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Hydrodynamic interactions among multiple circular cylinders translating in an
otherwise undisturbed inviscid fluid are theoretically investigated. A constructive
method for solving a Neumann boundary-value problem in a domain outside N
circles (one kind of Hilbert boundary-value problem in the complex plane) is
presented in the study to derive the velocity potential of the liquid. The method
employs successive offset functions combined with a ‘generalized cyclic permutation’
in turn to satisfy the impenetrable boundary condition on each circle. The complex
potential is therefore expressed as N isolated singularities in power series form and
used to get instantaneous added masses of N submerged circular cylinders. Then,
based on the Hamilton variational principle, a dynamical equation of motion in
vector form is derived to predict nonlinear translations of the submerged bodies
under fully hydrodynamic interactions. Also, the equivalence of the energy-based
Lagrangian framework and a momentum-type one in the two-dimensional body–liquid
system is proved. It implies that the pressure integration around a submerged body
is holographic, which provides information about velocities and accelerations of all
bodies. The numerical solutions indicate some typical dynamical behaviours of more
than two circular cylinders which reveal that interesting nonlinear phenomena would
appear in such a system with simple physical assumptions.
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1. Introduction
The hydrodynamic interaction between multiple submerged moving bodies is of

fundamental importance for understanding of unsteady motions of the bodies (Lamb
1932; Milne-Thomson 1960). Usually, to make the problem treatable, the potential flow
theory of incompressible fluids is employed since it provides a good approximation for
high-Reynolds-number flows. However, the physical mechanism behind the dynamical
behaviours of the bodies has not been satisfactorily explored up to now owing to
the difficult mathematical treatment for the corresponding problem in the multiple
connected regions.

The hydrodynamic interaction between many cylinders immersed in an unbounded
inviscid liquid was first addressed by Hicks (1879), who studied the impact of
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two circular cylinders. Yamamoto (1976) explored the problem of two circular
cylinders translating arbitrarily in the flow by continually using the Milne-Thomson
circle theorem to satisfy the boundary condition on each surface. To break through
the restriction of the body geometry, Landweber & Chwang (1989) developed a
boundary-integral model for two-body interaction problems by generalizing the Taylor
(1928) formula. Using numerical modelling, Landweber, Chwang & Guo (1991)
investigated oblique translations of two two-dimensional bodies. Taking advantage
of twin multipole expansions only at two isolated points and successive images
of a closed form, Sun & Chwang (2000, 2006) presented a method of successive
offset functions to derive velocity potentials for two simple geometries, and explored
the hydrodynamic translation–rotation coupling between the non-circular bodies. To
motivate the approach, two sets of transformations between ‘body shape’ harmonics
need to be established in two body-fixed coordinate systems; as a result, each
velocity potential is composed of twin singularities in harmonic series form, and
their coefficients are reduced to iterative formulae. These make the velocity potential
suitable for hydrodynamic analysis and rapid calculation of added masses and their
spatial derivatives.

In recent years there has been a revival of interest in investigation of the
hydrodynamic interaction due to planar motions of cylinders in an inviscid liquid.
Wang (2004) contributed to this specific problem with an extension to two expanding
and translating circular cylinders. The corresponding velocity potential is derived using
a conformal mapping and Fourier series. Almost at the same time, Burton, Gratus
& Tucker (2004) studied the same problem from a different mathematical viewpoint.
Crowdy, Surana & Yick (2007) and Tchieu, Crowdy & Leonard (2010) addressed
the planar issues of two complicated geometries using the Villat formula and the
Laurent series expansion, respectively. The velocity potentials are expressed as contour
integrals on two concentric circles which are mapped using the Möbius transformation
from the two arbitrarily shaped bodies. Especially to resolve the problem involving
more two-dimensional bodies, Crowdy (2010) developed a new approach for finding
the complex potentials associated with their motion in a liquid. The key to the
generality of the approach is the use of the Riemann mapping theorem together
with a special transcendental function called the Schottky–Klein prime function. From
the method, he obtained the complex potentials for a uniform flow past multiple
cylinders (Crowdy 2006), for an arbitrary collection of moving cylinders (Crowdy
2008) and for two-dimensional bodies of arbitrary shape with point vortices (Crowdy
2010). These velocity potentials for liquid with many submerged moving cylinders are
usually expressed as contour integrals and may be solved using the boundary-element
method. Furthermore, the two-dimensional exact solution for circular cylinders has
been applied to more practical problems. Wang (2005, 2007) studied the irrotational
flow induced by slender bodies in very close proximity. He divided the flow field into
an outer region far away from the two bodies and an inner region near them, and
analysed it using the method of matched asymptotic expansions.

Generally, there are two ways of describing translations and rotations of bodies
in a liquid. One is concerned with a momentum-type framework, where the
hydrodynamic loads are simply determined by integrating the pressure around each
body surface (cf. Landweber & Yih 1956; Cummins 1957; Landweber & Miloh
1980; Wang 2004; Crowdy et al. 2007; Tchieu et al. 2010). The other involves an
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energy-based Lagrangian framework, which includes two sets of differential equations
derived from the Hamilton variational principle: Kelvin–Kirchhoff’s equations of
motion in a relative frame of reference and Lagrange’s equations in the absolute
reference frame (see Lamb 1932). The equivalence between the two sets of
equations was proved by Miloh & Landweber (1981). Although the energy-based
Lagrangian framework is believed to be equivalent to the momentum-type one
in the hydrodynamic community, the connection between them has not yet been
proved. This energy-based approach reveals that accelerations of the submerged
bodies are coupled with one another by their added masses and hydrodynamic forces
determined by spatial derivatives of the added masses. Accordingly, it is adopted that
dynamic behaviours of many submerged simple bodies are described under a fully
hydrodynamic interaction (cf. Guo & Chwang 1991; Landweber et al. 1991; Sun &
Chwang 2000, 2006; Nair & Kanso 2007).

At the present time, the powerful modern computational capabilities allow us to
assess the hydrodynamic interaction among multiple bodies of arbitrary shape in
unsteady-flow surroundings. However, it remains highly desirable to be able to predict
and explain the main features behind the physical modelling; clearly the numerical
procedure does not provide the whole answer. Therefore, to perform a theoretical
prediction of the hydrodynamic forces on many submerged circular cylinders and their
nonlinear motions, the investigation develops an approach for constructing analytic
expressions for the velocity potential of the liquid with these cylinders so as to
derive the added masses and their spatial derivatives in closed form. To this end, an
operation involving successive offset functions combined with a ‘generalized cyclic
permutation’ is introduced. In this manner, the corresponding complex potential
may be expressed as N singularities in power series form, and thus added masses
and their spatial derivatives are composed of those series whose terms decay by
the order O(s−2), where s is the centre-to-centre distance between two relevant
circular cylinders, and readily reduced to recurrence formulae so as to be suitable
for the hydrodynamic analysis. In addition, a dynamical equivalence of the energy-
based Lagrangian framework and momentum-type framework in two dimensions is
proved. Subsequently, some examples are discussed so as to explore the nature of the
hydrodynamic interaction among many bodies.

