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FEYNMAN–KAC FORMULA FOR HEAT EQUATION DRIVEN BY
FRACTIONAL WHITE NOISE

BY YAOZHONG HU, DAVID NUALART AND JIAN SONG

University of Kansas

We establish a version of the Feynman–Kac formula for the multidi-
mensional stochastic heat equation with a multiplicative fractional Brownian
sheet. We use the techniques of Malliavin calculus to prove that the process
defined by the Feynman–Kac formula is a weak solution of the stochastic
heat equation. From the Feynman–Kac formula, we establish the smooth-
ness of the density of the solution and the Hölder regularity in the space and
time variables. We also derive a Feynman–Kac formula for the stochastic heat
equation in the Skorokhod sense and we obtain the Wiener chaos expansion
of the solution.

1. Introduction. Consider the following heat equation on R
d :⎧⎨

⎩
∂u

∂t
= 1

2
�u + c(t, x)u,

u(0, x) = f (x),

(1.1)

where f is a bounded measurable function. If c(t, x) is a continuous function of
(t, x) ∈ [0,∞) × R

d , then we have the well-known Feynman–Kac formula (see
[2]) for the solution of above equation

u(t, x) = E

[
f (Bx

t ) exp
(∫ t

0
c(t − s,Bx

s ) ds

)]
,

where Bx
t = Bt +x is a d-dimensional Brownian motion starting from the point x.

In this paper, we shall extend the above Feynman–Kac formula to the heat equa-
tion with fractional noise⎧⎪⎨

⎪⎩
∂u

∂t
= 1

2
�u + u

∂d+1W

∂t ∂x1 · · · ∂xd

,

u(0, x) = f (x),

(1.2)

where W(t, x) is a fractional Brownian sheet with Hurst parameters H0 in time and
(H1, . . . ,Hd) in space, respectively. The difference between (1.1) and (1.2) is that
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∂d+1W
∂t ∂x1···∂xd

is no longer a function of t and x, but a generalized (random) function.
For this equation, we can still formally write down the Feynman–Kac formula

u(t, x) = EB

[
f (Bx

t ) exp
(∫ t

0

∫
Rd

δ(Bx
t−r − y)W(dr, dy)

)]
,(1.3)

where EB denotes the expectation with respect to the Brownian motion Bx
t and δ

denotes the Dirac delta function.
The aim of this paper is to justify the above formula (1.3), to show that the

process u(t, x) is a weak solution of (1.2) and to establish some properties of this
process. First, we shall show that the stochastic Feynman–Kac functional Vt,x :=∫ t

0
∫
Rd δ(Bx

t−r − y)W(dr, dy) is a well-defined random variable. This will be done
in Section 2 using a suitable approximation of the Dirac delta function, assuming
that the Hurst parameters satisfy 2H0 + ∑d

i=1 Hi > d + 1, H0 ≥ 1
2 and Hi > 1

2 for
1 ≤ i ≤ d .

After the definition of the random variable Vt,x , the next problem is to show its
exponential integrability. With the use of the covariance structure of the fractional
Brownian sheet W(t, x), we show that u(t, x) has exponential moments provided
that

E exp
[
λ

∫ 1

0

∫ 1

0
|r − s|2H0−2

d∏
i=1

|Bi
r − Bi

s |2Hi−2 dr ds

]
< ∞(1.4)

for any λ ∈ R. To show that (1.4) is true, we use a method introduced by Le Gall
in [8] to derive the exponential integrability of the renormalized self-intersection
local time of the planar Brownian motion, together with the self-similarity of the
fractional Brownian sheet and several other techniques. This is done in Section 3.

Another major aim of this paper is to show that u(t, x) defined by (1.3) is a
weak solution of (1.2). Instead of following the classical approach based on Itô’s
formula, which seems complicated in our situation, we again use the approxima-
tion technique, together with Malliavin calculus. The main ingredient is to express
the Stratonovich integral as the sum of a Skorokhod integral plus a correction term
involving Malliavin derivatives. This is a new methodology which is developed in
Section 4.

The Feynman–Kac formula gives an explicit form of a weak solution of equa-
tion (1.2) which turns out to be very useful for obtaining regularity properties.
Several consequences of this expression are derived in Section 5. First, we derive
the Hölder continuity of the solution u(t, x) with respect to t and x, and, afterward,
we establish the smoothness of the density of the probability law of u(t, x) (with
respect to the Lebesgue measure) using techniques of Malliavin calculus.

In the above (1.2), the solution and the noise are multiplied using the ordinary
product. This gives rise to the Stratonovich integral when we interpret the equation
in its integral form. There are several papers where the Wick product between the
solution and the noise is used, this corresponding to the Skorokhod integral. The
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Stratonovich integral is more difficult to handle, but it is the right choice if we want
to represent a physical model. Applying a Wiener chaos technique pioneered by
Dawson and Salehi in [1] and used in several other papers (see, e.g., the work [5] on
the relation between moments of the solution and self-intersection local times), one
can show that there exists a unique mild solution to the Skorokhod-type equation.
We discuss this result in Section 7 and, using Wiener chaos expansions, we obtain
a Feynman–Kac formula for this solution.

The above techniques work for Hi > 1/2, i = 1,2, . . . , d . From the condition
2H0 +∑d

i=1 Hi > d +1, it follows that H0 must be greater than 1/2 and we cannot
allow more than one of the H1, . . . ,Hd to be less than or equal to 1/2. Thus, if we
want to remove the condition Hi > 1/2, i = 1,2, . . . , d , we need d = 1. We show
in Section 7 that if d = 1, H1 = 1

2 and H0 > 3
4 , then all previous results hold.

When d = 1, we can also handle the case H0 < 1/2, assuming that the process has
a regular spatial covariance. This has been done in the companion paper [4], using
different techniques. Finally, the Appendix contains some technical results which
are used in the paper.

We would like to close this introduction with some remarks about the motiva-
tion of our work and its connection with other related results. The existence of
a Feynman–Kac formula like the one we have derived here was mentioned as a
conjecture in a paper by Mocioalca and Viens (see [9]), although this problem was
circulating long before that. In the lectures by Walsh in Saint Flour (see [13]) it was
stated that the one-dimensional equation in the Itô sense driven by a space–time
white noise cannot have a Feynman–Kac formula because the Itô–Stratonovich
correction term is infinite. In a previous work [5], two of the present authors con-
sidered a Skorokhod-type equation assuming Hi = 1

2 for i = 1, . . . , d . In this case,
there exists a unique mild solution obtained by means of the Wiener chaos method
if d = 1 or d = 2, H0 > 1

2 and t is small enough, although the Feynman–Kac
formula is not available unless d = 1 and H0 > 3

4 (see Section 7).
A process similar to (1.3) was studied by Viens and Zhang in [12], although

it does not have a relation with a stochastic heat equation and, most likely, the
asymptotic results obtained in [12] can be extended to the process (1.3).

Recently, Hinz obtained in [3] a Feynman–Kac formula for the stochastic heat
equation with a Gaussian multiplicative noise of the form ∂W

∂t
(t, x), where W is a

fractional Brownian sheet with Hurst parameter H > 1
2 in time and K ∈ (0,1) in

space, and he used this formula to solve a stochastic Burgers equation by means
of the Hopf–Cole transformation. In this paper, the noise is more regular in space
and this allows the techniques of classical fractional calculus to be used, together
with curvilinear integrals.

2. Preliminaries. Fix a vector of Hurst parameters H = (H0,H1, . . . ,Hd),
where Hi ∈ (1

2 ,1). Suppose that W = {W(t, x), t ≥ 0, x ∈ R
d} is a zero-mean



294 Y. HU, D. NUALART AND J. SONG

Gaussian random field with the covariance function

E(W(t, x)W(s, y)) = RH0(s, t)

d∏
i=1

RHi
(xi, yi),

where, for any H ∈ (0,1), we denote by RH(s, t) the covariance function of the
fractional Brownian motion with Hurst parameter H , that is,

RH(s, t) = 1
2(|t |2H + |s|2H − |t − s|2H).

In other words, W is a fractional Brownian sheet with Hurst parameters H0 in the
time variable and Hi in the space variables, i = 1, . . . , d .

Denote by E the linear span of the indicator functions of rectangles of the form
(s, t] × (x, y] in R+ × R

d . Consider, in E , the inner product defined by

〈
I(0,s]×(0,x], I(0,t]×(0,y]

〉
H = RH0(s, t)

d∏
i=1

RHi
(xi, yi).

In the above formula, if xi < 0, then we assume, by convention, that I(0,xi ] =
−I(−xi,0]. We denote by H the closure of E with respect to this inner product. The
mapping W : I(0,t]×(0,x] → W(t, x) extends to a linear isometry between H and
the Gaussian space spanned by W . We will denote this isometry by

W(φ) =
∫ ∞

0

∫
Rd

φ(t, x)W(dt, dx)

if φ ∈ H. Notice that if φ and ψ are functions in E , then

E(W(φ)W(ψ)) = 〈φ,ψ〉H

= αH

∫
R

2+×R2d
φ(s, x)ψ(t, y)|s − t |2H0−2(2.1)

×
d∏

i=1

|xi − yi |2Hi−2 ds dt dx dy,

where αH = ∏d
i=0 Hi(2Hi − 1). Furthermore, H contains the class of measurable

functions φ on R+ × R
d such that

∫
R

2+×R2d
|φ(s, x)φ(t, y)||s − t |2H0−2

d∏
i=1

|xi − yi |2Hi−2 ds dt dx dy < ∞.(2.2)

We will denote by D the derivative operator in the sense of Malliavin calculus.
That is, if F is a smooth and cylindrical random variable of the form

F = f (W(φ1), . . . ,W(φn)),
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φi ∈ H, f ∈ C∞
p (Rn) (f and all its partial derivatives have polynomial growth),

then DF is the H-valued random variable defined by

DF =
n∑

j=1

∂f

∂xj

(W(φ1), . . . ,W(φn))φj .

