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Abstract

We consider the problem of choosing a level of the public good for an
economy in which agents have continuous and single-peaked preferences
(Black, 1948). We show that a solution satisfying strategy-proofness and
continuity if and only if it is an augmented median-voter solution. An aug-
mented median-voter solution is described in terms of 2™ parameters (which
satisfy an anti-monotonicity condition) as follows: n+ 1 of them are selected
according to an increasing order of the peaks; the outcome is the median of
these n + 1 parameters and the n peaks. This result establishes a formal
connection between strategy-proofness and a generalized notion of median
voter. (Similar median formulas were used hy Moulin (1980) to describe
smaller classes of solutions.) We provide an interpretation of these 2™ pa-
rameters in terms of the following properties: anonymity. voter sovereignly,
unanimity, and Pareto efficiency.

Keywords: strategy-proofness, single-peaked preferences, augmented
meclian-voter solutions



1 Introduction

We consider the problem of choosing a public good level for an economy
in which agents have continuous and “single-peaked” preferences (Black,
1948). A preference is single-peaked if more is strictly preferred to less up
to a point, and less to more beyond that point. The preferred point is
commonly referred as the peak of the preference. A solution is a systematic
way to associate a public good level with each economy. We are interested in
solutions that provide incentive to the agents to reveal their true preferences.
The strongest such incentive compatibility requirement is strategy-proofness:
no agent can ever benefit fromn misrepresenting his preference, regardless of
whether the other agents misrepresent or not.

Moulin (1980) first characterized the class of strategy-proof solutions sat-
isfying peak only; the requiremeut that solutions depend only on the peaks of
the preferences. He described each of them by means of a “minmax formula”
with 2™ parameters. The parameters are known as “phantom voters”. Let
us call these solutions minmaz solutions. It is well-known that two different
sets of 2™ parameters can be used to describe the same minmax solution.

Instead of peak only, we consider the property of “continuity” (with re-
spect to preferences). We show that a solution satisfying strategy-proofness
and continuity can be described in terms of 2™ parameters (which satisfy
an anti-monotonicity condition) as follows: n 4 1 of them are selected ac-
cording to an increasing order of the peaks; the outcome is the median of
these 1 + 1 parameters and the n peaks. We name these solutions aug-
mented median-voter solutions. This result establishes a formal connection
between strategy-proofness and a generalized notion of median voter. In
contrast to the minmax solutions, an augmented median-voter solution is
unicuely identified by its 2" parameters. Similar median formulas were used
by Moulin (1980) to describe classes of strategy-proof solutions satisfying
aclditional properties.

We show that several conditions are equivalent to strategy-proofness
and continuity together. A solution satisfies strategy-proofuness and any
one of the following four conditions: (i) contiunuity; (ii) peak only; (iii)
“peak monotonicity”; or (iv) the range is a closed interval; if and only if
it is “uncompromising” (Border and Jordan, 1983). Heuce, it follows from



Moulin’s (1980) characterization and our characterization that the class of
minmax solutions and the class of augmented median-voter solutions are
the same. Then we show how a minmax solution is related to the same
augmented median-voter solution in terms of their parameters.

We also consider the following properties: voter sovereignty: no alter-
native is a priori excluded; unanimity: if the preferred alternatives of all
agents are the same, then this alternative is chosen; Pareto effiriency: an
alternative is chosen only if there is no other alternative that is preferred
by all agents and strictly preferred by at least one agent; and anonymily:
the names of the agents do not matter. Given an augmented median-voter
solution, its parameters actually coincide with the outcomes of the solu-
tion for the economies in which the peaks of the agents are equal to either
the lowest or highest feasible level. Consequently, the range of the solution
is determined by the smallest and largest parameters. More interestingly,
wliether the solution satisfies voter sovereignty, unanimity, and Pareto ef-
ficiency depends only on the same 2 parameters; and whether it satisfies
anonymity depends only on the other 2™ — 2 parameters, The parameters
therefore correspond naturally to these properties and we prefer to interpret
the parameters in this way.

In addition, this interpretation gives a simple proof of the characteri-
zatiou of generalized median-voter solutions: the outcome is the median of
these n—1 parameters and the peaks of the n agents. The properties involved
are anonymity, voter sovereignty, and strategy-proofess. This characteri-
zatiou strengthens Moulin’s (1980) result by weakening Pareto efficiency to
voter sovereignty, and by dropping peak only. The stronger result is con-
tained in Barbera, Gal, and Stacchetti (1993) and Barbersd and Jackson
(1994), which can be traced back to Border and Jordan.

The first systematic study of strategy-proofness was conducted by Gib-
bard (1973) and Satterthwaite (1975) on the abstract Arrovian domain.
Their celebrated result is that a solution with at least three outcomes is
strategy-proof if and only if it is “dictatorial” (a solution is diclatorial if
there is an agent whose preferred poiut is always chosen). Recently. there
has heen cousiderable attention to the study of strategy-proofness in eco-
nomic and political environments.! We will discuss in detail the connection

!Strategy-proofness has also been studied in matching models. See Roth (1982) and
Alcalde and Barbera (1994) for the one-lo-one case; Sinmez (1994) for the many-to-one



with five closely related papers: Moulin (1980); Border and Jordan; Bar-
bera, Gill, and Stacchetti; Barberd and Jackson; and Danilov (1994). The
reader is referred to Muller and Satterthwaite (1985) for a survey of the
earlier literature; Sprumont (1995) and Thomson (1993a) for surveys of the
recent literature.