2. Formulation of the problem and its solution
Let us consider a planar translation of N (N > 2) circular cylinders in an

unbounded fluid with their axes perpendicular to the plane of motion, which has
absolute Cartesian coordinates (x1, x2). In the two-dimensional frame of reference,
circle α (α ∈ {1, . . . ,N}) (indicating cylinder α) of radius Rα and with centre oα (at
xα = (xα1, xα2)) moves at velocity uα (uα = (uα1, uα2)), and its boundary is denoted by
cα, as shown in figure 1.

The fluid is assumed to be incompressible and inviscid, and the flow to be
irrotational. Hence, there exists a velocity potential ϕ which may be expressed as

φ = uα ·ϕα = uαiϕαi (α = 1, . . . ,N; i= 1, 2), (2.1)

where a repeated index indicates a summation. Here ϕα denotes the unit velocity
potential vector due to the motion of circle α, and ϕαi its ith component corresponding
to the ith velocity component uαi. The kinematic boundary condition on circle α is
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FIGURE 1. Sketch of N planar-translating circular cylinders.

given by

nα ·∇φ = nα ·uα (not summed for α;α ∈ {1, . . . ,N}), (2.2a)

where nα is a unit outward normal vector to the boundary of circle α. And thus the
unit potential ϕαi should satisfy the boundary conditions

∂ϕαi/∂nβ = δαβnβi (not summed for β;β ∈ {1, . . . ,N}), (2.2b)

where nβ denotes distance along an outward normal to circle β, δαβ the Kronecker
delta, and nβi the ith component of nβ .

For the above two-dimensional Hamilton system, the complex variable z is adopted
and as usual defined to be x1+ix2 so as to solve the corresponding Neumann boundary-
value problem. This problem can be regarded as one kind of Hilbert boundary-value
problem in the complex plane. The problem is stated as follows: suppose D is an N+1
connected domain in the complex plane Z, and its boundary is ∂D =∑N

α=1cα, where
cα indicates circle α; find a continuous solution w(z) in D which satisfies the boundary
conditions

Re
[

n(z)
dw(z)

dz

]
= Re[n̄(z)V(z)], z ∈ ∂D, (2.3)

where n(z) denotes a complex unit normal, and V(z) a given boundary function. In this
paper, a variable with an overbar indicates its complex conjugate.

Solutions satisfying boundary condition (2.3) can be obtained using a constructive
method which is shown in the Appendix. Based on the solutions, when a single circle
α (α ∈ {1, . . . ,N}) of radius Rα translates at an arbitrary velocity (uα1, uα2) through an
unbounded liquid, the complex potential of the liquid is

wα =−(uα1 + iuα2)R2
α/z
′
α (not summed for α), (2.4)

where z′α denotes the complex variable in auxiliary complex plane Z′α. From the
derivation in the Appendix, the complex potential in the case of N circles moving
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through a liquid is

w=−uαj R2
α wαj1 = uα1

{
−R2

α

[
1
z′α
+

N∑
γ=1

∞∑
m=1

1
z′m
(α+γ )†

∞∑
i=0

λ
(Ni+γ )
α1m1

]}

+ uα2

{
−iR2

α

[
1
z′α
+

N∑
γ=1

∞∑
m=1

1
z′m
(α+γ )†

∞∑
i=0

λ
(Ni+γ )
α2m1

]}
= uα j Wα j (α = 1, . . . ,N; j= 1, 2), (2.5)

where Wα j is a unit complex potential corresponding to uα j.

3. Added-mass tensor and dynamical equations of motion
If there is no point vortex and the cylinders are not deformable, the kinetic energy

Tf of the liquid is integrable in the unbounded region, and may be expressed as

Tf =−ρ2
∫
Σcβ

φ
∂φ

∂nβ
dlβ (β = 1, . . . ,N), (3.1)

where lβ denotes a curvilinear distance along circle β and ρ the liquid density and
Σcβ denotes the sum of all circles.

For convenience, let us establish an expanded 2N-dimensional Cartesian space, in
which generalized position, velocity and unit velocity potential vectors are defined as

X = xαje2(α−1)+j, U = uαje2(α−1)+j, φ = ϕαje2(α−1)+j (α = 1, . . . ,N; j= 1, 2), (3.2)

where ei is unit vector i of the expanded space.
Therefore, φ = U ·φ = φ ·U from (2.1), and then

Tf =−ρ2
∫
Σcβ

φ
∂φ

∂nβ
dlβ =−ρ2

∫
Σcβ

U ·φ
∂φ

∂nβ
·U dlβ = 1

2
U ·A ·U, (3.3)

where

A=−ρ
∫
Σcβ

φ
∂φ

∂nβ
dlβ (3.4)

is a tensor since φ ∂φ/∂nβ indicates a dyadic of two vectors, φ and ∂φ/∂nβ ,
representing 2N × 2N instantaneous added masses which exhibit a non-uniform
distribution in space. It is easy to prove, from Green’s reciprocal formula, that A is a
symmetric tensor with N(2N + 1) independent instantaneous added-mass coefficients.
The coefficient matrix [Ai,j] of instantaneous added-mass tensor A may be obtained by
integrating the following matrix expressions over all circles:

[Ai,j] = −ρ
∫
Σcβ



ϕ11

ϕ12

...

ϕN1

ϕN2


[
δ1βnβ1, δ1βnβ2, · · · , δNβnβ1, δNβnβ2

]
dlβ

(β = 1, . . . ,N). (3.5)
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With every unit velocity potential ϕαj one may associate a stream function ψαj.
Owing to the relationships nβ1 dlβ = dx′β2 and nβ2 dlβ = −dx′β1 (β = 1, . . . ,N), where
dx′β1 and dx′β2 are the real and imaginary parts of dz′β , respectively, it is easy to derive

ρ

∫
cβ

ψαj dz′β =−ρ
∫

cβ

z′βδαβnβj dlβ =−δαβBβ ij−1 (α, β ∈ {1, . . . ,N}; j= 1 or 2), (3.6)

where Bβ = πρR2
β is the mass of the displaced liquid per unit length of cylinder β.

Therefore,

A2(α−1)+j,2γ−1 + iA2(α−1)+j,2γ =−ρ
∫
Σcβ

ϕαj δγβnβ dlβ = iρ
∫

cγ

ϕαj dz′γ

= iρ
∫

cγ

(Wαj − iψαj) dz′γ

= iρ
∫

cγ

Wαj dz′γ + ρ
∫

cγ

ψαj dz′γ

= 2πρR2
αij−1

[
δαγ +

∞∑
i=0

λ
(Ni+(N+γ−α)mod N)
αj11

]
− δαγπρR2

αij−1 (α, β, γ ∈ {1, . . . ,N}; j= 1 or 2). (3.7)

Similarly, the kinetic energy Tb of N circles is

Tb = mα(u
2
α1 + u2

α2)/2= U ·M ·U/2 (α = 1, . . . ,N), (3.8a)

where mα denotes the mass of cylinder α per unit length with density ρα and

M = mαe2(α−1)+je2(α−1)+j (α = 1, . . . ,N; j= 1, 2). (3.8b)

Since the body–liquid system is conservative, total kinetic energy T of the system
should be

T(xαi, uαi)= Tf + Tb = U · (M + A) ·U/2. (3.9)

On the basis of the Hamilton variational principle expressed as

δ

∫ tf

ti

L dt = 0, (3.10)

where ti denotes the initial time and tf the end time and L is the Lagrangian function
which is equal to the total kinetic energy T in the present case, T should satisfy

d
dt

(
∂T

∂U

)
− ∂T

∂X
= 0. (3.11)

After some tensor manipulations, a dynamical equation of motion in vector form for
describing N translational bodies is finally derived as follows:

(M + A) ·
dU
dt
=−U · dA

dX
·U + 1

2
dA:UU

dX
. (3.12)

The first term on the right-hand side of (3.12) indicates an effect arising from spatial
non-uniformity of added masses which would statistically exhibit a fluid-momentum
transport feature, and the second one expresses an influence of kinetic energy
potential of the fluid on the N-body movement. Furthermore, it is noted from (3.12)
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that the gradient of the added-mass tensor determines generalized forces acting on
the submerged bodies and the tensor itself restricts magnitudes and orientations of
accelerations of the bodies. This means the accelerations of all the bodies are coupled
with each other.