The operator D is closable from L2(	) into L2(	; H) and we define the Sobolev
space D

1,2 as the closure of the space of smooth and cylindrical random variables
under the norm

‖DF‖1,2 =
√

E(F 2) + E(‖DF‖2
H).

We denote by δ the adjoint of the derivative operator given by duality formula

E(δ(u)F ) = E(〈DF,u〉H)(2.3)

for any F ∈ D
1,2 and any element u ∈ L2(	; H) in the domain of δ. The operator

δ is also called the Skorokhod integral because in the case of the Brownian motion,
it coincides with an extension of the Itô integral introduced by Skorokhod. We
refer to Nualart [10] for a detailed account of the Malliavin calculus with respect
to a Gaussian process. If DF and u are almost surely measurable functions on
R+ × R

d verifying condition (2.2), then the duality formula (2.3) can be written
using the expression of the inner product in H given in (2.1):

E(δ(u)F ) = αHE

(∫
R

2+×R2d
Ds,xFu(t, y)|s − t |2H0−2

×
d∏

i=1

|xi − yi |2Hi−2 ds dt dx dy

)
.

We recall the following formula, which we will use in the paper:

FW(φ) = δ(Fφ) + 〈DF,φ〉H(2.4)

for any φ ∈ H and any random variable F in the Sobolev space D
1,2.

Throughout the paper, C will denote a positive constant which may vary from
one formula to another.

3. Definition and exponential integrability of the stochastic Feynman–Kac
functional. For any ε > 0, we denote by pε(x) the d-dimensional heat kernel:

pε(x) = (2πε)−d/2e−|x|2/2ε, x ∈ R
d .

On the other hand, for any δ > 0, we define the function

ϕδ(x) = 1

δ
I[0,δ](x).



296 Y. HU, D. NUALART AND J. SONG

ϕδ(t)pε(x) then provides an approximation of the Dirac delta function δ(t, x) as ε

and δ tend to zero. We denote by Wε,δ the approximation of the fractional Brown-
ian sheet W(t, x) defined by

Wε,δ(t, x) =
∫ t

0

∫
Rd

ϕδ(t − s)pε(x − y)W(s, y) ds dy.(3.1)

Fix x ∈ R
d and t > 0. Suppose that B = {Bt, t ≥ 0} is a d-dimensional

standard Brownian motion independent of W . We denote by Bx
t = Bt + x the

Brownian motion starting at the point x. We are going to define the random
variable

∫ t
0

∫
Rd δ(Bx

t−r − y)W(dr, dy) by approximating the Dirac delta function
δ(Bx

t−r − y) by

A
ε,δ
t,x(r, y) =

∫ t

0
ϕδ(t − s − r)pε(B

x
s − y)ds.(3.2)

We will show that for any ε > 0 and δ > 0, the function A
ε,δ
t,x belongs to the space

H almost surely and the family of random variables

V
ε,δ
t,x =

∫ t

0

∫
Rd

A
ε,δ
t,x (r, y)W(dr, dy)(3.3)

converges in L2 as ε and δ tend to zero.
The specific approximation chosen here will allow us, in Section 4, to construct

an approximate Feynman–Kac formula with the random potential Ẇ ε,δ(t, x) given
in (4.1). Moreover, this approximation has the useful properties proved in Lem-
mas A.2 and A.3. We could have used other types of approximation schemes with
similar results. Also, we can restrict ourselves to the special case δ = ε, but the
slightly more general case considered here does not need any additional effort.

Throughout the paper, we denote by EB(�(B,W)) [resp., by EW(�(B,W))]
the expectation of a functional �(B,W) with respect to B (resp., with respect
to W ). We will use E for the composition EBEW and also in the case of a random
variable depending only on B or W .

THEOREM 3.1. Suppose that 2H0 + ∑d
i=1 Hi > d + 1. Then, for any ε > 0

and δ > 0, A
ε,δ
t,x defined in (3.2) belongs to H and the family of random variables

V
ε,δ
t,x defined in (3.3) converges in L2 to a limit denoted by (this being the stochastic

Feynman–Kac functional)

Vt,x =
∫ t

0

∫
Rd

δ(Bx
t−r − y)W(dr, dy).(3.4)

Conditional on B , Vt,x is a Gaussian random variable with mean 0 and variance

VarW(Vt,x) = αH

∫ t

0

∫ t

0
|r − s|2H0−2

d∏
i=1

|Bi
r − Bi

s |2Hi−2 dr ds.(3.5)
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PROOF. Fix ε, ε′, δ and δ′ > 0. Let us compute the inner product

〈Aε,δ
t,x,A

ε′,δ′
t,x 〉H

= αH

∫
[0,t]4

∫
R2d

pε(B
x
s − y)pε′(Bx

r − z)

(3.6)
× ϕδ(t − s − u)ϕδ′(t − r − v)|u − v|2H0−2

×
d∏

i=1

|yi − zi |2Hi−2 dy dzdudv ds dr.

By Lemmas A.2 and A.3, we have the estimate∫
[0,t]2

∫
R2d

pε(B
x
s − y)pε′(Bx

r − z)ϕδ(t − s − u)ϕδ′(t − r − v)

× |u − v|2H0−2
d∏

i=1

|yi − zi |2Hi−2 dy dzdudv(3.7)

≤ C|s − r|2H0−2
d∏

i=1

|Bi
s − Bi

r |2Hi−2

for some constant C > 0. The expectation of this random variable is integrable in
[0, t]2 because

EB
∫ t

0

∫ t

0
|s − r|2H0−2

d∏
i=1

|Bi
s − Bi

r |2Hi−2 ds dr

=
d∏

i=1

E|ξ |2Hi−2
∫ t

0

∫ t

0
|s − r|2H0+∑d

i=1 Hi−d−2 ds dr(3.8)

= 2
∏d

i=1 E|ξ |2Hi−2tκ+1

κ(κ + 1)
< ∞,

where

κ = 2H0 +
d∑

i=1

Hi − d − 1 > 0(3.9)

and ξ is a N(0,1) random variable.
As a consequence, taking the mathematical expectation with respect to B in

(3.6), letting ε = ε′ and δ = δ′ and using the estimates (3.7) and (3.8) yields

EB‖Aε,δ
t,x‖2

H ≤ C.

This implies that almost surely A
ε,δ
t,x belongs to the space H for all ε and δ > 0.

Therefore, the random variables V
ε,δ
t,x = W(A

ε,δ
t,x) are well defined and we have

EBEW(V
ε,δ
t,x V

ε′,δ′
t,x ) = EB〈Aε,δ

t,x,A
ε′,δ′
t,x 〉H.
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For any s �= r and Bs �= Br , as ε, ε′, δ and δ′ tend to zero, the left-hand side of the
inequality (3.7) converges to |s − r|2H0−2 ∏d

i=1 |Bi
s − Bi

r |2Hi−2. Therefore, by the

dominated convergence theorem, we obtain that EBEW(V
ε,δ
t,x V

ε′,δ′
t,x ) converges to

�t as ε, ε′, δ and δ′ tend to zero, where

�t = 2αH

∏d
i=1 E|ξ |2Hi−2tκ+1

κ(κ + 1)
.

Thus, we obtain

E(V
ε,δ
t,x − V

ε′,δ′
t,x )2 = E(V

ε,δ
t,x )2 − 2E(V

ε,δ
t,x V

ε′,δ′
t,x ) + E(V

ε′,δ′
t,x )2 → 0.

This implies that V
εn,δn
t,x is a Cauchy sequence in L2 for all sequences εn and δn

converging to zero. As a consequence, V
εn,δn
t,x converges in L2 to a limit denoted

by Vt,x which does not depend on the choice of the sequences εn and δn. Finally,
by a similar argument, we show (3.5). �

Condition 2H0 + ∑d
i=1 Hi > d + 1 is sharp and cannot be improved. In fact,

if this condition does not hold, then almost surely (r, y) �→ δ(Bx
t−r − y) is not an

element of the space H, as follows from the next proposition.

PROPOSITION 3.2. Suppose that Hi > 1/2, i = 0,1, . . . , d , and 2H0 +∑d
i=1 Hi ≤ d + 1. Then, conditionally on B , the family V

ε,δ
t,x does not converge

in probability as ε and δ tend to zero for almost all trajectories of B .

PROOF. Given B , V ε,δ
t,x is a Gaussian family of random variables and it suffices

to show that they do not converge in L2. This follows from the fact that the variance
limit is infinite almost surely. In fact, from the Lévy modulus of continuity of the
Brownian motion, it is easy to show that if 2H0 + ∑d

i=1 Hi ≤ d + 1, then

∫ t

0

∫ t

0
|s − r|2H0−2

d∏
i=1

|Bi
s − Bi

r |2Hi−2 ds dr = ∞

almost surely. �

The next result provides the exponential integrability of the random variable
Vt,x defined in (3.4).

THEOREM 3.3. Suppose that 2H0 + ∑d
i=1 Hi > d + 1. Then, for any λ ∈ R,

we have

E exp
(
λ

∫ t

0

∫
Rd

δ(Bx
t−r − y)W(dr, dy)

)
< ∞.(3.10)

PROOF. The proof involves several steps.
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Step 1. From (3.5), we obtain

EeλVt,x = EB exp
(

λ2

2
αH

∫ t

0

∫ t

0
|s − r|2H0−2

d∏
i=1

|Bi
s − Bi

r |2Hi−2 ds dr

)

and the scaling property of the Brownian motion yields

EeλVt,x = EeμY ,(3.11)

where μ = λ2

2 αH tκ+1, κ is as defined in (3.9) and

Y =
∫ 1

0

∫ 1

0
|s − r|2H0−2

d∏
i=1

|Bi
s − Bi

r |2Hi−2 ds dr.(3.12)

It then suffices to show that the random variable Y has exponential moments of all
orders.