The paper is organized as follows: Section 2 describes the model and
the main results. Section 3 contains the proofs and other related results.
Section 4 concludes.

2 The Model and the Main Results

We consider the problem of choosing a level of the public good in an interval
[0, M] for a group of agents N = {1,...,n}. Each agent i € N is equipped
with a continuous preference relation R; over [0, M]|. Let P; he the strict
relatiou associated with R;, and J; the indifference relation. Tlhe preference
relation R; is single-peaked if there exists a number p(R;) € [0, M| such that
for all z,y € [0, M] with |y < = < p(R;)| or [p(Ri) < = < y|, we have zPy.
Let R be the class of all single-peaked preference relations. The preference
relation R; € R can be described by the function #; : [0, M]—|0, M] such
that for all z € [0, p(Ri)], ri(x) = y if there exists y € [p(R:), M| such that
ylzz, or ri(x) = M otherwise; for all = € [p(R;), M], ri(z) = y if there
exists y € [0,p(R;)| such that yliz, or ri(x) = 0 otherwise. A preference
profile is a list R = (Ry,...,R,) € RT. Since the interval is fixed, an
economy is simply denoted by a preference profile. A solution is a function
@ : R?—10, M| which associates a public good level with each economy.

Our main property is the incentive compatible requirement that no agent
can ever benefit from misrepresenting his preference in the direct revelation
game associated with the solution.

Strategy-proofness: For all R € R%. all i € N, and all R} € R,
¢(R)Rip(R}, R—i).

Mowlin (1980) first characterized the class of strategy-proof solutious
satisfying peak only: for all R, R’ € RY, if p(R;) = p(R}) for all i € N, then

case.



¢(R) = ¢(R'). He described such a solution in terms of a list of parameters
b= (bs)gcy € [0, M]*" as follows:

VR € R?, XP°(R) = min {max{{p(R:)}ics, bs}}.
' SCN

Let .¥ = {X°|b € [0, M]?"} be the class of minmaz solutions. The parame-
ters are known as “phantom voters”.

Example 1: Let N = {1,2}, R € R? be such that p(R)) = 2 and
p(R2) = 5, and by = 5, byyy = 7, byoy = 3, by = 1. Then X*(R) =
min{5, max{2, 7}, max{5, 3}, max{2, 5. 1}} = 5. If we change by to b’{” =

5, Xb’(R) =5 = X%R). Indeed. X* and X* represent the same solution.

Peak only is a strong property. It requires that solutions depend only
on the peaks of the preferences.” Instead. we consider the requirement that
if the preferences of an agent change “a little.” then the chosen level does
not change much. Formally, given two preference relations R;, R} € Ry, let
d(R;, R}) = max{|ri(x) — ri(z)||x € |0, M|} be the distance between R; and
R]. A sequence of preference relatious {R¥} in R, converges to R;, written
as Ry— R, if as v—o0, d(Ri, RY)—0.

Continuity: For all R € Ry, alli € N, and all {R}} in R, if R¥—R;,
then ¢(RY, R_;)—¢(R).?

We show that a solution satisfying strategy-proofness and continuity
can be described in term of a list of parameters a = (ag)gc v € [0, M| as
follows: '

VS, QCN s.t. $2Q, ag < ag and (1)
VR € RY, VU(R) = med{p(Ri,).p(R4,),--.,p(Rs,) s Ofiy s Oiyigho - - - JanN},

nII
(2)

where p(R;;) < p(Riy) £ ... < p(Ry,).

?However, Barbera and Jackson pointed out that peak only is not so demanding in the
presence of strategy-proofness. Intuitively, a strategy-proof solution is unlikely to depend
on detailed information of the preferences. See Remark 3 for a formal statement of their
result.

37This intuitive definition of continuity was formulated by Sprumont (1961). 1t coincides
with the continuity condition in the Hausdorff sense.



We name this solution an augmented median-voler solution. Let V =
{V9a € [0, M]*" satisfying (1)} be the class of augmnented median-voter
solutions. (Similar median forinulas were used by Moulin (1980) to describe
classes of strategy-proof solutions satisfying additional properties.)

Theorem: The augmentied median-voter solutions are the only solutions
satisfying strategy-proofness and continuity.

Example 2: Let N, R be the same as in Example 1, and « = b’ (in
Example 1). Then V2%(R) = med{2,5,5,3,1} = 5. The reader can verify
that V% = X?. (This equivalence is not a coincidence and it follows from
Proposition 1.)

In (2), the n + 1 parameters are selected from 2" parameters according
to an increasing order of the peaks. If there are at least two agents whose
peaks are the same. then the parameters can be selected in more than one
way. We want to empliasize that the outcomes of V¢ are invariant to all
these selections. (See Remark 1 for a proof.)

It is easy to see that an augmented median-voter solution V¢ is uniquely
identified by the list of parameters a. Let V7%, V% €V be such that ap # a'Q
for some QCN. For notational simplicity, let Q@ = {1,...,q}. Let R € R}
be such that p(R)) = ... = p(Rq) = 0 and p(R¢+1) = ... = p(Rn) = M.
Then VA(R) = ag # ag = Ve (R).

Fact: The parameters of an augmented median-voter solution V¢ are
actually equal to its outcomes for the economies in which the peaks of the
agents are equal to either the lowest or highest feasible level. For all i € N,
let R; € R be such that p(R;) = 0 and R; € R be such that p(R;) = M.
It follows that V*(Rg, R—g) = ag for all SCN, where (Ry.R-N) = R
and (ﬁw,ﬁ_w) = R. This fact is crucial to understand the subsequent
interpretation of the parameters a.