4. Equivalence between two frameworks
Under the same assumptions, the force acting on circle α,Fα (α ∈ {1, . . . ,N}) in the

momentum-type framework can be expressed as a contour integral around the body,

Fα =−
∫

cα

pnα dlα =
∫

cα

ρ
∂φ

∂t
nα dlα + ρ2

∫
cα

∇φ ·∇φnα dlα (α ∈ {1, . . . ,N}). (4.1a)

Since the velocity potential φ = φ(x, xα(t),uα(t);Rα) in the present case, the moving
circle α is expressed such that the coordinate xα of its geometric centre varies with
time, thus

∫
cα
ρ(∂φ/∂t) nα dlα = (d/dt)

∫
cα
ρφnα dlα, and (4.1a) becomes

Fα =−
∫

cα

pnα dlα = d
dt

∫
cα

ρφnα dlα + ρ2
∫

cα

∇φ ·∇φnα dlα (α ∈ {1, . . . ,N}). (4.1b)

Equation (3.11) may be rewritten as

− d
dt
(A ·U)+ ∂T

∂X
= d

dt
(M ·U) . (4.2)

For analytical convenience, a projection operator Pα in the generalized vector space
is introduced and defined as

Pα = pαijeiej (α ∈ {1, . . . ,N}; i= 1, 2; j= 1, . . . ,N), (4.3)

where

pαij =
{

1 (j= 2(α − 1)+ i)
0, (otherwise).

(4.4)

The dot product of Pα and (4.2),

− d
dt
Pα · (A ·U)+ Pα ·

∂T

∂X
= d

dt
Pα · (M ·U) , (4.5)

results in the following dynamical equation of motion:

d
dt

∫
cα

ρ φnα dlα + ∂Tf

∂xα
= mα

duα
dt

(α ∈ {1, . . . ,N}). (4.6)

Considering all singularities spread respectively within individual boundary curves, it
is readily proved that

∂Tf

∂xα
=−ρ

2
∂

∂xα

∫
Σcβ

φ
∂ φ

∂nβ
dlβ =−ρ2

∫
cα

(
∂φ

∂xα
dψ − ∂ψ

∂xα
dφ
)

(α ∈ {1, . . . ,N}).
(4.7)

Since singularity α is a function of x− xα, it gives ∂/∂xα =−∂/∂x. As a result,

∂Tf

∂xα
= ρ

2

∫
cα

(
∂φ

∂x
dψ − ∂ψ

∂x
dφ
)
= ρ

2

∫
cα

(∇φ dψ −∇ψ dφ)
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= ρ
2

∫
cα

(
e1
∂φ

∂x1
+ e2

∂φ

∂x2

)(
dx2

∂φ

∂x1
− dx1

∂φ

∂x2

)
− ρ

2

∫
cα

(
−e1

∂φ

∂x2
+ e2

∂φ

∂x1

)(
dx1

∂φ

∂x1
+ dx2

∂φ

∂x2

)
= ρ

2

∫
cα

(
e1

dx2

dlα
∇φ ·∇φ − e2

dx1

dlα
∇φ ·∇φ

)
dlα

= ρ
2

∫
cα

nα ∇φ ·∇φ dlα (α ∈ {1, . . . ,N}). (4.8)

Equations (4.6) and (4.8) tell us that the left-hand side of (4.6) represents the
same force acting on circle α as (4.1b). Therefore, the derivation reveals that the
energy-based Lagrangian framework is equivalent in dynamics to momentum-type
one. The equivalence implies that the pressure integration around a submerged body
is holographic, which provides information about accelerations of all bodies. These
accelerations are coupled with one another by added masses, and none of the others
can be determined if some acceleration is unknown.

5. Dynamical analyses

Equations (3.12), (3.7), (3.8b), (A 12b) and (A 13b) are applied to determine the
hydrodynamic interaction among N circular cylinders planar-translating in an inviscid
liquid and to predict the velocity and position of each cylinder at any time. As
their analytical solution is generally not available, the numerical calculation is a
vital way of solving these algebraic and nonlinear ordinary differential equations with
given initial values. There exist two sources of error which influence the prediction
of dynamical behaviours of the moving cylinders, one resulting from the numerical
solution of ordinary differential equations (3.12) and the other from truncating the
series. To present an accurate prediction, (3.12) is solved using the fourth-order
Runge–Kutta–Fehlberg method of integration, and the time step is adaptive according
to an error tolerance of five significant figures. In the description of translations of the
circular cylinders, as the gap between any two cylinders is narrowed down to a relative
interval of 5 × 10−4 to the smaller one, numerical calculation will automatically stop
although they cannot come into contact at all in theory. Since each of the ith terms in
the series expressions in (3.7) behaves like max

{
ŝ−2i
αβ

∣∣α, β = 1, . . . ,N;α 6= β}, where
ŝαβ is the centre-to-centre distance between cylinders α and β, the truncated series
in an extreme case at i = 60 would make our numerical results accurate up to the
120th inverse power of ŝαβ to meet the accuracy requirement of the current calculation
examples. The present calculations are carried out with an automatic increase in i by
20 until the summation of these terms produces no significant variation within the pre-
assigned level of accuracy. Obviously, with an increase in the number of submerged
cylinders, the computing time increases rapidly. A rough estimate is made that the
prediction of N moving circular cylinders involves calculations of N2 × N0 offset
functions, where N0 denotes the total cyclic number, and 3N (2N + 1) coefficients
of the added-mass matrix and its derivatives. This means that the computing time
is of O(N2). In what follows, each physical variable is expressed by means of the
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corresponding dimensionless variable with superscript ∗, and Lc, Uc, Lc/Uc, and ρ are
selected as the characteristic length, velocity, time, and density respectively.