Step 2. Our approach to proving that E exp(λY ) < ∞ for any λ ∈ R is mo-
tivated by the method of Le Gall [8]. For k = 1, . . . ,2n−1, we define An,k =
[2k−2

2n , 2k−1
2n ] × [2k−1

2n , 2k
2n ] and

αn,k =
∫
An,k

|s − r|2H0−2
d∏

i=1

|Bi
s − Bi

r |2Hi−2 ds dr.

The random variables αn,k have the following two properties:

(i) for every n ≥ 1, the variables αn,1, . . . , αn,2n−1 are independent;

(ii) αn,k
d= 2−n(κ+1)α0, where

α0 =
∫ 1

0

∫ 1

0
(s + r)2H0−2

d∏
i=1

|Bi
s − B̃i

r |2Hi−2 ds dr,

and B̃ is a standard Brownian motion independent of B .

The condition 2H0 + ∑d
i=1 Hi > d + 1 implies that Eα0 < ∞ and we deduce

that

Y = 2
∞∑

n=1

2n−1∑
k=1

αn,k,

where the series converges in the L1 sense.
Step 3. For any integer n ≥ 1, we claim that

Eαn
0 ≤ E

(
C

∫ 1

0

d∏
i=1

|Bi
s |2Hi−2 ds

)n

(3.13)

for some constant C > 0. In fact, we have

Eαn
0 = E

∫
[0,1]2n

n∏
j=1

d∏
i=1

(|sj + tj |2H0−2|Bi
sj

− B̃i
tj
|2Hi−2) ds dt.(3.14)
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Using the formula

c−z = 1

�(z)

∫ ∞
0

e−cτ τ z−1 dτ,

we obtain, for each i = 1, . . . , d ,

E

n∏
j=1

|Bi
sj

− B̃i
tj
|2Hi−2 = �(1 − Hi)

−n

×
∫
[0,∞)n

E exp

(
−

n∑
j=1

|Bi
sj

− B̃i
tj
|2τj

)
(3.15)

×
n∏

j=1

τ
−Hi

j dτ.

For any τ1, . . . , τn > 0 and s1, t1, . . . , sn, tn ∈ (0,1), we define

Q1 = (
E(Bi

sj
Bi

sk
)
√

τj τk

)
n×n, Q2 = (

E(B̃i
tj
B̃i

tk
)
√

τj τk

)
n×n.

We know that

E exp

(
−

n∑
j=1

|Bi
sj

− B̃i
tj
|2τj

)
= det(I + 2Q1 + 2Q2)

−1/2.(3.16)

Substituting (3.16) into (3.15) yields

E

n∏
j=1

|Bi
sj

− B̃i
tj
|2Hi−2

= �(1 − Hi)
−n

∫
[0,∞)n

det(I + 2Q1 + 2Q2)
−1/2

n∏
j=1

τ
−Hi

j dτ

≤ �(1 − Hi)
−n

×
∫
[0,∞)n

det(I + 2Q1)
−1/4 det(I + 2Q2)

−1/4
n∏

j=1

τ
−Hi

j dτ(3.17)

≤ �(1 − Hi)
−n

[∫
[0,∞)n

det(I + 2Q1)
−1/2

n∏
j=1

τ
−Hi

j dτ

]1/2

×
[∫

[0,∞)n
det(I + 2Q2)

−1/2
n∏

j=1

τ
−Hi

j dτ

]1/2

=
[
E

n∏
j=1

|Bi
sj

|2Hi−2E

n∏
j=1

|B̃i
tj
|2Hi−2

]1/2

,
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where, in the above first inequality, we have used the estimates

(I + 2Q1 + 2Q2) ≥ 1
2 [(I + 2Q1) + (I + 2Q2)]

≥ (I + 2Q1)
1/2(I + 2Q2)

1/2.

Substituting (3.17) into (3.14) and using the inequality (sj + tj )
2H0−2 ≤ s

H0−1
j ×

t
H0−1
j , we obtain

Eαn
0 ≤

∫
[0,1]2n

n∏
j=1

(sj + tj )
2H0−2

d∏
i=1

[
E

n∏
j=1

|Bi
sj

|2Hi−2E

n∏
j=1

|B̃i
tj
|2Hi−2

]1/2

ds dt

≤
(∫

[0,1]n
n∏

j=1

s
H0−1
j

(
E

n∏
j=1

d∏
i=1

|Bi
sj

|2Hi−2

)1/2

ds

)2

.

Finally, using Hölder’s inequality with 1
H0

< p < 2, we get

Eαn
0 ≤ Cn

(∫
[0,1]n

(
E

d∏
i=1

n∏
j=1

|Bi
sj

|2Hi−2

)p/2

ds

)2/p

≤ Cn
∫
[0,1]n

E

d∏
i=1

n∏
j=1

|Bi
sj

|2Hi−2 ds

= E

(
C

∫ 1

0

d∏
i=1

|Bi
s |2Hi−2 ds

)n

.

This completes the proof of (3.13).
Step 4. For any λ > 0, using (3.13) and Lemma A.5 in the Appendix, we obtain

Eeλα0 ≤ E exp

(
Cλ

∫ 1

0

d∏
i=1

|Bi
s |2Hi−2 ds

)
< ∞,(3.18)

because ρ < 1.
Step 5. Define ϕ(λ) = E(eλ(α0−Eα0)). By (3.18), ϕ(λ) < ∞ for all λ ∈ R. Since

ϕ′(0) = 0, for every K > 0, we can find a positive constant CK such that for all
λ ∈ [0,K],

ϕ(λ) ≤ 1 + CKλ2.

Define αn,k = αn,k −E(αn,k). Fix K > 0 and a ∈ (0, κ + 1), where κ is as defined

in (3.9). Recall that by property (ii) in step 3, αn,k
d= 2−n(κ+1)α0. For every N ≥ 2,

set bN = 2K
∏j=N

j=2 (1 − 2−a(j−1)) and b1 = 2K . Then, by Hölder’s inequality and
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properties (i) and (ii) of αn,k , we have, for N ≥ 2,

E exp

(
bN

N∑
n=1

2n−1∑
k=1

αn,k

)

≤
[
E exp

(
bN

1 − 2−a(N−1)

N−1∑
n=1

2n−1∑
k=1

αn,k

)]1−2−a(N−1)

×
[
E exp

(
2a(N−1)bN

2N−1∑
k=1

αN,k

)]2−a(N−1)

≤ E exp

(
bN−1

N−1∑
n=1

2n−1∑
k=1

αn,k

)
ϕ

(
bN2a(N−1)−(κ+1)N )2(1−a)(N−1)

.

Notice that bN2a(N−1)−(κ+1)N ≤ 2K . It follows that

ϕ
(
bN2a(N−1)−(κ+1)N )2(1−a)(N−1) ≤ (

1 + CKb2
N22((a−κ−1)N−a))2(1−a)(N−1)

≤ exp
(
C2(a+1−2(κ+1))N )

for a constant C independent of N . By induction, we get

E exp

(
bN

N∑
n=1

2n−1∑
k=1

αn,k

)
≤ exp

(
C

N∑
n=2

2(a+1−2(κ+1))n

)
E exp(b1α1,1)

≤ exp
(
C

(
1 − 2a+1−2(κ+1))−1)

ϕ(K).

Letting N tend to infinity and using Fatou’s lemma, we obtain

E exp
(
b∞(Y − EY)/2

)
< ∞,

where b∞ = 2K
∏∞

j=1(1 − 2−aj ) > 0. Since K > 0 is arbitrary, we conclude that
E exp(λY ) < ∞ for all λ ∈ R. This completes the proof, in view of (3.11). �

4. Feynman–Kac formula. We recall that W is a fractional Brownian sheet
on R+ × R

d with Hurst parameters (H0,H1, . . . ,Hd), where Hi ∈ (1
2 ,1) for i =

0, . . . , d . For any ε, δ > 0, we define

Ẇ ε,δ(t, x) :=
∫ t

0

∫
Rd

ϕδ(t − s)pε(x − y)W(ds, dy).(4.1)

In order to provide a notion of solution for the heat equation with fractional
noise (1.2), we need the following definition of the Stratonovich integral, which
is equivalent to that of Russo and Vallois in [11].
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DEFINITION 4.1. Given a random field v = {v(t, x), t ≥ 0, x ∈ R
d} such that∫ T

0

∫
Rd

|v(t, x)|dx dt < ∞

almost surely for all T > 0, the Stratonovich integral
∫ T

0
∫
Rd v(t, x)W(dt, dx) is

defined as the following limit in probability, if it exists:

lim
ε,δ↓0

∫ T

0

∫
Rd

v(t, x)Ẇ ε,δ(t, x) dx dt.

We are going to consider the following notion of solution for (1.2).

DEFINITION 4.2. A random field u = {u(t, x), t ≥ 0, x ∈ R
d} is a weak solu-

tion of (1.2) if, for any C∞ function ϕ with compact support on R
d , we have∫

Rd
u(t, x)ϕ(x) dx =

∫
Rd

f (x)ϕ(x) dx + 1

2

∫ t

0

∫
Rd

u(s, x)�ϕ(x) dx ds

+
∫ t

0

∫
Rd

u(s, x)ϕ(x)W(ds, dx)

almost surely for all t ≥ 0, where the last term is a Stratonovich stochastic integral
in the sense of Definition 4.1.

The following is the main result of this section.

THEOREM 4.3. Suppose that 2H0 +∑d
i=1 Hi > d +1 and that f is a bounded

measurable function. Then, the process

u(t, x) = EB

(
f (Bx

t ) exp
(∫ t

0

∫
Rd

δ(Bx
t−r − y)W(dr, dy)

))
(4.2)

is a weak solution of (1.2).

PROOF. Consider the approximation of (1.2) given by the following heat equa-
tion with a random potential:⎧⎪⎨

⎪⎩
∂uε,δ

∂t
= 1

2
�uε,δ + uε,δẆ

ε,δ
t,x ,

uε,δ(0, x) = f (x).