Note that each augmented median-voter solution is peak only. In fact,
we show that several conditions are equivalent to strategy-proofness and
continuity together. A solution satisfies strategy-proofness and any omne
of the following four conditions: (i) coutinuity; (ii) peak only; (iii) “peak
monotonicity”; or (iv) the range is a closed interval; if and only if it is



“uncompromising”.* Hence, the class of augmented median-voter solutions
and the class of minmax solutions are the same. The following result relates
a minmax solution and the same augmented median-voter solution in terms
of their parameters.

Proposition 1: Let X* € .¥ be ¢ minmaz solulion and V® € V be an
augmented median-voter solution. The solutions X° and V® are the same if
and only if ag = mingc g{bg} for all SCN.

Indeed, Moulin (1980) pointed out that there is no loss of generality to
describe the class of minmax solutions with 2% parameters satisfying (1)
(see Remark 2 also). We can deduce from Proposition 1 that two minmax
solutions Xb, XY are the same if and only if the parameters b, b are such that
mingc ¢{bg} = 111i11Q§s{b£2} for all SCN. We will provide an interpretation
of parameters satisfying (1) in terms of the properties discussed helow (see
Remark 4).

The class of augmented median-voter solutions is very rich. For instance,
it includes two classes of degenerate strategy-proof solutions. One class is
the class of constant solutions denoted by ¢ = {C'*|a € [0, A7]}: for all
C™ € C and all R € R}, C"Y(R) = a. An augmented median-voter solution
is a constant solution if ag = a for all SCN. The other one is the class
of dictatorial solutions denoted by D = {D'|i € N}: for all D* € D and
all R € R?, DYR) = p(R;). Au augmented mediau voter solution is a
dictatorial solution if ag = 0 for all SCN such that § 54, and ag = M for
all SCN such that S # ¢, where agent ¢ is the dictator.

A constant solution says that all levels. but one, are excluded. A natural
way to rule out the constant solutions is to require no level he a prior:

excluded.

Voter sovereignty: For all = € [0. M]. there exists R € R” such that
©(R) = z.

For strategy-proof solutions, we show that voter sovereignty makes con-

*Let us mention some closely related results in the literature. Border and Jordan
showed that an uncompromising solution is strategy-proof, continuous, and peak only.
Barbera, Giil, and Stacchetti showed that a strategy-proof solution with a closed range is
peak only. The reader is recommended to see these two papers for details and also Barbera
and Jackson; Kim and Roush (1984), and Peters. van der Stel. and Storcken (1991).

6



tinuity redundant. It is very similar to the result due to Border and Jor-
dan; Barbera, Giil, and Stacchetti; and Barbera and Jackson of which voter
sovereignty and strategy-proofuess together imply peak only.

Proposition 2: If a strategy-proof solulion sctisfies voter sovereignty,
then it is continuous.

Then we characterize the class of solutions satisfying voter sovereignty
and strategy-proofness as a subclass of the augmented median-voter solu-
tions. Each of them satisfies the additional requirements that ay = 0 and
ap = M. Therefore, it can Le described in terms of 2™ — 2 parameters.

Another way to rule out constant solutions is to impose some optimality
requirement on a solution ¢. such as unanimity: for all R € RY, if p(R;) =
p(R;) for all i,j € N, then ¢(R) = p(R;); or Pareto efficiency: for all
R € R, thereis no « € [0, M] such that xR;p(R) for alli € N, and zP;o(R)
for some ¢ € N. In this model, Pareto efficiency can be conveniently written
as follows: for all R € R?, ¢(R) € |minen{p(Ri)}, max;en{p(Rs)}|. Note
that voter sovereignty is weaker than unanimity, which in turn is weaker
than Pareto efficiency.

It is interesting that even though the subclass of augmented median-voter
solutions satisfying voter sovereiguty is characterized without any optimality
requirement, it nonetheless satisfies Pareto efliciency (and a fortiori unanim-
ity). Let V% be an augimented median-voter solution in this subclass. Since
any = 0 and ag = M, then the outcomes of VV? are always the median of n
peaks and n — 1 parameters, so V%(R) € [minjen{p(Ri)}. maxien{p(Ri)}]
for all R € RY. Therefore, for strategy-proof solutions. voter sovereignty,
unanimity, and Pareto efficiency are all equivalent (Border and Jordan).

A dictatorial solution says that there is an agent whose preferred point
is always chosen. To rule out dictatorial solutions. we impose the non-
discriminatory requirement that solutions do not depend on the names of
the agents. (Other similar recuirements are “symmetry” and “no-envy”
(Foley, 1967). Note that both of them are vacuous in models with only
public commodities.)

A permutation of order n is a bijection 7 : N—N. Let Il be the collection
of all such permutations. Given = € I, let Rz = (Ry(1),- - -+ Ra(n))-



Anonymity: For all R € R} and all n € I1, ¢(R) = ¢(Rr).

The class of solutions satisfying anonymity, strategy-proofness, and con-
tinuity can be characterized as a subclass of the class the augmented median-
voter solutions. Each of them satisfies the additional requirements that
as = ag for all 5,8" C N such that [S| = |S/| > 0. Therefore, it can
be described in terms of n + 1 parameters. (The same class of solutions is
characterized by Moulin (1980) with continuity replaced by peak only.)