5.1. Hydrodynamic interactions between two cylinders

Translations of two submerged circular cylinders (N = 2) are predicted and the results
are compared with those available in the literature. In this case, expressions for
added-mass coefficients can be written as

A11 + iA12 = 2πρR2
1

[
0.5 +

∞∑
i=1

λ
(2i)
1111

]
,

A21 + iA22 = 2πρR2
1i

[
0.5 +

∞∑
i=1

λ
(2i)
1211

]
,

A31 + iA32 = 2πρR2
2

∞∑
i=0

λ
(2i+1)
2111 ,

A41 + iA42 = 2πρR2
2i
∞∑

i=0

λ
(2i+1)
2211 ,

A33 + iA34 = 2πρR2
2

[
0.5+

∞∑
i=1

λ
(2i)
2111

]
,

A43 + iA44 = 2πρR2
2i

[
0.5 +

∞∑
i=1

λ
(2i)
2211

]
,



(5.1a)

where recurrence formulae of λ(i)αjm1 are

λ
(0)
1jm1 = 0, λ

(1)
1jm1 = (−1)m+j−1 H(m, 1,R2, s̄12),

λ
(2i)
1jm1 =

∞∑
l=1

(−1)l+j−1 H(m, l,R1, s̄12)λ̄
(2i−1)
1jl1 ,

λ
(2i+1)
1jm1 = (−1)m+j−1

∞∑
l=1

H(m, l,R2, s̄12)λ̄
(2i)
1jl1,


(5.1b)

and

λ
(0)
2jm1 = 0, λ

(1)
2jm1 = (−1)j H(m, 1,R1, s̄12),

λ
(2i)
2jm1 = (−1)m+j−1

∞∑
l=1

H(m, l,R2, s̄12)λ̄
(2i−1)
2jl1 ,

λ
(2i+1)
2jm1 =

∞∑
l=1

(−1)l+j−1 H(m, l,R1, s̄12)λ̄
(2i)
2jl1 (j= 1, 2; i= 1, . . . ,∞).


(5.1c)

Equations (3.12), (3.8b), (5.1a), (5.1b) and (5.1c) are employed to predict the
dynamical behaviour of two submerged moving circular cylinders. When the two
bodies are not too far apart and there are weak hydrodynamic interactions between
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them, the added-mass coefficients can be simplified to the order of O(|s12|−2), i.e.

A11 + iA12 ≈ πρR2
1,

A21 + iA22 ≈ πρR2
1i,

A31 + iA32 ≈ −2πρR2
2R2

1/s̄
2
12,

A41 + iA42 ≈ 2πρR2
2R2

1i/s̄2
12,

A33 + iA34 ≈ πρR2
2,

A43 + iA44 ≈ πρR2
2i.


(5.2a)

Let us first consider a drifting circular cylinder (α = 1) around another fixed one
(α = 2). The uniform flow is U0 = 1 along the x-direction at infinity. The initial
position and velocity of the moving cylinder of radius R∗1 = 0.1 are x∗110 = −20 and
u∗10 = (1, 0) where Lc = R2 = 1 and Uc = U0. Figure 2 shows trajectories of drifting
cylinder 1 with different initial transverse positions. In the figure, in addition to results
from the current formulation, data given by Guo & Chwang (1991) are also plotted
for comparison. It is obvious that our results agree well with what they predicted.
Figure 3 exhibits a free–free interaction between two circular cylinders and the
result is compared to that of Tchieu et al. (2010) with assumptions Rα = Lc = 1
and ρ = ρα (α = 1, 2). It is noted that the current approach predicts the same
phenomenon as Tchieu et al. did that the incoming cylinder deviates downward
from a set course without a direct contact with the initially stationary one, and the
latter gains a substantial amount of momentum to move upward. However, there
are slight differences between the two results in the trajectory and terminal velocity.
The current method predicts two terminal velocities of u∗1∞ = (0.943,−0.230) and
u∗2∞ = (0.044, 0.236), while those from Tchieu et al. are u∗1∞ = (0.954,−0.205) and
u∗2∞ = (0.030, 0.216). The discrepancies may result from whether the influence of a
non-uniform added-mass distribution on all acceleration terms is taken into account. In
the two cases, moreover, every trajectory is obtained numerically in tens of minutes
by a laptop. Another example brings out considerations on the relativity of the moving
bodies. Let us consider two identical circular cylinders translating along the x-axis.
Two cases are given with distinct initial kinematic conditions in which the initial
velocities of the bodies are distinct but their velocity differences remain the same, as
seen in figure 4. Note from figure 4(a) that when the two cylinders move at the same
initial speed but in opposite directions, their velocity–time curves are symmetric with
respect to the line u∗ = 0. This means that equal hydrodynamic forces are exerted on
each of them. But note from figure 4(b) that if the two cylinders translate one after
the other in the same direction, their velocity–time curves appear asymmetric, although
for an observer in an inertial reference frame with a relative velocity u0 = 1.25, the
initial velocities of the two cylinders remain unchanged. This indicates that different
hydrodynamic forces act on each cylinder. The two cases remind us that Galilean
relativity seems to be unsuitable for describing the moving bodies under hydrodynamic
interaction. An explanation for the phenomenon follows.

As the two cylinders are translating along the x-axis, s̄12 = s = x21 − x11, ∂/∂x11 =
−d/ds, ∂/∂x21 = d/ds, d/dt = (u21 − u11) d/ds, and all λ are real numbers. Therefore,
the coefficient matrix [Ai,j] of instantaneous added-mass tensor A and the generalized
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FIGURE 2. Trajectories of a drifting cylinder with various initial transverse positions,
x∗120 = 0.1, 0.3, 0.7 and 1.1. Present method (solid lines); data from Guo & Chwang (1991)
(open squares).
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FIGURE 3. Cylinder trajectories for a free–free interaction. The initial conditions are
x∗10 = (−6, 1.8), x∗20 = (0, 0), u∗10 = (1, 0), and u∗20 = (0, 0). Present method (solid lines);
data from Tchieu et al. (2010) (circles).
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FIGURE 4. Variation of translational velocities of two circular cylinders against time
with ρ∗i = 0.5, R∗i = 1.0 (i = 1, 2). The initial positions are x∗10 = (0, 0), x∗20 = (2.2, 0)
and the initial velocities are (a) u∗10 = (−0.25, 0), u∗20 = (0.25, 0) and (b) u∗10 = (1.0, 0),
u∗20 = (1.5, 0).
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velocity vector become

[Ai,j] =


A11 0 A31 0
0 A22 0 A42

A31 0 A33 0
0 A42 0 A44

 and [Ui] =


u11

0
u21

0

 . (5.3)

Based on recurrence formulae (5.1b) and (5.1c), it is easy to find that λ(k)α1m1 =
(−1)k λ(k)α2m1(k = 1, 2, . . .), which leads to A11 = A22, A33 = A44 and A31 =−A42.

Substituting the above-mentioned A and U into (3.12) results in two dynamical
equations of motion,

(m1 + A11)
du11

dt
+ A31

du21

dt
= dA11

ds
u11

(u11

2
− u21

)
− u2

21

d
ds

(
A31 + A33

2

)
(5.4)

and

A31
du11

dt
+ (m2 + A33)

du21

dt
=−dA33

ds
u21

(u21

2
− u11

)
+ u2

11

d
ds

(
A31 + A11

2

)
. (5.5)

Seen from an inertial reference frame with a relative velocity u0, velocities of the
two cylinders are u′11 and u′21, respectively, i.e. u11 = u0+u′11 and u21 = u0+u′21. Putting
these two expressions into (5.5) leads to

(m1 + A11)
du′11

dt
+ A31

du′21

dt
= dA11

ds
u′11

(
u′11

2
− u′21

)
− u′221

d
ds

(
A31 + A33

2

)
− u0

(u0

2
+ u′21

) d
ds
(A11 + A33 + 2A31) (5.6)

and

A31
du′11

dt
+ (m2 + A33)

du′21

dt
=−dA33

ds
u′21

(
u′21

2
− u′11

)
+ u′211

d
ds

(
A31 + A11

2

)
+ u0

(u0

2
+ u′11

) d
ds
(A11 + A33 + 2A31) . (5.7)

Therefore, an observer in that frame of reference should add two corrective
hydrodynamic forces to (5.5) so as to describe the same dynamical behaviour of
the two moving cylinders.