(4.3)

From the classical Feynman–Kac formula, we know that

uε,δ(t, x) = EB

(
f (Bx

t ) exp
(∫ t

0
Ẇ ε,δ(t − s,Bx

s ) ds

))
,
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where Bx
t is a d-dimensional Brownian motion independent of W starting at x. By

Fubini’s theorem, we can write∫ t

0
Ẇ ε,δ(t − s,Bx

s ) ds =
∫ t

0

(∫ t

0

∫
Rd

ϕδ(t − s − r)pε(B
x
s − y)W(dr, dy)

)
ds

=
∫ t

0

∫
Rd

(∫ t

0
ϕδ(t − s − r)pε(B

x
s − y)ds

)
W(dr, dy)

= V
ε,δ
t,x ,

where V
ε,δ
t,x is defined in (3.3). Therefore,

uε,δ(t, x) = EB(f (Bx
t ) exp(V

ε,δ
t,x )).

Step 1. We will prove that for any x ∈ R
d and any t > 0, we have

lim
ε,δ↓0

EW |uε,δ(t, x) − u(t, x)|p = 0(4.4)

for all p ≥ 2, where u(t, x) is defined in (4.2). Notice that

EW |uε,δ(t, x) − u(t, x)|p = EW
∣∣EB(

f (Bx
t )[exp(V

ε,δ
t,x ) − exp(Vt,x)])∣∣p

≤ ‖f ‖p∞E| exp(V
ε,δ
t,x ) − exp(Vt,x)|p,

where Vt,x is defined in (3.4). Since exp(V
ε,δ
t,x ) converges to exp(Vt,x) in probabil-

ity by Theorem 3.1, to show (4.4), it suffices to prove that for any λ ∈ R,

sup
ε,δ

E exp(λV
ε,δ
t,x ) < ∞.(4.5)

The estimate (4.5) follows from (3.3), (3.7) and (3.10):

E exp(λV
ε,δ
t,x ) = E exp

(
λ2

2
‖Aε,δ

t,x‖2
H

)

≤ E exp

(
λ2

2
C

∫ t

0

∫ t

0
|r − s|2H0−2

d∏
i=1

|Bi
r − Bi

s |2Hi−2 dr ds

)
(4.6)

< ∞.

Step 2. We now prove that u(t, x) is a weak solution of (1.2) in the sense of
Definition 4.2. Suppose that ϕ is a smooth function with compact support. We
know that ∫

Rd
uε,δ(t, x)ϕ(x) dx

=
∫

Rd
f (x)ϕ(x) dx + 1

2

∫ t

0

∫
Rd

uε,δ(t, x)�ϕ(x) dx ds(4.7)

+
∫ t

0

∫
Rd

uε,δ(t, x)ϕ(x)Ẇ ε,δ(s, x) ds dx.
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Therefore, it suffices to prove that

lim
ε,δ↓0

∫ t

0

∫
Rd

uε,δ(s, x)ϕ(x)Ẇ ε,δ(s, x) ds dx =
∫ t

0

∫
Rd

u(s, x)ϕ(x)W(ds, dx)

in probability. From (4.7) and (4.4), it follows that
∫ t

0
∫
Rd uε,δ(s, x)ϕ(x)Ẇ ε,δ(s,

x)ds dx converges in L2 to the random variable

G =
∫

Rd
u(t, x)ϕ(x) dx −

∫
Rd

f (x)ϕ(x) dx − 1

2

∫ t

0

∫
Rd

u(t, x)�ϕ(x) dx ds

as ε and δ tend to zero. Hence, if

Bε,δ =
∫ t

0

∫
Rd

(
uε,δ(s, x) − u(s, x)

)
ϕ(x)Ẇ ε,δ(s, x) ds dx

converges in L2 to zero, then∫ t

0

∫
Rd

u(s, x)ϕ(x)Ẇ ε,δ ds dx =
∫ t

0

∫
Rd

uε,δ(s, x)ϕ(x)Ẇ ε,δ ds dx − Bε,δ

converges to G in L2. Thus, u(s, x)ϕ(x) will be Stratonovich integrable and we
will have ∫ t

0

∫
Rd

u(s, x)ϕ(x)W(ds, dx) = G,

which will complete the proof. In order to show the convergence to zero of Bε,δ , we
will express the product (uε,δ(s, x)−u(s, x))Ẇ ε,δ(s, x) as the sum of a divergence
integral plus a trace term [see (2.4)]:(

uε,δ(s, x) − u(s, x)
)
Ẇ ε,δ(s, x)

=
∫ t

0

∫
Rd

(
uε,δ(s, x) − u(s, x)

)
ϕδ(s − r)pε(x − z)δWr,z

+ 〈
D

(
uε,δ(s, x) − u(s, x)

)
, ϕδ(s − ·)pε(x − ·)〉H.

We then have

Bε,δ =
∫ t

0

∫
Rd

φε,δ
r,z δWr,z

+
∫ t

0

∫
Rd

ϕ(x)
〈
D

(
uε,δ(s, x) − u(s, x)

)
, ϕδ(s − ·)pε(x − ·)〉H ds dx(4.8)

= B1
ε,δ + B2

ε,δ,

where

φε,δ
r,z =

∫ t

0

∫
Rd

(
uε,δ(s, x) − u(s, x)

)
ϕ(x)ϕδ(s − r)pε(x − z) ds dx
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and δ(φε,δ) = ∫ t
0

∫
Rd φε,δ

r,z δWr,z denotes the divergence or the Skorokhod integral
of φε,δ .

Step 3. For the term B1
ε,δ , we use the following L2 estimate for the Skorokhod

integral:

E[(B1
ε,δ)

2] ≤ E(‖φε,δ‖2
H) + E(‖Dφε,δ‖2

H⊗H).(4.9)

The first term in (4.9) is estimated as follows:

E(‖φε,δ‖2
H)

=
∫ t

0

∫
Rd

∫ t

0

∫
Rd

E
[(

uε,δ(s, x) − u(s, x)
)

× (
uε,δ(r, y) − u(r, y)

)]
ϕ(x)ϕ(y)(4.10)

× 〈ϕδ(s − ·)pε(x − ·),
ϕδ(r − ·)pε(y − ·)〉H ds dx dr dy.

Using Lemmas A.2 and A.3, we can write

〈ϕδ(s − ·)pε(x − ·), ϕδ(r − ·)pε(y − ·)〉H

= αH

(∫
[0,t]2

ϕδ(s − σ)ϕδ(r − τ)|σ − τ |2H0−2 dσ dτ

)
(4.11)

×
(∫

R2d
pε(x − z)pε(y − w)

d∏
i=1

|zi − wi |2Hi−2 dzdw

)

≤ C|s − r|2H0−2
d∏

i=1

|x − y|2Hi−2

for some constant C > 0. As a consequence, the integrand on the right-hand side
of (4.10) converges to zero as ε and δ tend to zero for any s, r , x, y due to (4.4).
From (4.6), we get

sup
ε,δ

sup
x∈Rd

sup
0≤s≤t

E(uε,δ(s, x))2

(4.12)
≤ ‖f ‖2∞ sup

ε,δ

sup
x∈Rd

sup
0≤s≤t

E exp(2V ε,δ
s,x ) < ∞.

Hence, from (4.11) and (4.12), we get that the integrand on the right-hand side of
(4.10) is bounded by C|s − r|2H0−2 ∏d

i=1 |xi − yi |2Hi−2 for some constant C > 0.
Therefore, by dominated convergence, we get that E(‖φε,δ‖2

H) converges to zero
as ε and δ tend to zero.
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Step 4. On the other hand, we have

D(uε,δ(t, x)) = EB [f (Bt + x) exp(V
ε,δ
t,x )A

ε,δ
t,x],

where A
ε,δ
t,x is defined as in (3.2). Therefore,

E〈D(uε,δ(t, x)),D(uε′,δ′
(t, x))〉H

= EWEB(
f (B1

t + x)f (B2
t + x) exp

(
V

ε,δ
t,x (B1) + V

ε,δ
t,x (B2)

)
(4.13)

× 〈Aε,δ
t,x(B

1),A
ε′,δ′
t,x (B2)〉H

)
,

where B1 and B2 are two independent d-dimensional Brownian motions and
where EB denotes the expectation with respect to (B1,B2). Then, from the previ-
ous results it is easy to show that

lim
ε,δ↓0

E〈D(uε,δ(t, x)),D(uε′,δ′
(t, x))〉H

= E

[
f (B1

t + x)f (B2
t + x)

(4.14)

× exp

(
αH

2

2∑
j,k=1

∫ t

0

∫ t

0
|s − r|2H0−2

d∏
i=1

|Bj,i
s − Bk,i

r |2Hi−2 ds dr

)

× αH

∫ t

0

∫ t

0
|s − r|2H0−2

d∏
i=1

|B1,i
s − B2,i

r |2Hi−2 ds dr

]
.

This implies that uε,δ(t, x) converges in the space D
1,2 to u(t, x) as δ ↓ 0 and ε ↓ 0.

Letting ε′ = ε and δ′ = δ in (4.13) and using the same argument as for (4.12), we
obtain

sup
ε,δ

sup
x∈Rd

sup
0≤s≤t

E‖D(uε,δ(s, x))‖2
H < ∞.