Altogether, we conclude that any solution satisfving anonymity, voter
sovereignty, and strategy-proofiiess can he described in terms of a list of

parameters o = (¢;)17) € [0, M]"~! as follows:

YR € Ry, WHR)=med{p(R1)....,p(Rn)a1,..., an-1}.
Moulin (1980) named this solution a generalized Condorcet-winner solution.

Corollary: The generalized Condorcei-winner solutions are the only so-
lutions satisfying anonymity, voler sovereignty. and strategy-proofness.

Moulin (1980) first characterized the generalized Condorcet-winner solu-
tions by means of anonymity, Pareto efficiency, strategy-proofness, and peak
only.® The corollary strengthens this characterization. The stronger result is
contained in Barbera, Giil. and Stacchetti and Barbera and Jackson, which
can be traced to Border and Jordan.

3 The Proofs and Other Results

We first show that several conditions are equivalent to strategy-proofness
and continuity together. The following lemma says that a solution satisfies
strategy-proofness and continuity if and ouly if its outcome is the median of
the peak of an agent and two outcomes of the solution obtained by choosing

®Moulin (1984) also characterized the generalized Clondorcet-winner solutions mainly
by two standard independence axioms: “Arrow independence of irrelevant alternatives”
and “Nash independence of irrelevant alternatives”. Thomson (1993D) characterized a sub-
class of the generalized Condorcet-winner solutions using “replacement-domination” as the
main axiom. Thomson and Ching (1992) consider the problem in a variable population en-
vironment and characterize the same solutions on the basis of “population-nonotonicity”.



the peak of that agent equal to either 0 or M, the preferences of the other
agents being held fixed.

Lemma 1: A solution ¢ satisfies strategy-proofness and continuity if
and only if for all R € RY and alli € N,

@(R) = med{p(R:), »(Ri, R—i),(Ri, R-i)}. (3)

Proof: Let ¢ be a solution satisfying strategy-proofness and continuity.
Let R € R} and ¢ € N. We first show that ¢(R;, R_;) < o(Ri, R_;). Sup-
pose, by contradiction, that o(R;, R_;) < @(R;, R—;). Then ©(R;,R_;) <
©(R;; R_i) < p(Ri), so o(R; R_i)Pip(Ri, R_i). contradicting strategy-
proofness. We proceed by distinguishing two cases.

Case 1: p(R;) € (¢(Ri R-i),o(Ri R_3)).

Then med{p(R;), ¢(R;: R—i).2(Ri. R-;)} = p(R;). Suppose. by contra-
diction, that ¢(R) # p(R;) and, without loss of geuerality, that ¢(R) <
p(R;). Let R; € Ry be such that p(R]) = p(R;) and o(R;, R—i)P/¢(R). Let
{R?} in R be a sequence of preference relations such that for all v € [0, 1]NKQ
and all z; € [0,p(R:)], 72(zi) = (1 = v)ri(ws) + vri(a;). Note that R = R;
and R} = R}. Since ¢(R) < p(R;), then continuity, strategy-proofuess, and
{R?} in R together imply that for all v € |0, 1] N K. (R}, R_;) = ¢(R),
so o(Ri, R—i)P{o(R}, R—;). contradicting strategy-proofness.

Case 2: p(R;) € (¢(Ri, R_i), o(Ri. R _3))-

med{p(Ri), o(Ri, R—i), o(Ri. R=i)} = @(R; R—:i). Suppose, by contradic-
tion, that o(R) # ¢(R;, R—;) and, without loss of geunerality, that ¢(R) <
@(ﬁiaR—i)' Then p(.&i) < (rO(R) < ‘ro(ﬁiv R—-i)' s0 wl(R)B1¢z(£1v R—i)a con-
tradicting strategy-proofness.

Suppose, without loss of generality. that p(R;) < ¢(R;, R—i). Then

Conversely, let ¢ be a solution satisfying (3). Obviously, ¢ is contin-
uous. It remains to show that ¢ is strategy-proof. Let B € R} and
i € N. The case that p(R;) € (@(Ri R—i). ¢(Ri, R—;)) is trivial. Sup-
pose then that p(R;) € (p(Ri R-i), v(Ri.R—;)) and, without loss in gen-
erality, that p(R;) < ¢(Ri, R-;). By (3), ¥(R) = ¢(R;, R—i) and for all



R} € Ry, p(Rs, R=i) < (Rl Rs). Altogether, p(Ri) < p(R) < o(Rl R_y),
s0 o(R) Rip(Rl: B_s). D

This proof can easily he modified to replace continuity by peak ounly.
First, a solution satisfying (3) is peak only. Then, since continuity is only
used in Case 1, we only need to modify the proof as follows: after R
(in Case 1) is selected, peak ouly implies that (R, R—;) = ¢;(R), so
@i(Ri, R—i) Pl (R, R_;), contradicting strategy-proofuess. Therefore, con-
tinuity in Lenuna 1 can be replaced by peak only.

Moreover, a solution satisfying (3) is peak monotonic: for all R € RY,
alli € N, and all R} € Ry, if p(R;) < p(R%), then ¢(R) < w(R.. R_;). Since
peak monotonicity implies peak only. then continuity in Lemma 1 can also
be replaced by peak monotonicity. Furthermore, a similar proof can he used
to show that a solution satisfies (3) if and ouly if it is uncompromising: for
all R € Ry, alli € N, and all R} € Ry, if [p(R) < p(R;) and ¢(R) < p(R})]
or [o(R) > p(Ri) and ¢(R) > p(R})]. then ¢(R) = @(R}, R—;). Hence, we
have established the following result:

Lemma 2: A solution satisfies strategy-proofness and any one of the fol-
lowing conditions: (i) continuity; (ii) peak only; or (iii) peak monotonirity;
if and only if it is uncompromising.