5.2. Dynamical behaviours of the three translating circular cylinders

In this section, let us discuss planar translations of three submerged circular cylinders
in order to expand our horizon regarding the nonlinear behaviour of many bodies
moving through a liquid. As N = 3, the number of independent instantaneous added-
mass coefficients is 21, and (3.7) may be reduced to

A2(α−1)+j,2γ−1 + iA2(α−1)+j,2γ = 2πρR2
αij−1

[
0.5 δαγ +

∞∑
i=0

λ
(3i+(3+γ−α)mod3)
αj11

]
(α, γ ∈ {1, 2, 3}; j= 1 or 2), (5.8a)
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where recurrence formulae of λ(i)αj11 are

λ
(0)
αj11 = 0, λ

(1)
αj11 = (−1)j H(1, 1,R(α+1)†, s̄α,(α+1)†),

λ
(2)
αj11 = (−1)j

[
H(1, 1,R(α+2)†, s̄α,(α+2)†)+

∞∑
l=1

H(1, l,R(α+2)†, s̄(α+1)†,(α+2)†)λ̄
(1)
αjl1

]
,

λ
(3i)
αj11 = (−1)j

∞∑
l=1

2∑
γ=1

H(1, l,Rα, s̄(α+γ )†,α)λ̄
(3i−3+γ )
αjl1 ,

λ
(3i+1)
αj11 = (−1)j

∞∑
l=1

2∑
γ=1

H(1, l,R(α+1)†, s̄(α+γ+1)†,(α+1)†)λ̄
(3i−2+γ )
αjl1 ,

λ
(3i+2)
αj11 = (−1)j

∞∑
l=1

2∑
γ=1

H(1, l,R(α+2)†, s̄(α+γ−1)†,(α+2)†)λ̄
(3i−1+γ )
αjl1 (i= 1, . . . ,∞).


(5.8b)

When the three cylinders are not too far apart and there are weak hydrodynamic
interactions between them, the added-mass coefficients can be simplified to the order
of O(|s12|−i |s23|−j |s31|−k) (i+ j+ k = 2), i.e.

A11 + iA12 ≈ πρR2
1,

A21 + iA22 ≈ πρR2
1i,

A31 + iA32 ≈ −2πρR2
2R2

1/s̄
2
12,

A41 + iA42 ≈ 2πρR2
2R2

1i/s̄2
12,

A51 + iA52 ≈ −2πρR2
3R2

1/s̄
2
31,

A61 + iA62 ≈ 2πρR2
3R2

1i/s̄2
31,

A33 + iA34 ≈ πρR2
2,

A43 + iA44 ≈ πρR2
2i,

A53 + iA54 ≈ −2πρR2
3R2

2/s̄
2
23,

A63 + iA64 ≈ 2πρR2
3R2

2i/s̄2
23,

A55 + iA56 ≈ πρR2
3,

A65 + iA66 ≈ πρR2
3i.



(5.9)

Based on (3.12), (3.8b), (5.8a) and (5.8b), the dynamical behaviour of three planar-
translating circular cylinders under fully hydrodynamic interactions can be predicted
numerically. The following are some interesting results.

When a large body translates initially at a higher speed than that of a trailing
smaller one, what will happen? Traditionally, the large body would move farther and
farther away from the following one. However, in a fully coupled three-body system,
the moving pattern is quite different. Figure 5(a) shows that for given parameters
and initial conditions, one trailing smaller circular cylinder translates initially at a
lower speed than those of two leading large ones, but after a short period of time
it will overtake the two forerunners. Variations of their velocities in the same time
interval are plotted in figure 5(b), which presents an illustration for the phenomenon.



518 R. Sun and C. O. Ng

(b)

1.2

0.8

(a)

4 8

–4

–2

0

2

4

4 80 12

6

–6
0 12

1.6

0.4

FIGURE 5. (a) Cylinder trajectories for a free–free interaction with ρ∗i = 0.8 (i = 1, 2, 3),
R∗1 = R∗3 = 1, and R∗2 = 0.5; (b) variations of their velocities in the x-direction. The initial
conditions are x∗10 = (1, 3), x∗20 = (0, 0), x∗30 = (1,−3), u∗10 = u∗30 = (1, 0) and u∗20 = (0.5, 0).
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FIGURE 6. (a) Cylinder trajectories for a free–free interaction with ρ∗i = 0.8 (i = 1, 2, 3),
R∗1 = R∗3 = 0.5, and R∗2 = 1 (white and black circles indicate five specific instants,
respectively); (b) variations of their velocities in the x-direction (black circles indicate
extreme positions). The initial conditions are x∗10 = (0, 3.4), x∗20 = (0, 0), x∗30 = (0,−3.4),
u∗10 = u∗30 = (0.5, 0) and u∗20 = (1, 0).

It is noticed from the figure that the velocities of two initially fast-translating large
cylinders gradually decrease in the x-axis direction with their approach to each
other; on the contrary, the velocity of the initially slow-translating trailing one rapidly
increases, and even greatly exceeds those of the two large ones in a short time. The
turning points of these velocities appear when the smaller cylinder just overtakes the
large ones in front. Therefore, one would observe an ejection phenomenon such that
two initially fast-translating large cylinders pull the initially slow-translating following
one moving in the same direction, and then eject it in front of them rather than
preventing it from approaching. This means that in the fully coupled system, part
of the kinetic energy of the two leading large cylinders is transferred to the trailing
smaller one through the medium of the liquid.

Another nonlinear behaviour of three bodies due to the hydrodynamic interaction is
illustrated in figure 6. Figure 6(a) shows that when a large circular cylinder is inserted
in the middle of two smaller identical ones and set at a higher initial translation
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FIGURE 7. Cylinder trajectories for a free–free interaction with ρ∗i = 0.8 (i = 1, 2, 3),
R∗1 = 0.25, R∗2 = 0.5 and R∗3 = 1. The initial conditions are x∗10 = (0, 1.9), x∗20 = (0, 0),
x∗30 = (0,−3), and u∗i0 = (1, 0) (i= 1, 2, 3).

speed than its two partners, the paths of the two smaller ones are sinuous. And
carefully checking several specific instants (see white and black circles) one may
observe that the large cylinder and the two smaller ones at its two sides would
alternately chase after each other. Figure 6(b) reveals variations of their horizontal
velocities in the ‘mutual pursuing’ process. Note that at the beginning, the horizontal
velocity of the large cylinder continuously decreases down to a minimum, and then
experiences a reverse velocity change, almost forming a symmetrical curve with
respect to x∗ = 17.34, whereas the horizontal velocities of the two outer smaller
ones increase rapidly up to a maximum at an early stage, and decrease quickly at a
later stage. There seems to be an approximate symmetry between the two curves with
respect to u∗ = 0.875. This illustrates that in the ‘mutual pursuing’ process the two
smaller circular cylinders translate in an oscillatory and velocity-varying manner, and
absorb kinetic energy from or give it to the large one.