Then,

E‖Dφε,δ‖2
H⊗H

=
∫ t

0

∫
Rd

∫ t

0

∫
R

E
〈
D

(
uε,δ(s, x) − u(s, x)

)
,D

(
uε,δ(r, y) − u(r, y)

)〉
H

× ϕ(x)ϕ(y)〈ϕδ(s − ·)pε(x − ·),
ϕδ(r − ·)pε(y − ·)〉H ds dx dr dy

converges to zero as ε and δ tend to zero. Hence, by (4.9), B1
ε,δ converges to zero

in L2 as ε and δ tend to zero.
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Step 5. The second summand in the right-hand side of (4.8) can be written as

B2
ε,δ =

∫ t

0

∫
Rd

ϕ(x)
〈
D

(
uε,δ(s, x) − u(s, x)

)
, ϕδ(s − ·)pε(x − ·)〉H ds dx

=
∫ t

0

∫
Rd

ϕ(x)EB(
f (Bx

s ) exp(V ε,δ
s,x )〈Aε,δ

s,x, ϕδ(s − ·)pε(x − ·)〉H
)
ds dx

−
∫ t

0

∫
R

ϕ(x)EB(
f (Bx

s ) exp(Vs,x)

× 〈δ(Bx
s−· − ·), ϕδ(s − ·)pε(x − ·)〉H

)
ds dx

= B3
ε,δ − B4

ε,δ,

where

〈Aε,δ
s,x, ϕδ(s − ·)pε(x − ·)〉H

= αH

∫
[0,s]3

∫
R2d

|r − v|2H0−2

×
d∏

i=1

|yi − zi |2Hi−2ϕδ(s − r)pε(B
x
r − y)

× ϕδ(s − v)pε(x − z) dy dz dr dr dv

and

〈δ(Bx
s−· − ·), ϕδ(s − ·)pε(x − ·)〉H

= αH

∫
[0,s]2

∫
Rd

v2H0−2
d∏

i=1

|Bxi
r − yi |2Hi−2ϕδ(r − v)pε(x − y)dy dv dr.

Lemma A.2 and Lemma A.3 imply that

〈Aε,δ
s,x, ϕδ(s − ·)pε(x − ·)〉H ≤ C

∫ s

0
r2H0−2

d∏
i=1

|Bi
r |2Hi−2 dr(4.15)

and

〈δ(Bx
s−· − ·), ϕδ(s − ·)pε(x − ·)〉H ≤ C

∫ s

0
r2H0−2

d∏
i=1

|Bi
r |2Hi−2 dr(4.16)

for some constant C > 0. Then, from (4.15), (4.16) and the fact that the random
variable

∫ s
0 r2H0−2 ∏d

i=1 |Bi
r |2Hi−2 dr is square integrable because of Lemma A.4,

we can apply the dominated convergence theorem and get that B3
ε,δ and B4

ε,δ both
converge in L2 to

αH

∫ t

0

∫
Rd

ϕ(x)EB

(
f (Bx

s ) exp(Vs,x)

∫ s

0
r2H0−2

d∏
i=1

|Bi
r |2Hi−2 dr

)
ds dx



FEYNMAN–KAC FORMULA 309

as ε and δ tend to zero. Therefore, B2
ε,δ converges to zero in L2 as ε and δ tend to

zero. This completes the proof. �

We can also show that the process u(t, x) given in (4.2) is a mild solution
to (1.2), in the sense that the following equation holds:

u(t, x) = ptf (x) +
∫ t

0

∫
Rd

pt−s(x − y)u(s, y) dWs,y,

where pt denotes the heat kernel and ptf (x) = ∫
Rd pt (x − y)f (y) dy. In fact, as

in the proof of Theorem 4.3, we need to show that∫ t

0

∫
Rd

pt−s(x − y)
(
u(s, y) − uε,δ(s, y)

)
dWε,δ

s,y

converges to zero in L2. This can be proven with the same arguments as in the
proof of Theorem 4.3, replacing ϕ by the heat kernel. For instance, instead of the
estimate (4.11), we should have∫ t

0

∫ t

0

∫
R2d

pt−r (x − y)pt−s(x − z)|s − r|2H0−2
d∏

i=1

|y − z|2Hi−2 dy dzdr ds

=
∫ t

0

∫ t

0
|s − r|2H0−2E

(
d∏

i=1

|B1,i
t−r − B

2,i
t−s |2Hi−2

)
dr ds < ∞.

We omit the details of this proof.

REMARK 4.4. The uniqueness of the solution remains to be investigated in
a future work. The definition of the Stratonovich integral as a limit in probability
makes the uniqueness problem nontrivial and it is not clear how to proceed.

As a corollary of Theorem 4.3, we obtain the following result.

COROLLARY 4.5. Suppose that 2H0 + ∑d
i=1 Hi > d + 1. Then, the solution

u(t, x) given by (4.2) has finite moments of all orders. Moreover, for any positive
integer p, we have

E(u(t, x)p)

= E

( p∏
j=1

f (B
j
t + x)

(4.17)

× exp

[
αH

2

p∑
j,k=1

∫ t

0

∫ t

0
|s − r|2H0−2

×
d∏

i=1

|Bj,i
s − Bk,i

r |2Hi−2 ds dr

])
,
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where B1, . . . ,Bp are independent d-dimensional standard Brownian motions.

REMARK 4.6. In the previous work [5], a formula similar to (4.17) was
obtained in the special case H1 = · · · = Hd = 1

2 , without the condition 2H0 +∑d
i=1 Hi > d + 1. This type of formula was proven assuming d = 1 and H0 > 3

4 .
In the case of the Skorokhod-type equation, a formula for the moments of the so-
lution similar to (4.17) was established in [5] if d = 1 or 2, H0 > 1

2 and t is small
enough.

5. Behavior of the Feynman–Kac formula. In this section, we present two
applications of the Feynman–Kac formula.

5.1. Hölder continuity of the solution. In this subsection, we study the Hölder
continuity of the solution of (1.2). The main result of this section is the following
theorem.

THEOREM 5.1. Suppose that 2H0 + ∑d
i=1 Hi > d + 1 and let u(t, x) be the

solution of (1.2). Then, u(t, x) has a continuous modification such that for any
ρ ∈ (0, κ

2 ) [where κ is defined as in (3.9)] and any compact rectangle I ⊂ R+ ×
R

d , there exists a positive random variable KI such that almost surely, for any
(s, x), (t, y) ∈ I , we have

|u(t, y) − u(s, x)| ≤ KI(|t − s|ρ + |y − x|2ρ).

PROOF. The proof involves several steps.
Step 1. Recall that Vt,x = ∫ t

0
∫
Rd δ(Bx

t−r −y)W(dr, dy) denotes the random vari-
able introduced in (3.4) and

u(t, x) = EB(f (Bx
t ) exp(Vt,x).

Set V = Vs,x and Ṽ = Vt,y . We can then write

EW |u(s, x) − u(t, y)|p

= EW |EB(eV − eṼ )|p

≤ EW (
EB[|Ṽ − V |emax(V ,Ṽ )])p

≤ EW [(
EBe2 max(V ,Ṽ ))p/2(

EB(Ṽ − V )2)p/2]
≤ [

EWEBe2p max(V ,Ṽ )]1/2[
EW (

EB(Ṽ − V )2)p]1/2
.

Applying Minkowski’s inequality, the equivalence between the L2-norm and the
Lp-norm for a Gaussian random variable and using the exponential integrability
property (3.10), we obtain

EW |u(s, x) − u(t, y)|p ≤ C
[
EW (

EB(Ṽ − V )2)p]1/2

(5.1)
≤ Cp[EBEW |Ṽ − V |2]p/2.
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In a similar way to (3.5), we can deduce the following formula for the conditional
variance of Ṽ − V :

EW |Ṽ − V |2

= αHEB

(∫ s

0

∫ s

0
|r − v|2H0−2

d∏
i=1

|Bi
s−r − Bi

s−v|2Hi−2 dr dv

+
∫ t

0

∫ t

0
|r − v|2H0−2

d∏
i=1

|Bi
t−r − Bi

t−v|2Hi−2 dr dv

(5.2)

− 2
∫ s

0

∫ t

0
|r − v|2H0−2

×
d∏

i=1

|Bi
s−r − Bi

t−v + xi − yi |2Hi−2 dr dv

)

:= αHC(s, t, x, y).

Step 2. Fix 1 ≤ j ≤ d . Let us estimate C(s, t, x, y) when s = t and xi = yi for
all i �= j . We can write

C(t, t, x, y)

= 2
∫ t

0

∫ t

0
|r − v|κ−1(5.3)

×
d∏

i �=j

E(|ξ |2Hi−2)E(|ξ |2Hj −2 − |z + ξ |2Hj−2) dr dv,

where z = xj−yj√|r−v| and ξ is a standard normal variable. Set βj = 2Hj + 1 > 2. By

Lemma A.6, the factor E(|ξ |2Hj−2 − |z + ξ |2Hj−2) can be bounded by a constant
if |r − v| ≤ (xj − yj )

2 and it can be bounded by C|xj − yj |βj |r − v|−βj /2 if
|r − s| > (xj − yj )

2. In this way, we obtain

C(t, t, x, y) ≤ C

∫
{0<r,v<t,|r−v|≤(xj−yj )2}

|r − v|κ−1 dr dv

+ C|xj − yj |βj

∫
{0<r,v<t,|r−v|>(xj−yj )2}

|r − v|κ−1−βj /2 dr dv

≤ C|xj − yj |2κ .

So, from (5.1), we have

EW |u(t, x) − u(t, y)|p ≤ C|xj − yj |κp.(5.4)
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Step 3. Now, suppose that s < t and x = y. Set δ = ∑d
i=1 Hi − d . We have

C(s, t, x, x)

= C

[∫ t

s

∫ t

s
|r − v|κ−1 dr dv

+
∫ s

0

∫ t

0
|r − v|2H0−2(|r − v|δ − |r − v + t − s|δ) dr dv

]
.