Remark 1: Let V2 € V be an augmeuted median-voter solution. Recall
that the n+1 parameters in (2) are selected according to an increasing order
of the peaks. Here, we show that the outcomes are invariant to all these
selections. For notational simplicity, let R € R be such that p(R1) < ... <
p(R:) = p(Ri+1) < ... < p(R,). We distinguish three cases:

Case 1: med{...,p(Ri), p(Ri+1);---saq1 i} e, iet}s- - -} = P(Ri).
It is without loss of generality to assume that

p(Rl)"'wp(Ri—l) SP(R1) ——‘Z)(Ri-f-l)w- '~7P(Rn)l and

7

i—1 n:i
ANy« 88 gl SP(Ri) San i1 ag,
n+1—i T

where § D {1,...,i+1}.

10



< p(Ri+1) = p(Ri) £ ... < p(Ry) be the new ordering.

.,p(Ry) and

Let p(Ry) < ...
There are two subcases: (i) If agy,. 1,013 < p(Ri=1), then
<p(Rix1) =p(Ri),p(Rito),

n—i

p(R1),...,p(Ri1)
P
AN, -y B8, oo Q] i 1,i+1} < p(Ri+1) Sa{l,...,i—l}a---vaqj-
71.+‘i—7', T

(i) If p(Ri+1) <@gy, i-14+1}, then
. p(Ry) and

p(R1),...,p(Rs) =p(Riv1) < p(Riza)..
i n—l-i
ANy 085 01 iaty S P(Ris1) <@y g tie1h Gl im1h - - -5 O
n:—,‘ ) 7:I ’
In both subcases,
med{...,p(Rit1),p(Ri), - -, 0q1 e 1it1}: @ilit s -} = p(Rig1) =

p{R;).
Case 2: med{...,p(R:),P(Rix1)s---» a1, ivs 01, i+t - -} = P(Rj) #

such an agent ;7 satisfying the following inequalities:
<p(Rjx1)s...,p(Rn) and

p(Ri)-
Suppose, without loss of generality. that p(R;) < p(R;). We can choose
< p(Ry)
n—j
- G

p(R1)s- -, P(Rs), p(Riv1)s - p(Rj1)

!
Al gy = :
J

ANy ooy L
[ S ——

where SC{1,...,j —1}.
< p(R,) be the new ordering,.

Let p(R1) € ... £ p(Ri+1) = p(Ri) £

Then
Z)(Rl),---aP(RH-l)aP(Ri)a---J’(Rj—l)l <p(Rj) <p(Rj+1),---
j: n‘—T
EACED < p(Rj) S @, 51 -5 B8l 0,
i

AN, - .-
| S S—
n-1=g

11



where ag is selected according to the new ordering. S'C{1,...,; -1}
So. med{...,p(Rir1),p(Ri), .-, a0, i-14+1) Q1,1 bs e} = p(R;).

Case 3: ll]P(l{...,p(Ri),p(Ri+]),...,a{]’.__’“,(ly{]y_._’i_{_”,,...} =
ag,.. 5t # P(Rq).

Suppose, without loss of generality, that p(R:) < ayy,. ;). We can choose
such an agent j satisfving the following inequalities:

P(R1); - p(Ri),p(Riv1), .. p(R)) S aiy . jy Sp(Rjs),....p(Rn) and
J nlj
OGN @Gy Sangy S g1, 88 .., a0,
nt—j h _7 .

where SC{1,...,5 — 1}

Let p(R1) £ ... £ p(Rix1) = p(Ri) < ... < p(Rp) be the new ordering.
Then

?(Rl)v'--7P(Ri+1)?p(Ri):---]’(Rj)l < @4ry,....9) S!)(RJ‘H)’P(RL)I and

v v

J n—j
ANy Q1 gl S gy S g1} G0 8,
n—j )

where ag is selected according to the new ordering, S'C{1,...,;— 1}

SO, 1ned{. N ,])([f.i+1),]7(ﬁi), ey a‘{l....,‘i.——],'i.-"—l by (l.(].__.,,,z_‘_l"\, .. } = a,{]’___,j}.
In all three cases, the outcome is the same for the two orderings. O

Moulin (1980) first characterized the class of solutions satisfying
strategy-proofuess and peak only as the class of minmax solutions. We show
liow to relate a minmax sohition and an augmented median-voter solution
in terms of their parameters.

Proof of Proposition 1: Let V% € V and X € .¥ be such that
ag = mingc g{bg} for all SCN. We first show that XP=X° Let R € RL.
Let SCN and Q*CS be such that by = ag, then

max{{p(Ri)}icg-,bg-} = min{max{{p(R;)}icq-. by-} max{{p(R:)}ics, bs}}
= min{max{{p(R;) }ice-, by}, max{{p(Ri)}ics, as}}

12



Repeating the argument, we obtain

X°(R)

mingc y{max{{p(Ri)}ics, bs}}
minge y{max{{p(Ri)}ics, as}} = X*R).

We next show that X% = V2 For notational simplicity, let p(R;) <
. < p(Rn). There are three mutually exclusive cases:

Case 1: ap < p(R1) or p(Rn) < an.
Suppose, without loss of generality, that ag < p(R ). Then

= ag if S=0
> p(R1) otherwise.

max{{p(R;) }ics,es} {

Therefore, X*(R) = ap = V*(R).