Figure 7 shows a case such that when three circular cylinders initially side by side
translate forward and the two smaller cylinders are both on one side of the large one,
the large cylinder will collect the two smaller ones together unless they move too fast
to be stopped quickly, which exhibits an aggregating motion.

The behaviour of three identical circular cylinders translating along the x-axis is
plotted in figure 8(a). It is seen that when the cylinders are released at the same
initial velocity of unity, the leading cylinder accelerates forwards, whereas the two
following ones decelerate, the last one having maximum deceleration. It is obvious
that the three velocity curves are asymmetrical with respect to u∗ = 1. By comparison
of the instantaneous velocities of the three cylinders in figure 8(b), one may easily
find that the sum of their momentums is not constant although these identical bodies
start initially in a uniformly spaced alignment and with the same velocity. Projecting
pertinent physical variables in (3.12) onto the x-axis, the dynamical equation of motion
in this case becomes

d
dt
(A2α−1,1 + A2α−1,3 + A2α−1,5 + mα) uα1 = 0 (α = 1, 2, 3). (5.10)

It stands to reason that the momentum of the liquid should be involved in the motions
of these bodies. This reveals that their total momentum is a constant, and accelerations
of all the bodies are mutually coupled.
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FIGURE 8. (a) Axial displacements of three identical circular cylinders with ρ∗i = 0.8 and
R∗i = 1 (i = 1, 2, 3); (b) evolution of their velocities. The initial conditions are x∗10 = (0, 0),
x∗20 = (4, 0), x∗30 = (8, 0), and u∗i0 = (1, 0) (i= 1, 2, 3).
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FIGURE 9. (a) Axial displacements of three different-sized circular cylinders with ρ∗i =
0.8 (i= 1, 2, 3), R∗1 = 0.5, R∗2 = 0.25, and R∗3 = 1; (b) evolution of their velocities. The initial
conditions are x∗10 = (0, 0), x∗20 = (2, 0), x∗30 = (4, 0) and u∗i0 = (1, 0) (i= 1, 2, 3).

Figures 9 and 10 demonstrate other nonlinear translations along the x-axis of three
different-sized circular cylinders. By comparing figures 9 and 10 with 8, one can
observe clearly that in the last two cases, variations of the position and velocity of
the largest cylinder with respect to time are much smaller than those of the identical
cylinders in figure 8 in spite of smaller initial separation distances between cylinders.
This is due to the weaker hydrodynamic interaction the two smaller cylinders induce.
However, influence of the largest cylinder on the middle-sized one is still significant
although separated by a body, which results in relatively greater variations of the
latter position and velocity with respect to time. Regarding the motion of the smallest
cylinder, a strong nonlinear phenomenon is discovered. It is noticed from figures 9(b)
and 10(b) that its velocity change is rather rapid and significant during each chase
process, appearing wavy in shape. This indicates that at each early stage of the chase
the smallest cylinder, under the significant hydrodynamic interaction induced by the
largest one, approaches gradually the middle-sized one, but when the hydrodynamic
interaction caused by the middle-sized cylinder becomes more powerful than that
by the largest one, a resultant force would push it away from the middle-sized
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FIGURE 10. (a) Axial displacements of three different-sized circular cylinders with ρ∗i =
0.8 (i= 1, 2, 3), R∗1 = 1, R∗2 = 0.25, and R∗3 = 0.5; (b) evolution of their velocities. The initial
conditions are x∗10 = (0, 0), x∗20 = (2, 0), x∗30 = (4, 0), and u∗i0 = (1, 0) (i= 1, 2, 3).

FIGURE 11. Another initial configuration notation for three translating circular cylinders.

cylinder until the influence of the largest one again becomes greater. The nonlinear
movement of the smallest cylinder becomes weaker and weaker with a decreasing of
the hydrodynamic interaction.

In order to discuss in the following the dynamical behaviours of three translational
cylinders conveniently, the initial separation distances si0 (i = 1, 2) and angle α of
inclination are adopted, as shown in figure 11.

Figure 12 exhibits the complicated nonlinear behaviour of three identical circular
cylinders with different initial positions. It is noticed from the figure that with a
small initial angle α of inclination, trajectories of the three cylinders appear to be
convergent. As α exceeds a specific angle αc (αc = 45◦), trajectories of the two outer
cylinders become divergent. With the initial inclination angle over 75◦, the middle
cylinder changes its target for pursuit from the one initially behind to the other in
front. Two other cases with different-sized cylinders are plotted in figures 13 and
14. It is also seen from these two figures that trajectories of the three cylinders are
still convergent but toward the larger one within a range of the initial inclination
angle, and as α exceeds 45◦, trajectories of the two outer cylinders start to diverge.
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FIGURE 12. Trajectories of three identical circular cylinders of ρ∗i = 0.8 and R∗i = 1 (i =
1, 2, 3) with initial separation distances, s∗i0 = 4 (i = 1, 2), and initial translational velocities,
u∗i0 = (1, 0) (i= 1, 2, 3) for various angles α.
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FIGURE 13. Trajectories of three different-sized circular cylinders of ρ∗i = 0.8 (i = 1, 2, 3),
R∗1 = R∗2 = 0.5 and R∗3 = 1 with initial separation distances, s∗i0 = 3 (i = 1, 2), and initial
translational velocities, u∗i0 = (1, 0) (i= 1, 2, 3) for various angles α.

In figure 13, the middle cylinder is always approaching the large one for an initial
condition of α < 75◦ due to the aggregating effect, and beyond this critical initial
angle it is pushed away from the large one due to an intense repulsive hydrodynamic
interaction induced by the large body, whereas in figure 14, the critical value of the
initial inclination angle is about α = 60◦. Moreover, it is observed from the curve for
α = 60◦ that the trajectories of the two small cylinders intersect twice during their
evolution. One reasonable explanation is that the smallest cylinder first crosses the
path of the middle-sized one due to strong repulsive hydrodynamic force induced by
the largest one, and with its approach to the middle-sized cylinder, the hydrodynamic
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FIGURE 14. Trajectories of three different-sized circular cylinders of ρ∗i = 0.8 (i = 1, 2, 3),
R∗1 = 1, R∗2 = 0.25 and R∗3 = 0.5 with initial separation distances, s∗i0 = 3 (i= 1, 2), and initial
translational velocities, u∗i0 = (1, 0) (i= 1, 2, 3) for various angles α.

interaction between them becomes more and more powerful and drives the smallest
cylinder back towards largest one, causing a second path intersection. When α > 65◦,
the smallest cylinder would be driven to travel across the path of the middle-sized one
and go ahead of it.

6. Concluding remarks
In this paper hydrodynamic interactions among many circular cylinders planar-

translating in an unbounded inviscid liquid are investigated theoretically. A
constructive method, which combines successive offset functions in a ‘generalized
cyclic permutation’ manner, is presented here so as to obtain the complex potential of
N moving circular cylinders; the method can be extended to resolve the problem
of many submerged elliptic cylinders when associated with the extended circle
theorem (see Sun & Chwang 2000) or three-dimensional bodies on condition that
the pertinent harmonics are reasonably chosen. For example, for the problem of
N submerged spheres, solid spherical harmonics are adopted as basis sets and
Ym

n (θα, φα)/r
n+1
α (α ∈ {1, . . . ,N}) as offset functions maintaining the surface of sphere

α, where rα denotes its radius and Ym
n (θα, φα) is a spherical harmonic function of

degree n and order m in its body-fixed coordinates. In addition, the energy-based
Lagrangian framework and momentum-type one were proved to be equivalent in the
two-dimensional case. The equivalence implies that the kinetic energy Tf expressed by
(3.1) maintains a local dynamical equilibrium in the body–liquid system; the pressure
integration around a submerged body is holographic, which exhibits information
about accelerations of all bodies. These accelerations are coupled with one another
by added masses so none of the others can be determined if some acceleration is
unknown. The equivalence suggests that no matter which framework one adopts one
has to solve (3.12) so as to predict the nonlinear behaviour of the cylinders under
fully hydrodynamic interaction. More importantly, Galilean relativity is unsuitable for
describing the submerged moving bodies under the hydrodynamic interaction.