The first integral is O((t − s)κ+1) when t − s is small. For the second integral, we
use the change of variable σ = r − v, v = τ and we have∫ s

0

∫ t

0
|r − v|2H0−2(|r − v|δ − |r − v + t − s|δ) dr dv

≤
∫ t

0
dτ

∫ s

−t
|σ |2H0−2∣∣|σ |δ − |σ + t − s|δ∣∣dσ

= t

[∫ s

0
σ 2H0−2(

σ δ − (σ + t − s)δ
)
dσ

+
∫ s−t

−t
(−σ)2H0−2(

(−σ − t + s)δ − (−σ)δ
)
dσ

+
∫ 0

s−t
(−σ)2H0−2|(−σ)δ − (σ + t − s)δ|dσ

]

= t[A′ + B ′ + C′].
For the first term in the above decomposition, we can write

A′ = (t − s)κ−1
∫ t1/(t−s)

0
σ 2H0−2(

σ δ − (σ + 1)δ
)
dσ

≤ (t − s)κ−1
∫ ∞

0
σ 2H0−2(

σ δ − (σ + 1)δ
)
dσ

≤ C(t − s)κ,

because 2H0 + ∑d
i=1 −d − 3 < −1. Similarly, we can get that

B ′ ≤ (t − s)κ
∫ ∞

1
σ 2H0−2(

σ δ − (σ + 1)δ
)
dσ.

Finally,

C′ ≤
∫ t−s

0
σ 2H0−2(

σ δ + (t − s − σ)δ
)
dσ = C(t − s)κ .

So, we have

EW |u(s, x) − u(t, y)|p ≤ C(t − s)κ/2p.(5.5)
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Step 4. Combining equations (5.4) and (5.5) with the estimates (5.1) and (5.2),
the result of this theorem can now be concluded from Theorem 1.4.1 of Kunita [7]
if we choose p large enough. �

5.2. Regularity of the density. In this subsection, we shall use the Feynman–
Kac formula established in the previous section to show that for any t and x, the
probability law of the solution u(t, x) of (1.2) has a smooth density with respect to
the Lebesgue measure. To this end, we shall show that ‖Du(t, x)‖H has negative
moments of all orders.

THEOREM 5.2. Suppose that 2H0 + ∑d
i=1 Hi > d + 1. Fix t > 0 and x ∈ R

d .
Assume that for any positive number p, E|f (Bt + x)|−p < ∞. Then, the law of
u(t, x) has a smooth density.

PROOF. From Theorem 4.3, we can write

u(t, x) = EB[f (Bx
t ) exp(Vt,x)].

The Malliavin derivative of the solution is given by

Dr,yu(t, x) = EB[f (Bx
t ) exp(Vt,x)δ(B

x
t−r − y)].

It is not difficult to show that u(t, x) ∈ D
∞. Thus, by the general criterion for the

smoothness of densities (see [10]), it suffices to show that E(‖Du(t, x)‖−2p
H ) < ∞

for any t > 0 and x ∈ R
d . We have

‖Du(t, x)‖2
H = EB[

f (B1
t + x)f (B2

t + x) exp
(
Vt,x(B

1) + Vt,x(B
2)

)
× 〈δ(B1,x

t−r − y), δ(B
2,x
t−r − y)〉H

]
= αHEB

[
f (B1

t + x)f (B2
t + x) exp

(
Vt,x(B

1) + Vt,x(B
2)

)

×
∫ t

0

∫ t

0
|r − s|2H0−2

d∏
i=1

|B1,i
t−r − B

2,i
t−s |2Hi−2 dr ds

]
,

where B1 and B2 are independent d-dimensional Brownian motions. By Jensen’s
inequality, we have, for any p > 0, that

‖Du(t, x)‖−2p
H

≤ (αH )−pEB

[
|f (B1

t + x)f (B2
t + x)|−p exp

(−p[Vt,x(B
1) + Vt,x(B

2)])

×
(∫ t

0

∫ t

0
|r − s|2H0−2

d∏
i=1

|Bi,1
t−r − B

2,i
t−s |2Hi−2 dr ds

)−p
]
.
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Hence, by Hölder’s inequality, we obtain

E‖Du(t, x)‖−2p
H

≤ (αH )−p(
E|f (B1

t + x)f (B2
t + x)|−pp1

)1/p1

× (
E exp

(−pp2[Vt,x(B
1) + Vt,x(B

2)]))1/p2

×
(
E

(∫ t

0

∫ t

0
|r − s|2H0−2

d∏
i=1

|B1,i
t−r − B

2,i
t−s |2Hi−2 dr ds

)−pp3)1/p3

= I1I2I3,

where 1
p1

+ 1
p2

+ 1
p3

= 1. The first factor, I1, is finite by the assumption on f

and Hölder’s inequality. The second factor is finite by Theorem 3.3. Finally, from
Jensen’s inequality, we have

I
p3
3 = E

[
t−2pp3

{
1

t2

∫ t

0

∫ t

0
|r − s|2H0−2

d∏
i=1

|B1,i
t−r − B

2,i
t−s |2Hi−2 dr ds

}−pp3]

≤ E

[
t−2pp3−2

{∫ t

0

∫ t

0
|r − s|−(2H0−2)pp3

×
d∏

i=1

|B1,i
t−r − B

2,i
t−s |−(2Hi−2)pp3 dr ds

}]

≤ C

∫ t

0

∫ t

0
|r − s|−(2H0−2)pp3E

{
d∏

i=1

|B1,i
t−r − B

2,i
t−s |−(2Hi−2)pp3

}
dr ds

< ∞.

This completes the proof. �

6. The case H0 > 3
4,H1 = 1

2 and d = 1.

6.1. Preliminaries. In this case, all the setup is the same as before, except that
if φ and ψ are functions in E , then

E(W(φ)W(ψ)) = 〈φ,ψ〉H

= αH0

∫ ∞
0

∫ ∞
0

∫
R

φ(s, x)ψ(t, x)|s − t |2H0−2 ds dt dx,

where αH0 = H0(2H0 − 1).

6.2. Definition and exponential integrability of the stochastic Feynman–Kac
functional. Similarly, we also have the following theorem.
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THEOREM 6.1. Suppose that H1 = 1/2 and H0 > 3/4. Then, for any ε > 0
and δ > 0, A

ε,δ
t,x defined in (3.2) belongs to H and the family of random variables

V
ε,δ
t,x defined in (3.3) converges in L2 to a limit denoted by

Vt,x =
∫ t

0

∫
R

δ(Bx
t−r − y)W(dr, dy).(6.1)

Conditional on B , Vt,x is a Gaussian random variable with mean 0 and variance

VarW(Vt,x) = αH0

∫ t

0

∫ t

0
|r − s|2H0−2δ(Br − Bs)dr ds.(6.2)

PROOF. Fix ε, ε′, δ and δ′ > 0.

EBEW(V
ε,δ
t,x ,V

ε′,δ′
t,x )

= EB〈Aε,δ
t,x,A

ε′,δ′
t,x 〉H

= αH0E
B

(∫
[0,t]4

∫
R

pε(B
x
s − y)pε′(Bx

r − y)ϕδ(t − s − u)

× ϕδ′(t − r − v)|u − v|2H0−2 dy dudv ds dr

)

= αH0

(∫
[0,t]4

EBpε+ε′(Bs − Br)ϕδ(t − s − u)

× ϕδ′(t − r − v)|u − v|2H0−2 dudv ds dr

)

= αH0

(∫
[0,t]4

1√
2π

(ε + ε′ + |s − r|)−1/2ϕδ(t − s − u)

× ϕδ′(t − r − v)|u − v|2H0−2 dudv ds dr

)
.

By Lemma A.3,∫
[0,t]2

(ε + ε′ + |s − r|)−1/2 × ϕδ(t − s − u)ϕδ′(t − r − v)|u − v|2H0−2 dudv

≤ C|s − r|2H0−5/2.

Then, by the dominated convergence theorem, EBEW(V
ε,δ
t,x ,V

ε′,δ′
t,x ) converges to

αH0√
2π

∫
[0,t]2

|s − r|2H0−5/2 ds dr

as ε, ε′, δ and δ′ tend to zero. This implies that V
ε,δ
t,x converges in L2, as ε and δ tend

to zero, to a limit denoted by Vt,x . On the other hand, from the above computations,
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we have

EW [(V ε,δ
t,x )2] = αH0

∫
[0,t]4

p2ε(Bs − Br)ϕδ(t − s − u)

× ϕδ(t − r − v)|u − v|2H0−2 dudv ds dr

and this expression converges to right-hand side of (6.2) almost surely. Moreover,
because of the above arguments, the convergence is also in L1 and this implies
(6.2). �

6.3. Feynman–Kac formula. By Proposition 3.3 and Theorem 6.2 in [5], we
have the following theorem.

THEOREM 6.2. Suppose that H1 = 1/2 and H0 > 3/4. Then, for any λ ∈ R,
we have

E exp
(
λ

∫ t

0

∫
R

δ(Bx
t−r − y)W(dr, dy)

)
< ∞

and, for any measurable and bounded function f , the process

u(t, x) = EB

(
f (Bx

t ) exp
(∫ t

0

∫
R

δ(Bx
t−r − y)W(dr, dy)

))
(6.3)

is a weak solution of (1.2).

6.4. Hölder continuity. We also have the following theorem, whose proof is
similar to that of Theorem 6.1.

THEOREM 6.3. Suppose that H1 = 1/2, H0 > 3/4 and let u(t, x) be the
solution of (1.2). Then, u(t, x) has a continuous modification such that for any
ρ ∈ (0,H0 − 3/4) and any compact rectangle I ⊂ R+ × R, there exists a positive
random variable KI such that almost surely, for any (t1, x1), (t2, x2) ∈ I , we have

|u(t2, x2) − u(t1, x1)| ≤ KI(|t2 − t1|ρ + |x2 − x1|2ρ).