Case 2: ay; ..y < p(Ri) < ay
{1,...,0} = 0. Then

i—1} for some < = 1,...,n. Note that

.....

Za{l,...,i—l} if S_C_{l,...,i—l}
max{{p(R;)}jes, as} { = p(Ri) ifs={1,...,t}
> p(R;) otherwise.

Therefore, X%(R) = p(R;) = V*(R).
Case 3: p(R;) < ayy,.iy < p(Rit1) forsomei=1,....,n -1

Then

ag,. HSC{L,...,i—1}
al,..,i ifs={1,...,i};
> p(Ri+1) otherwise.

v

max{{p(R;)}jes, as}

Therefore, X%(R) = agy,.. ;1 = V*(R).

Similarly, we can show that if V¢ = X°® then ag = mianS{bQ} for all
SCN. O

Now, we are ready to show that the augmented median-voter solutions
are the only solutions satisfying strategy-proofuess and continuity.

13



Proof of the Theorem: It follows from Moulin’s (1980) characteriza-
tion of the minmax solutions, Lemma 2, and Proposition 1. O

Remark 2: Border and Jordan characterized the class of uncompro-
on

mising solutions in terms of a list of parameters o' = (a%)gcy € 0, M|~
satisfying a monotonicity condition as follows:

VS,QCN s.t. $2Q,al > ub. (1)

They used the following maxmin formula for the characterization:®

YR € R™, I*(R) = 1_1&:x{min{{;)(R,:)}i(;g. ag}}.
SN

We can slightly modify the augmented median-voter solutions to describe
the solution 1% as follows:
YR € RI,U%(R) = med{p(Ri), p(Rin), ... p(Ri). s alay

o
st |7

. . ..
{ig,enin b?

e
(2')
where p(R;;) < p(Ri,) £ ... <p(Ri,). Note that in (2/), the n + 1 parame-

ters are selected in a way different from (2). The two solutions V172 are
the same if and only if ag = ¢/ ¢ for all SCN.

Example 3: Let N, R be the same as in Example 1, and asy=a
(in Example 1) for all SCN. Then 1%(R)
max{1,min{2,3}, min{5, 5}, min{2,5,5}} = 5 and U%(R)
med{2,5,5,5,1} = 5. It cau be verified that I¢ = 7% = Vo = x'?,

-8

P

Remark 3: Barbera and Jackson dropped peak ouly in Moulin’s (1980)
characterization of the class of solutions satisfying strategy-proofness and
peak only. They showed that the range of a strategy-proof solution is closed.
Note that the restriction of # single-peaked preference relation R; € R to
a closed set has at most two “peaks.” If there are two such peaks, they
identified a class of tie-breaking rules to select one of them such that each
of these rules ¢; preserves strategy-proofuess. Then they showed that a

SBorder and Jordan also showed that a solution is uncompromising if and only if one
of the following two conditions holds: (i) there are at most 2" parameters; or (ii) the
solution has a closed graph. However, these two are not closed form characterization of
the uncompromising solutions.

14



strategy-proof solution can be described by a slightly extended minmax
solution as follows:’

VR € RY, X*(R) = g&ig{max{{ti(ﬁ)}ms, bs}}.

For notational simplicity, let ¢;(R) < ... < t,(R). From Proposition 1, the
solution X® can be described in termn of the list of parameters « such that
ag = minQCS{bq} for all SCN as follows:

Xb(R) = V*R)=med{t;(R)...., ta(R), ags Giips- s an}.

Therefore, we can also use a slight extension of the augmented median-voter
solutions to characterize all strategy-proof solutions.

Next, we show that voter sovereignty and strategy-proofness together
imply continuity. The following definition is useful. A solution ¢ is own peak
only if for all R € RY, all i € N, and all R} € R; such that p(R;) = p(R}),
we have ¢(R) = (R}, R_;).

Proof of Proposition 2: Let ¢ be a solution satisfying voter
sovereignty and strategy-proofuess. Because of Lemma 2. it is enough to
show that ¢ is peak ouly.

Claim 1: The solution ¢ satisfies unanimity.

Let R € RY be such that p(R;) = p(R;) for all 4, € N. By
voter sovereignty, there exists R’ € RT such that ¢(R'}) = p(R1). By
strategy-proofness, ¢(R') = ¢(R1,R_,). Repeating the argument shows
that o(R1, R ) = ¢(R1,R2, R_ o) = ... = »(R). Claim 1 is established.

Claim 2: The solution ¢ is own peak only.
let R € R?, i € N, and R, € R be such that p(R;) = p(R}). The case

that o(R) = p(R;) is trivial. Suppose then, without loss of generality, that
¢(R) < p(R}). There are two cases:

"Zhou (1991) considered a model with many public commodities and preferences are
continuous and strictly convex. He showed a variant of the Gibbard-Satterthwaite theorem
that a solution with a range of at least dimension two is strategy-proof if and only if it is
dictatorial. Barbera and Jackson then used this result to complete this characterization
of the class of strategy-proof solutions.



Case 1: ri(@(R)) < ri(p(R)).