Generally, as two circular cylinders translate side by side through a liquid, an
instantaneous attractive force is exerted on them; whereas as they translate along the
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FIGURE 15. Configuration of N circles and various complex planes.

line joining their centres, the instantaneous force becomes a repulsive one. But the
hydrodynamic interaction in a body–liquid system of more than two bodies is not easy
to predict, and it certainly leads to complicated dynamical behaviour of these bodies.
For a better understanding of the behaviour, taking a case of three translational circular
cylinders for example, they are classified into the several simple patterns. When
three circular cylinders translate initially side by side, the stronger attractive force
induced by the large cylinder drives the two smaller to approach it, resulting in an
aggregating motion. As physical and kinematic parameters of the two outer cylinders
are symmetric with respect to the movement of the middle one, the middle and two
outer cylinders would chase after each other alternately, especially in the case that the
middle cylinder is large relative to the two outer ones. When three circular cylinders
translate along a line and in the same direction, repulsive forces push them away from
each other. If the three cylinders are of different sizes, the middle smallest one may
translate to and fro, which depends on an instantaneous resultant force induced by the
other cylinders at the two sides. Other more complicated dynamical behaviours can
be found through integrating several simple patterns, with which one can predict such
phenomena as aggregations of the bodies, their trajectory divergences and trajectory
intersections.
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Appendix. Solution of the Hilbert boundary-value problem
To derive a solution satisfying boundary condition (2.3), a series of fundamental

solutions first have to be constructed. For convenience, in the complex plane Z the
centre of every circle α (α ∈ {1, . . . ,N}) is denoted by zα (zα = xα1 + ixα2), and N
auxiliary complex planes Z′α (α = 1, . . . ,N) are established with their origins at the
corresponding zα, respectively, as shown in figure 15.

In this situation, therefore, there are the following argument transformations:

z′α − z′β = sαβ (α, β = 1, . . . ,N;α 6= β), (A 1a)
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and separation distance relationships:

zα − zβ = sβα (α, β = 1, . . . ,N;α 6= β). (A 1b)

In order to solve the problem, a so-called generalized cyclic permutation approach
is introduced in the paper. It requires that in a unidirectional cyclic process, every
subsequent added singularity should be only determined by pre-N − 1 singularities
to satisfy the local boundary condition. Let us consider a basic function w11n0 which
expresses a translation of single circle 1 along the horizontal axis and takes the form

w[1]11n0 = 1/z′n1 (n ∈ N), (A 2)

where N is the set of natural numbers and superscript [1] means that all arguments are
expressed in the Z′1 plane. When circle 2 is put at z2, around the circle, w11n0 can be
expressed in Z′2 as

w[2]11n0 = 1/ (z′2 + s12)
n =

∞∑
m=0

(−1)m
(

m+ n− 1
m

)
z′m2 /s

m+n
12 , (A 3)

where
(

m+ n− 1
m

)
denotes a binomial coefficient. Based on the ratio test, the infinite

series in (A 3) converges uniformly as |z′2| < |s12|. The convergence domain includes a
nearby zone of circle 2. In order to ensure a constant imaginary boundary condition on
the circle, an offset function w11n1 should be added according to the Milne-Thomson
circle theorem (see Batchelor 1967, and the reference therein),

w[2]11n1 =
∞∑

m=1

(−1)m H(m, n,R2, s̄12)/z
′m
2 =

∞∑
m=1

λ
(1)
11mn/z

′m
2 , (A 4a)

where H(m, n,R, s)=
(

m+ n− 1
m

)
R2m/sm+n, and

λ
(1)
11mn = (−1)m H(m, n,R2, s̄12). (A 4b)

By the same criterion, the infinite series in (A 4a) converges uniformly as |z′2| >
R2

2/|s12|, which indicates that it also converges in the region outside circle 2. When
circle 3 is introduced at z3, the sum of w11n0 and w11n1 around circle 3 expressed in Z′3
becomes

w[3]11n0 + w[3]11n1 =
∞∑

m=0

(−1)m z′m3

[(
m+ n− 1

m

)
/sm+n

13 +
∞∑

l=1

(
m+ l− 1

m

)
λ
(1)
11ln/s

m+l
23

]
(|z′3|<min{|s13|, |s23|}), (A 5)

which violates the boundary condition on circle 3, and another offset function w11n2
should be put into the domain so as to satisfy a constant imaginary boundary condition
on the circle, that is,

w[3]11n2 =
∞∑

m=1

λ
(2)
11mn/z

′m
3 (|z′3|>max{R2

3/|s13|,R2
3/|s23|}), (A 6a)

where

λ
(2)
11mn = (−1)m

[
H(m, n,R3, s̄13)+

∞∑
l=1

H(m, l,R3, s̄23)λ̄
(1)
11ln

]
. (A 6b)
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When circle β (β ∈ {2, . . . ,N}) is inserted into the domain, the (β − 1)th offset
function w11n,β−1 should be brought in at zβ to counteract the effect of pre-β − 1
singularities on its own circle. Following the same process up to the introduction of
circle N into the domain, the expressions for N − 1 offset functions are derived in the
form

w[β]11n,β−1 =
∞∑

m=1

λ
(β−1)
11mn /z

′m
β (|z′β |>max{R2

β/|s1β |, . . . ,R2
β/|sβ−1,β |}) (β = 2, . . . ,N),

(A 7a)

where

λ
(β−1)
11mn = (−1)m

[
H(m, n,Rβ, s̄1β)+

∞∑
l=1

β−2∑
α=1

H(m, l,Rβ, s̄α+1,β)λ̄
(α)
11ln

]
. (A 7b)

These N−1 offset singularities outside would break the boundary condition on circle 1,
and the corresponding offset function w11n,N should be added to the domain. This
means that at every cyclic step from now on, a new offset function will be added to
counteract the effect of pre-N − 1 singularities on a following circle. However, every
N steps will lead to cyclic variables occurring in the expressions. Therefore, a cyclic
permutation function has to be introduced, which is defined as

α† = α −
[
α − 1

N

]
N (α ∈ N), (A 8)

where [x] denotes the integral part of x.
Repeating the above process yields an infinite sequence of offset functions, and

the sum of the initial function and all offset functions sorted alternately into N
singularities at every zα (α = 1, . . . ,N) becomes a fundamental solution to the N-circle
problem, that is,

w11n =
∞∑

i=0

w11ni = 1
z′n1
+

N∑
α=1

∞∑
m=1

1
z′mα

∞∑
i=0

λ
(Ni+α−1)
11mn (n ∈ N), (A 9a)

where recurrence formulae of λ(i)11mn are

λ
(0)
11mn = 0,

λ
(j)
11mn = (−1)m

[
H(m, n,Rj+1, s̄1,j+1)+

∞∑
l=1

j−1∑
α=1

H(m, l,Rj+1, s̄α+1,j+1)λ̄
(α)
11ln

]
(j= 1, . . . ,N − 1),

λ
(Ni)
11mn = (−1)m

∞∑
l=1

N−1∑
α=1

H(m, l,R1, s̄(α+1)†,1)λ̄
(N(i−1)+α)
11ln ,

λ
(Ni+1)
11mn = (−1)m

∞∑
l=1

N−1∑
α=1

H(m, l,R2, s̄(α+2)†,2)λ̄
(N(i−1)+α+1)
11ln ,

· · · · · · · · · · · ·

λ
(N(i+1)−1)
11mn = (−1)m

∞∑
l=1

N−1∑
α=1

H(m, l,RN, s̄α†,N)λ̄
(Ni+α−1)
11ln (i= 1, . . . ,∞).