PROOF. As in the proof of Theorem 6.1, we have

EW |u(s, x) − u(t, y)|p ≤ Cp[EBEW |Ṽ − V |2]p/2,

where V = ∫ t
0

∫
R

δ(Bx
t−r − z)W(dr, dz) and Ṽ = ∫ s

0
∫
R

δ(B
y
s−r − z)W(dr, dz). If

s = t , then we can write

EBEW |Ṽ − V |2 = 2
∫ t

0

∫ t

0
|r − v|2H0−2

× E[δ(Br − Bv) − δ(Br − Bv + x − y)]dr dv

= 2√
2π

∫ t

0

∫ t

0
|r − v|2H0−5/2(

1 − e−(x−y)2/(2|r−v|))dr dv.
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For any 2ρ < γ < 2H0 − 3/2, we have 1 − e−(x−y)2/(2|r−v|) ≤ (
(x−y)2

2|r−v| )
γ . Thus,

EBEW |Ṽ − V |2 ≤ Cγ |x − y|2γ . Consequently, we have

EW |u(t, x) − u(t, y)|p ≤ C|x − y|γp.(6.4)

On the other hand, if x = y, then

EBEW |Ṽ − V |2

= C

[∫ t

s

∫ t

s
|r − v|2H0−5/2 dr dv

+
∫ s

0

∫ t

0
|r − v|2H0−2(|r − v|−1/2 − |r − v + t − s|−1/2) dr ds

]
and, by a similar computation to step 3 before, we can obtain

EW |u(s, x) − u(t, x)|p ≤ C(t − s)(H0−3/4)p.(6.5)

Combining (6.4) and (6.5), we prove the theorem. �

6.5. Regularity of the density. We can also show the following result.

THEOREM 6.4. Suppose that d = 1, H1 = 1/2 and H0 > 3/4. Fix t > 0 and
x ∈ R. Assume that for any positive number p, E|f (Bt + x)|−p < ∞. The law of
u(t, x) then has a smooth density.

PROOF. The proof is similar to that of Theorem 5.2, using the existence of
finite moments of all orders for the self-intersection local time of the Brownian
motion proved in the Appendix (see Proposition A.7). �

7. Skorokhod-type equations and chaos expansion. In this section, we con-
sider the following heat equation on R

d :⎧⎪⎨
⎪⎩

∂u

∂t
= 1

2
�u + u � ∂d+1

∂t ∂x1 · · · ∂xd

W,

u(0, x) = f (x).

(7.1)

The difference between the above equation and (1.2) is that here we use the Wick
product � (see, e.g., [6]). This equation is studied in [5] in the case H1 = · · · =
Hd = 1/2. As in that paper, we can define the following notion of mild solution.

DEFINITION 7.1. An adapted random field u = {u(t, x), t ≥ 0, x ∈ R
d} such

that E(u2(t, x)) < ∞ for all (t, x) is a mild solution to equation (7.1) if, for any
(t, x) ∈ [0,∞) × R

d , the process {pt−s(x − y)u(s, y)1[0,t](s), s ≥ 0, y ∈ R
d} is

Skorokhod integrable and the following equation holds:

u(t, x) = ptf (x) +
∫ t

0

∫
Rd

pt−s(x − y)u(s, y) δWs,y,(7.2)

where pt(x) denotes the heat kernel and ptf (x) = ∫
Rd pt (x − y)f (y) dy.



318 Y. HU, D. NUALART AND J. SONG

As in the paper [5], the mild solution u(t, x) of (7.1) admits the following
Wiener chaos expansion:

u(t, x) =
∞∑

n=0

In(fn(·, t, x)),(7.3)

where In denotes the multiple stochastic integral with respect to W and fn(·, t, x)

is a symmetric element in H⊗n, defined explicitly as

fn(s1, y1, . . . , sn, yn, t, x)
(7.4)

= 1

n!pt−sσ(n)

(
x − yσ(n)

) · · ·psσ(2)−sσ(1)

(
yσ(2) − yσ(1)

)
psσ(1)

f
(
yσ(1)

)
.

In the above equation, σ denotes a permutation of {1,2, . . . , n} such that 0 <

sσ(1) < · · · < sσ(n) < t . Moreover, the solution, if it exists, will be unique because
the kernels in the Wiener chaos expansion are uniquely determined.

The following theorem is the main result of this section.

THEOREM 7.2. Suppose that 2H0 +∑d
i=1 Hi > d +1 and that f is a bounded

measurable function. Then, the process

u(t, x) = EB

[
f (Bx

t ) exp

(∫ t

0

∫
Rd

δ(Bx
t−r − y)W(dr, dy)

− 1

2
αH

∫ t

0

∫ t

0
|r − s|2H0−2(7.5)

×
d∏

i=1

|Bi
r − Bi

s |2Hi−2 dr ds

)]

is the unique mild solution to equation (1.2).

PROOF. From Theorem 3.3, we obtain that the expectation EB in (7.5) is well
defined. It then suffices to show that the random variable u(t, x) has the Wiener
chaos expansion (7.3). This can be easily proven by expanding the exponential and
then taking the expectation with respect to B .

Theorem 3.1 implies that almost surely δ(Bx
t−· − ·) is an element of H with a

norm given by (3.4). As a consequence, almost surely with respect to the Brownian
motion B , we have the following chaos expansion for the exponential factor in
equation (7.5):

exp

(∫ t

0

∫
Rd

δ(Bx
t−r − y)W(dr, dy)

− 1

2
αH

∫ t

0

∫ t

0
|r − s|2H0−2

d∏
i=1

|Bi
r − Bi

s |2Hi−2 dr ds

)
=

∞∑
n=0

In(gn),
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where gn is the symmetric element in H⊗n given by

gn(s1, y1, . . . , sn, yn, t, x) = 1

n!δ(B
x
t−s1

− y1) · · · δ(Bx
t−sn

− yn).(7.6)

Thus, the right-hand side of (7.5) admits the chaos expansion

u(t, x) =
∞∑

n=0

1

n!In(hn(·, t, x))(7.7)

with

hn(t, x) = EB [f (Bx
t )δ(Bx

t−s1
− y1) · · · δ(Bx

t−sn
− yn)].(7.8)

This can be regarded as a Feynman–Kac formula for the coefficients of the chaos
expansion of the solution of (7.1). To compute the above expectation, we shall use
the following identity:

EB[f (Bx
t )δ(Bx

t − y)|Fs] =
∫

Rd
pt−s(B

x
s − z)f (z)δ(z − y)dz

(7.9)
= pt−s(B

x
s − y)f (y).

Assume that 0 < sσ(1) < · · · < sσ(n) < t for some permutation σ of {1,2, . . . , n}.
Then, conditioning with respect to Ft−sσ(1)

and using the Markov property of the
Brownian motion, we have

hn(t, x) = EB{
EB[

δ
(
Bx

t−sσ(n)
− yσ(n)

) · · ·
× δ

(
Bx

t−sσ(1)
− yσ(1)

)
f (Bx

t )|Ft−sσ(1)

]}
= EB[

δ
(
Bx

t−sσ(n)
− yσ(n)

) · · · δ(
Bx

t−sσ(1)
− yσ(1)

)
psσ(1)

f
(
Bx

t−sσ(1)

)]
.

Conditioning with respect to Ft−sσ(2)
and using (7.9), we have

hn(t, x) = EB{
EB[

δ
(
Bt−sx

σ(n)
− yσ(n)

)
× δ

(
Bx

t−sσ(1)
− yσ(1)

)
psσ(1)

f
(
Bx

t−sσ(1)

)]|Ft−sσ(2)

}
= EB{

δ
(
Bt−sx

σ(n)
− yσ(n)

) · · · δ(
Bx

t−sσ(2)
− yσ(2)

)
× EB[

δ
(
Bx

t−sσ(1)
− yσ(1)

)
psσ(1)

f
(
Bx

t−sσ(1)

)|Ft−sσ(2)

]}
= EB[

δ
(
Bt−sx

σ(n)
− yσ(n)

) · · · δ(
Bx

t−sσ(2)
− yσ(2)

)
× psσ(2)−sσ(1)

(
Bx

t−sσ(2)
− yσ(1)

)
psσ(1)

f
(
yσ(1)

)]
.

Continuing in this way, we find that

hn(t, x) = pt−sσ(n)

(
x − yσ(n)

) · · ·psσ(2)−sσ(1)

(
yσ(2) − yσ(1)

)
psσ(1)

f
(
yσ(1)

)
,

which is the same as (7.4). �
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REMARK 7.3. The method of this section can be applied to obtain a
Feynman–Kac formula for the coefficients of the chaos expansion of the solution
of equation (1.2):

u(t, x) =
∞∑

n=0

1

n!In(hn(·, t, x))

with

hn(t, x) = EB

[
f (Bx

t )δ(Bx
t−s1

− y1) · · · δ(Bx
t−sn

− yn)

× exp

(
1

2
αH

∫ t

0

∫ t

0
|r − s|2H0−2(7.10)

×
d∏

i=1

|Bi
r − Bi

s |2Hi−2 dr ds

)]
.

REMARK 7.4. We can also consider equation (1.2) when d = 1, H1 = 1/2 and
H0 > 3/4. In this case, we easily see that the solution u(t, x) admits the following
chaos expansion:

u(t, x) =
∞∑

n=0

1

n!In(hn(·, t, x))

with

hn(t, x) = EB

[
f (Bx

t )δ(Bx
t−s1

− y1) · · · δ(Bx
t−sn

− yn)

× exp
(

1

2
αH0

∫ t

0

∫ t

0
|r − s|2H0−2δ(Br − Bs)dr ds

)]
.(7.11)

From the Feynman–Kac formula, we can derive the following formula for the
moments of the solution analogous to (4.17), which can be compared with the
formulas obtained in [5] in the case H1 = · · · = Hd = 1

2 :

E(u(t, x)p)

= E

( p∏
j=1

f (B
j
t + x)

× exp

[
αH

p∑
j,k=1,j<k

∫ t

0

∫ t

0
|s − r|2H0−2

×
d∏

i=1

|Bj,i
s − Bk,i

r |2Hi−2 ds dr

])
,
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where p ≥ 1 is an integer and Bj ,1 ≤ j ≤ d , are independent d-dimensional
Brownian motions.

APPENDIX

LEMMA A.1. Suppose that 0 < α < 1, ε > 0, x > 0 and that X is a standard
normal random variable. Then, there is a constant C, independent of x and ε (it
may depend on α), such that

E|x + εX|−α ≤ C min(ε−α, x−α).