Suppose, by contradiction, that ¢(R) # @(R}, R-;). There are three
cases: (i) If ¢(R},R-;) < p(R), then (R, R_;) < ¢(R) < p(R}), so
¢(R)Pio(Ri, R—i). (ii) If o(R) < @(R}, R-i) < ri(¢(R)), then p(R) <
©(Ri, R=i) < ri(¢(R)), s0 (R}, R—i) Pip(R). (iii) If ri(¢(R)) < (R}, R-i),
then p(R;) < ri(@(R)) < ¢(R], R-i). s0 ¢(R)P]o(R!. R_;). All three cases
contradict strategy-proofness.

Case 2: 7i(p(R)) < ri(¢(R)).

Let § = {j € Nlp(R;) > p(R!)}. For notational simplicity, let
S = {1,...,s} be such that p(H;) < ... < p(Rs). For all j € S, let
R} € Rs be such that p(R}) = p(R}) and »i(e(R)) € (p(R;),7i(#(R)))-
Repeating the argument in Case 1 shows that ¢(R) = (R, R-g). Let
R' = (Rll_q(.){i'},R_Sl_"{i‘L). An argument similar to Cuse 1 shows that there are

two subcases: (i) (RS, R_s) = p(R') and (i) ¢(R') € [ri(2(R)). ri(v(R))]-
Claim 2.1: If (i) holds. then (R’) - w(RY R.;).

We first show that @(R') = ¢(R;.RL,). Suppose, by contradic-
tion. that @(R') # ¢(R1.R_;). An argument similar to Case 1 shows
that o(R1, R_;) € [ (e(R").71(=(R'))]. Note that p(R;) < o(R;.R_)).
For all j € S\{1}, let h‘;’ € Rs be such that 7)(/?;-’) = p(R1) and
ri(¢(R1, RLy)) < o(e(R1, R'})), and for all j & S. let R” € R be such that
p(R}) = p(R1) and 7j(p(R1, R_1)) < r(@(R1, RLy)). An argument similar
to Case 1 shows that p(R1. R'_|) = ¢(R1,R",), so p(R)) = p(RY) = ... =
p(R}) < (R, R” ), contradicting Claim 1 (unanimity). Repeating the ar-
gument shows that ¢(Ry, RL,) = o(R),Ra,RL1s) = ... = ¢(Rg,R_g) =
e(R, R-;). Claim 2.1 is established

If (ii) holds, an argument similar to the proof of Claim 2.1 shows that
there is a contradiction to Claimy 1. Claim 2 is established.

Finally, a solution is own peak only if and ouly if it is peak only. O
Sprumont (1995) adapted the proof of Proposition 2 to show the fol-

lowing stronger result due to Barbera, Giil, and Stacchetti: if the range
of a strategy-proof solution is a closed interval, then it is peak ouly (or
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continuous). This result can be strengthened by showing that the con-
verse is also true. By the Theorem, a solution satisfying strategy-proofness
and continuity can he represented as an augmented median-voter solution
Ve € V. Let R € R}, by repeated applications of peak monotonicity,
V4(R) € [V%(R), V¢(R)| = [an, agl. Let z € [en,ap] and R € RY be such
that p(R;) = x for all ¢ € N, then V%(R) = x. Therefore, the range of V¢
is the closed interval [ay, am]. Altogether, we have the following stronger
version of Proposition 2:

Proposition 2': A strateqy-proof solution ¢ satisfies continuity if and
only if its range is the closed interval |p(R). ¢ (R)].

Barbera and Jackson showed a very close result of which a strategy-proof
solution satisfies peak only if and only if the restriction of any single-peaked
preference to its range is single-peaked. Proposition 2’ is more precise about
the range of these solutions.”

It is now easy to show that the generalized Condorcet-winner solutions
are the only solutions satisfying anonymity, voter sovereignty, and strategy-
proofness,

Proof of the Corollary: Let ¢ be a solition satisfying anonymity,
voter sovereignty, and strategy-proofness. By Proposition 2 and Theorem
1, ¢ is an augmented median-voter solution. Let ag = ¢(Rg, R—g) for all
SCN. First, since voter sovereignty and strategy-proofness together imply
unauimity, then ay = 0 and ag == M. Second. by anonvinity, as = ag for
all S. S’ C N such that [S] = |5’ > 0. Let ajq = agforall B C S C N, then

p(R) = med{p(R1).....p(Rn).a1,...,an-1}.

Conversely, it is well-known that a generalized Condorcet-winner solu-
tion satisfies the three properties. a

Remark 4: Since the range of an augmented median-voter solution V2
is [an, a,@], it satisfies voter sovereignty if and only if axy = 0 and ag = M.
I[fay =0 and ap = M, then V¥(R) € [mingen {p(R:)}, maxzen{p(R;:)}] for
all R € R7. Since Pareto efliciency implies voter sovereignty, we also have
that 172 satisfies Pareto efficiency (and a fortior: unanimity) if and only if

#Proposition 2’ also shows that the converse of Praposition 2 is not necessarily true.
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ay = 0 and ag = M. [t is clear that V¢ satisfies anonymity if and only
if ag = ag for all 5,8’ C N such that |S| = |$'| > 0. The parameters
therefore correspond naturally to these properties.

Remark 5: Barbera, Gial, and Stacchetti counsidered a generalized I-
dimeunsional model, ! > 1. They showed that a solution satisfies strategy-
proofuess and peak only if and only if it can be decomposed into [ one
dimensional solution(s) that each satisfies the same two properties. Tlen
they concentrated on the one-dimensional case. They characterized the class
of solutions satisfying strategy-proofness and peak only as the class of “conn-
mittee solutions.”® Let us describe a leff commitiee solution in terms of a
list of parameters a € [0, M|" satisfying (1) as follows:

VSCN, the coalition § is left winning af x if x € |ag, M] and (4)

VR € Ry, F*(R) = min{x € [0, M||{i € N|p(R;) < x} is winning at x}.
(5)
It can be shown that the committee solution F® is equivalent to the aug-
mented median-voter solution V2.1 (See also Barber, Massé, and Neme,

1993; and Serizawa, 1993.)