(A 9b)
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Next let us consider another basic function w12n0 which expresses a translation of
single circle 1 along the vertical axis and takes the form

w[1]12n0 = i/z′n1 (n ∈ N). (A 10)

By adopting the same process, the other fundamental solution to the N-circle
problem can be derived as

w12n =
∞∑

i=0

w12ni = i

[
1
z′n1
+

N∑
α=1

∞∑
m=1

1
z′mα

∞∑
i=0

λ
(Ni+α−1)
12mn

]
(n ∈ N), (A 11a)

where recurrence formulae of λ(i)12mn are

λ
(0)
12mn = 0,

λ
(j)
12mn = (−1)m+1

[
H(m, n,Rj+1, s̄1,j+1)+

∞∑
l=1

j−1∑
α=1

H(m, l,Rj+1, s̄α+1,j+1)λ̄
(α)
12ln

]
(j= 1, . . . ,N − 1),

λ
(Ni)
12mn = (−1)m+1

∞∑
l=1

N−1∑
α=1

H(m, l,R1, s̄(α+1)†,1)λ̄
(N(i−1)+α)
12ln ,

λ
(Ni+1)
12mn = (−1)m+1

∞∑
l=1

N−1∑
α=1

H(m, l,R2, s̄(α+2)†,2)λ̄
(N(i−1)+α+1)
12ln ,

· · · · · · · · · · · ·

λ
(N(i+1)−1)
12mn = (−1)m+1

∞∑
l=1

N−1∑
α=1

H(m, l,RN, s̄α†,N)λ̄
(Ni+α−1)
12ln (i= 1, . . . ,∞).



(A 11b)

As for a basic function pair which represents two translations of single circle
α (α ∈ {1, . . . ,N}) along the horizontal and vertical axes respectively and takes the
form wα1n0 = 1/z′nα and wα2n0 = i/z′nα (n ∈ N), the corresponding fundamental solution
pair to the N-circle problem can be obtained according to the cyclic substitution
principle, and they are

wα1n = 1
z′nα
+

N∑
γ=1

∞∑
m=1

1
z′m
(γ+α)†

∞∑
i=0

λ
(Ni+γ )
α1mn (α ∈ {1, . . . ,N}; n ∈ N), (A 12a)
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where recurrence formulae of λ(i)α1mn are

λ
(0)
α1mn = 0,

λ
(j)
α1mn = (−1)m

[
H(m, n,R(α+j)†, s̄α,(α+j)†)+

∞∑
l=1

j−1∑
γ=1

H(m, l,R(α+j)†, s̄(α+γ )†,(α+j)†)λ̄
(γ )

α1ln

]
(j= 1, . . . ,N − 1),

λ
(Ni)
α1mn = (−1)m

∞∑
l=1

N−1∑
γ=1

H(m, l,Rα, s̄(α+γ )†,α)λ̄
(N(i−1)+γ )
α1ln ,

λ
(Ni+1)
α1mn = (−1)m

∞∑
l=1

N−1∑
γ=1

H(m, l,R(α+1)†, s̄(α+γ+1)†,(α+1)†)λ̄
(N(i−1)+γ+1)
α1ln ,

· · · · · · · · · · · ·

λ
(N(i+1)−1)
α1mn = (−1)m

∞∑
l=1

N−1∑
γ=1

H(m, l,R(α+N−1)†, s̄(α+γ−1)†,(α+N−1)†)λ̄
(Ni+γ−1)
α1ln

(i= 1, . . . ,∞),


(A 12b)

and

wα2n = i

[
1
z′nα
+

N∑
γ=1

∞∑
m=1

1
z′m
(γ+α)†

∞∑
i=0

λ
(Ni+γ )
α2mn

]
(α ∈ {1, . . . ,N}; n ∈ N), (A 13a)

where recurrence formulae of λ(i)α2mn are

λ
(0)
α2mn = 0,

λ
(j)
α2mn = (−1)m+1

[
H(m, n,R(α+j)†, s̄α,(α+j)†)

+
∞∑

l=1

j−1∑
γ=1

H(m, l,R(α+j)†, s̄(α+γ )†,(α+j)†)λ̄
(γ )

α2ln

]
(j= 1, . . . ,N − 1),

λ
(Ni)
α2mn = (−1)m+1

∞∑
l=1

N−1∑
γ=1

H(m, l,Rα, s̄(α+γ )†,α)λ̄
(N(i−1)+γ )
α2ln ,

λ
(Ni+1)
α2mn = (−1)m+1

∞∑
l=1

N−1∑
γ=1

H(m, l,R(α+1)†, s̄(α+γ+1)†,(α+1)†)λ̄
(N(i−1)+γ+1)
α2ln ,

· · · · · · · · · · · ·

λ
(N(i+1)−1)
α2mn = (−1)m+1

∞∑
l=1

N−1∑
γ=1

H(m, l,R(α+N−1)†, s̄(α+γ−1)†,(α+N−1)†)λ̄
(Ni+γ−1)
α2ln

(i= 1, . . . ,∞).


(A 13b)

It should be noted that two fundamental solution sets, wα1n and wα2n(α ∈
{1, . . . ,N}; n = 1, . . . ,∞), can be employed to construct such a solution that satisfies
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both a given boundary function on circle α and constant imaginary boundary
conditions on the other N − 1 circles. It means that

Re

[
n(z)

d
dz

2∑
j=1

∞∑
n=1

Cjnwαjn

]
=
{

Re[n̄(z)V(z)] (z ∈ cα)
0 (z ∈ cβ(β 6= α)), (A 14)

where Cjn (j = 1, 2; n = 1, . . . ,∞) are all real constants. From the uniqueness of
the Fourier expansion, it is easy to prove that (A 14) holds if every Cjn is properly
chosen. Therefore, according to the superposition principle, the linear combination of
all wαjn (α = 1, . . . ,N; j= 1, 2; n= 1, . . . ,∞) forms a continuous function w(z),

w(z)=
N∑
α=1

2∑
j=1

∞∑
n=1

Cαjnwαjn, (A 15)

which can satisfy the given boundary conditions on all circles, (2.3), by an appropriate
choice of all real constants Cαjn (α = 1, . . . ,N; j= 1, 2; n= 1, . . . ,∞).
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