/wiki/Unified_Modeling_Langge

Wikipedia.Profile (UML). May 11, 2010 [online].
http://en.wikipedia.org/wiki/Profile_(UML)

SysML FAQMay 11, 2010 [online].

http://www.sysmlforum.com/FAQ.htm

The Official OMG SysML site. May 11, 2010 [oné&].

http://www.omgsysml.org/

Peter Hendersoigystems engineering for business process change:
collected papers from the EPSRC research progranBusiness Processes,

Legacy Systems and a Fully Flexible Futdrage 2. Springer. 2000.

Sten and Per Sundblad. Requirements Management

Software DirectoryMicrosoft Architect Journal: Business Improvement
Through Better Software Architectutday 11, 2010 [online].
http://msdn.microsoft.com/en-us/library/bb26633pxas

Stemberger, Mojca Indihar and Kovacic, Andréhe Role

[20]

[21]

[22]

[23]

[24]

[25]

[26]

41

of Business Process Modelling in ERP ImplementdRiajects
This paper appears in: Computer Modeling and Sitiania2008. UKSIM 2008.
Publication Date: 1-3 April 2008. pages: 260-265.

Mohan Babu Kls IT-Business/Domain Knowledge overratéd&y 11, 2010
[online].
http://lwww.infosysblogs.com/managing-offshore-

it/2007/02/is_businessdomain_knwledge _ove_1.html

IBM. Slack Sally.Understanding business process modeliggust 2008. May
11, 2010 [online].

http://download.boulder.ibm.com/ibmdl/pub/softwaire/
architecture/ar-undprocmod/ar-undprocmod-pdf.pdf

Sparx System$JML TUTORIALS: THE BUSINESS PROCESS MOD¥ay
11, 2010 [online].
http://lwww.sparxsystems.com/downloads/whitepapers/

The_Business Process_Model.pdf

OMG Unified Modeling Language, Superstructwersion 2.2. p. 332.
February 2009. May 18, 2010 [online]
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

Eloranta, Kallio, and Terhd Notation Evaluation of BPMN and UML AD
2006. May 18, 2010 [online]
http://lwww.soberit.hut.fi/T-86/T-86.5161/2006/BPMis_UML_final.pdf

IBM. Steven A. WhiteProcess Modeling Notations and Workflow Patterns
BPTrends. March, 2004. May 18, 2010 [online]
http://www.bptrends.com/publicationfiles/03-04%20WE0ONotations%20and
%20Workflow%20Patterns%20-%20White.pdf

Gurau, CalinRestructuring the Marketing Information SystemdGRM:

An Application of the Eriksson-Penker Method

[27]

[28]

[29]

[30]

[31]

[32]

42

Wikipedia. Requirement. May 18, 2010 [online].
http://en.wikipedia.org/wiki/Requirement
OMG Systems Modeling Langua@@MG SysML™). Version 1.1.

November 2008. July 26, 2010 [online]
http://www.omg.org/spec/SysML/1.1/changebar/PDF/

Matthew HauseThe SysML Modelling Language
September 2006. July 26, 2010 [online].
http://www.omgsysml.org/The_SysML_Modelling_Langegudf

Sanford, Friedenthal; Alan, Moore and Rick 8&i A Practical Guide to
SysML: The Systems Modeling Languddgergan Kaufmann. 2008.

Karl E. WiegersSo You Want To Be a Requirements Analge3. July 27,
2010 [online].
http://www.processimpact.com/articles/be_analys$t.pd

Harold, Kerzner. Project Management: A Systefipproach to Planning,
Scheduling. and Controlling. Ninth Edition. Wile€3006.