Example 4: Let N, R, and a be the same as in Example 2. When z < 5,
either {2} or N is a winuing coalition, but only voter 1’s peak is less than :.
When z > 5, all coalitions are winning and p(R1) << p(R2) < 2. Therefore,
F2(R) = 5. Again, it can be verified that F* = V@,

Remark 6: In an independent paper, Danilov considered a model in
which the set of alternatives lias a “tree structure.” He (and Barbera, Gil,
and Stacchetti indirectly) provided another characterization of the class of
solutions satisfying strategy-proofness and peak only. The essence of this

?Barbera, Giil, and Stacchetti called these solutions generalized median voter schemes.
To avoid confusion with the augmented median-voter solutions, we follow Sprumont (1995)
to call them committee solutions.

gimilarly, we can describe a right committee solution in terms of a list of parameters
a' €10, M]*" satisfying (1') as follows:

YSCN, the coalition 8 is right winning at 2 if z € 10, a%] and

YR € RY, G“’(R) = max{z € [0, M]|{i € N|p(R;) < 2} is winning at 2}.

Of course, G* = U® (in Remark 2), thus G% = 1/" = V% = F% if and only if a%s = a_s
for all SCN.

18



result is best understood in the one-dimensional case. The class of solutions
can be obtained by recursive substitutions of the median formula (3):

VR € R}, ¢(R) = med{p(Ri), p(R;, R_s), p(Ri, R_i)}

med{p(R;), med{p(R;), ¢(Rs, B, R—ij), p(R:, R, R_ij)},

med{p(R;). ¢(Ri, Rj, R—ij), v(Ri, Rj, R—ij)}}

The substitutions stop until all profiles are such that the peaks of the pref-
erences are either 0 or M. In other words, a recursive median solution
can be described in termms of the outcomes of these extreme economies, or
equivalently, the parameters of an augmented median-voter solution.

Example 5: Let N, R be the same as in IExample 1, and ¢(Rg, R—g) =

ag (in Example 2) for all SCN.
Then ¢(R) = med{p(R1).¢(Ry, R2). o(R1, R2)} =
med{2, med{p(Ra), p(R;, Ra), (R, R}, med{p(Ra), ¢(R1,Rs). ¢(R1, R2}

= med{2, med{5,1, 5}, med{5,3.5}} = 5. Indeed, ¢ = V4,

Danilov interpreted a recursive median solution as a solution which is
obtained by taking medians of dictatorial solutions and constant solutiomns.
Similarly, the median formula (3) can be interpreted as a solution ¢ satisfy-
ing strategy-proofness and continuity is the median of a dictatorial solution
and the two solutions ¢(R;,-) and ¢(R;,-) which have to satisfy the same
two properties. In fact, He showed a more general result of which the me-
dian of any three solutions satisfying strategy-proofness and peak only is a
solution satisfying the same two properties.

Remark 7: Bossert and Weymark (1993ab) counsidered the problem of
constructing social preference for a society in whicli agents have monotonic
and “linear” preferences. They were interested in social welfare functions
satisfying anonymity, unanimity, and binery independence (which requires
that if the ranking of any two alternatives remains unchanged after a change
in the preferences, their social rauking remain unchanged). They showed
that their model is formally equivalent to Moulin’s (1980) model and ob-
tained results that are counterparts to Moulin’s (1980). Consequently, our
proofs can be adapted to their model and their results can be obtained as
by-products of our analysis. Our approach provides an additional character-
ization of the class of social welfare functions satisfying binary independence.
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4 Conclusions

We show that the augmented median-voter solutions are the only solutions
satisfying strategy-proofuess and continuity. This result establishes a formal
connection between strategy-proofuess and a generalized notion of median
voter. We also show that several conditions are equivalent to strategy-
proofness and continuity together. A solution ¢ satisfies strategy-proofness
and any one of the following four conditions: (i) continuity; (ii) peak only;
(i) peak monotonicity; or (iv) the range is the closed interval |2(R), »(R)];
if and only if it is uncompromising. Hence, the class of augmented median-
voter solutions is the same as the class of minmax solutions.

We show how to relate a minmax solution X® and the same augmented
median-voter solution V¢ in terms of their parameters. It turns out that
there is no loss of generality to focus on the parameters a. Interestingly,
whether the solution V@ satisfies voter sovereignty., unanimity, and Pareto
efficiency depends only on the parameters ay and ag; and whetlher it sat-
isfies anonymity depends only on the other 2" — 2 parameters. We prefer
to interpret the parameters in terms of these properties. In addition, this
interpretation of the parameters gives a simple proof of a stronger charac-
terization of the generalized Coudorcet-winner solutions.

There are three alternative characterizations of the class of solutions
satisfying strategy-proofuess and peak ouly (or continuity). Border and
Jordan used a maxmin formula to describe it; Barberd, Giil, and Stacchetti
characterized it as the class of committee solutions; and Danilov described
it in terms of a recursive median formula. It is interesting that these three
classes of solutions can also be described in terms of the parameters of the
augmented median-voter solutions.
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