PROOF. It is straightforward to check that K = supz≥0 E|z + X|−α < ∞.
Thus,

E|x + εX|−α = ε−αE

∣∣∣∣xε + X

∣∣∣∣
−α

≤ Kε−α.(A.1)

On the other hand,

E|x + εX|−α = 1√
2π

∫
R

|x + εy|−αe−y2/2 dy

= 1√
2π

(∫
{|x+εy|>x/2}

|x + εy|−αe−y2/2 dy

+
∫
{|x+εy|≤x/2}

|x + εy|−αe−y2/2 dy

)
.

It is easy to see that the first integral is bounded by Cx−α for some constant C.
The second integral, denoted by B , is bounded as follows:

B = C
1

ε

∫
|z|<x/2

|z|−αe−(z−x)2/(2ε2) dz ≤ C
1

ε

∫
|z|<x/2

|z|−αe−x2/(8ε2) dz

= C
x

ε
e−x2/(8ε2)x−α ≤ Cx−α.

Thus, we have E|x + εX|−α ≤ C|x|−α . Combining this with (A.1), we obtain the
lemma. �

LEMMA A.2. Suppose that α ∈ (0,1). There exists a constant C > 0 such that

sup
ε,ε′

∫
R2

pε(x1 + y1)pε′(x2 + y2)|y1 − y2|−α dy1 dy2 ≤ C|x1 − x2|−α.

PROOF. We can write∫
R2

pε(x1 + y1)pε′(x2 + y2)|y1 − y2|−α dy1 dy2 = E(|εX1 − x1 − ε′X2 + x2|−α).

Thus, Lemma A.2 follows directly from Lemma A.1. �
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LEMMA A.3. Suppose that α ∈ (0,1). There exists a constant C > 0 such that

sup
δ,δ′

∫ t

0

∫ t

0
ϕδ(t − s1 − r1)ϕδ′(t − s2 − r2)|r1 − r2|−α dr1 dr2 ≤ C|s1 − s2|−α.

PROOF. Since

pδ(x) ≥ pδ(x)I[0,
√

δ](x) = 1√
2πδ

e−x2/(2δ)I[0,
√

δ](x) ≥ 1√
2πe

ϕ√
δ(x),

the lemma follows from Lemma A.2. �

LEMMA A.4. Suppose that 2H0 + ∑d
i=1 Hi > d + 1. Let B1, . . . ,Bd be inde-

pendent one-dimensional Brownian motions. We then have

E

(∫ t

0
s2H0−2

d∏
i=1

|Bi
s |2Hi−2 ds

)2

< ∞.

PROOF. We can write

E

(∫ t

0
s2H0−2

d∏
i=1

|Bi
s |2Hi−2 ds

)2

= 2
∫ t

0

∫ s

0
(sr)2H0−2

d∏
i=1

E(|Bi
s |2Hi−2|Bi

r |2Hi−2) dr ds.

Let X be a standard normal random variable. From Lemma A.1, taking into ac-
count that 2 − 2Hi < 1, we have, when r < s, that

E(|Bi
r |2Hi−2|Bi

s |2Hi−2) = E
[∣∣Bi

r |2Hi−2E
[|√s − rX + x

∣∣2Hi−2|x=Bi
r

]]
≤ CE

[|Bi
r |2Hi−2(s − r)Hi−1)

(A.2)

≤ CrHi−1(s − r)Hi−1.

As a consequence, the conclusion of the lemma follows from the fact that∫ t

0

∫ s

0
r2H0+∑d

i=1 Hi−d−2s2H0−2(s − r)
∑d

i=1 Hi−d dr ds < ∞,

because 2H0 + ∑d
i=1 Hi − d − 2 > −1 and

∑d
i=1 Hi − d > −1. �

LEMMA A.5. Let B1, . . . ,Bd be independent one-dimensional Brownian mo-
tions. If αi ∈ (−1,0), i = 1, . . . , d , and

∑d
i=1 αi > −2, then

E exp

(
λ

∫ 1

0

d∏
i=1

|Bi
s |αi ds

)
< ∞

for all λ > 0.
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PROOF. The proof is based on the method of moments. We can write

E exp

(
λ

∫ 1

0

d∏
i=1

|Bi
s |αi ds

)
=

∞∑
n=1

λn

n! E
∫
[0,1]n

n∏
k=1

d∏
i=1

|Bi
sk

|αi ds

=
∞∑

n=1

λn
∫
[0<s1<···<sn<1]

d∏
i=1

E

(
n∏

k=1

|Bi
sk

|αi

)
ds.

From Lemma A.1, since αi ∈ (−1,0), we obtain

E[|Bi
sk

|αi |F i
sk−1

] = E[|Bi
sk

− Bi
sk−1

+ Bi
sk−1

|αi |F i
sk−1

] ≤ C(sk − sk−1)
αi/2,

where Ft is the filtration generated by the Brownian motion Bi . As a consequence,
taking the conditional expectation of

∏n
k=1 |Bi

sk
|αi with respect to the σ -fields

F i
sn−1

, F i
sn−2

, . . . , F i
s1

and F i
0, we get

E

(
n∏

k=1

|Bi
sk

|αi

)
≤ Cn(sn − sn−1)

αi/2 · · · (s2 − s1)
αi/2s

αi/2
1 .

Letting α = ∑d
i=1 αi , we have

E exp

(
λ

∫ 1

0

d∏
i=1

|Bi
s |αi ds

)

≤
∞∑

n=1

(Cλ)n
∫
[0<s1<···<sn<1]

(sn − sn−1)
α/2 · · ·

× (s2 − s1)
α/2s

α/2
1 ds.

Since α > −2, the integrals on the right-hand side are equal to (�(α/2+1))n

(n+nα/2)�(n+nα/2)

and the series converges for any λ > 0. �

LEMMA A.6. For any 0 < α < 1, define

Cα(y) = E(|ξ |−α − |y + ξ |−α),

where y > 0 and ξ is a standard normal random variable. Then,

Cα(y) ≤ C min
(
1, (y2 + y3−α)

)
for some constant C > 0.

PROOF. First, note that Cα(y) < C, where C > 0 is a constant, since
limy→∞ E|y+ξ |−α = 0. On the other hand, we can decompose the function Cα(y)



324 Y. HU, D. NUALART AND J. SONG

as follows:

Cα(y) = 1√
2π

∫
R

(|x|−α − |y + x|−α)e−x2/2 dx

= 1√
2π

(∫
{x≥0}∪{x≤−y}

(|x|−α − |y + x|−α)e−x2/2 dx

+
∫
{−y<x<0}

(|x|−α − |y + x|−α)e−x2/2 dx

)

= 1√
2π

(A + B),

where A and B denote the first and second integrals, respectively, in the second-
to-last line. For integral A, we can write

A =
∫ ∞

0

(
x−α − (x + y)−α)(

e−x2/2 − e−(x+y)2/2)
dx

≤
∫ ∞

0
x−α(x + y)1−α[(x + y)α − xα]ye−x2/2 dx.

Therefore,

A ≤
∫ ∞

0
x1−2α[(x + y)α − xα]ye−x2/2 dx

+
∫ ∞

0
x−α[(x + y)α − xα]y2−αe−x2/2 dx.

For the first integral in the above expression, we use the estimate (x + y)α − xα ≤
αyxα−1 and for the second, we use (x + y)α − xα ≤ yα . In this way, we obtain

A ≤ Cy2

for some constant C > 0. On the other hand,

B =
∫ y

0
x−α(

e−x2/2 − e−(x+y)2/2)
dx ≤

∫ y

0
x−α(x + y)y dx ≤ Cy3−α

for some constant C > 0, which completes the proof of the lemma. �

PROPOSITION A.7. Let B be a one-dimensional standard Brownian motion.
Then, for any p > 0,

E

∣∣∣∣
∫ 1

0

∫ 1

0
δ(Bt − Bs)ds dt

∣∣∣∣−p

< ∞.

PROOF. For k = 1, . . . ,2n−1, we define An,k = [2k−2
2n , 2k−1

2n ] × [2k−1
2n , 2k

2n ] and

αn,k =
∫
An,k

δ(Bt − Bs)ds dt.

The random variables αn,k have the following two properties:
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(i) for every n ≥ 1, the variables αn,1, . . . , αn,2n−1 are independent;

(ii) αn,k
d= 2−n/2 ∫ 1

0
∫ 1

0 δ(Bt − B̃s) ds dt and B̃ is a standard Brownian motion
independent of B .

For any p > 0, we may choose a integer n > 0 such that p21−n < 1/3. Then, we
can write

E

∣∣∣∣
∫ 1

0

∫ 1

0
δ(Bt − Bs)ds dt

∣∣∣∣
−p

≤ E

∣∣∣∣∣
2n−1∑
k=1

αn,k

∣∣∣∣∣
−p

≤ E

∣∣∣∣∣
2n−1∏
k=1

αn,k

∣∣∣∣∣
−p21−n

and it suffices to show that E| ∫ 1
0

∫ 1
0 δ(Bt − B̃s) ds dt |−p < ∞ for some p > 0.

Notice that

L :=
∫ 1

0

∫ 1

0
δ(Bt − B̃s) ds dt =

∫
R

Lx
1L̃x

1 dx,

where Lx
t (resp., Lx̃

t ) denotes the local time of the Brownian motion B (resp., B̃).
As a consequence, for any 0 < α < 1,

P(L < ε) ≤ P

(∫ ε4/5

0
Lx

1L̃x
1 dx

)

≤ P

(
L0

1L̃
0
1 <

1

2
ε1/5

)
+ P

(∫ ε4/5

0
|L0

1L̃
0
1 − Lx

1L̃x
1 |dx ≥ ε

2

)

≤ 1√
2
ε1/10(E(L0

1)
−1/2)2 + 2

ε

∫ ε4/5

0
E|L0

1L̃
0
1 − Lx

1L̃x
1 |dx

≤ Cε1/10,

which implies that E(L1/10) < ∞. �
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