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Using the time-dependent density-matrix renormalization-group method, we calculate transport properties
of an interacting Fermi gas in an optical lattice with a confining trap after a sudden displacement of the trap
center. In the regime of attractive interactions, the dipolar motion after the displacement can be classified into
underdamped oscillations and overdamped relaxations, depending on the interaction strength. These numerical
calculations are consistent with experimental results. In the regime of repulsive interactions, we predict a revival
of the oscillations of the center of mass when the interaction strength is increased. This unique feature can be
considered as a dynamical signature for the emergence of a Mott plateau for an interacting trapped Fermi gas in
an optical lattice.
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I. INTRODUCTION

Ultracold atoms have proven to be an ideal platform to
study a number of unsolved problems in quantum many-body
physics. The unprecedented controllability of the system
is experimentally achieved through optical lattices [1] and
Feshbach resonances [2]. Optical lattices provide the pos-
sibility to manipulate the dimensionality of the lattice and
the ratio of interaction for kinetic energy, whereas, Feshbach
resonances can be used to tune the interaction strength, crucial
to many-body effects. All these developments provide a route
for simulating many paradigmatic quantum models in strongly
correlated systems and, therefore, are a novel approach for
answering fundamental problems in many-body physics [3].

Driven by the ambitious goal of carrying out quantum
simulations, experimentalists have begun to explore the
underlying physics of strongly correlated fermions in the
atomic approach. The Hubbard model is a simple but very
good starting point for modeling the essence of interacting
fermionic systems. In the meantime, great success has been
achieved towards experimental realization of this model. The
Fermi surface of degenerate Fermi gases has been observed
in a three-dimensional optical lattice [4]. Molecules from
fermionic atoms have been created with a Feshbach resonance
[5], and a Mott insulator has been detected [6,7]. Although
all these developments have paved the way for understand-
ing fermionic superfluidity, transport properties are hard to
access.

In one approach to transport phenomena, Strohmaier et al.
[8] carried out an experiment on an interacting Fermi gas in an
optical lattice. They used the center of mass (COM) motion of
an interacting Fermi gas to characterize its dynamical features.
More specifically, the COM motion of the gases was monitored
after a sudden shift in the external harmonic trap by a few lattice
sites, giving rise to dipole excitations. Unlike similar exper-
imental studies on bosonic atoms with repulsive interactions
[9], they focused on the regime of attractive interactions and
found that, with increasingly attractive interactions, weakly
damped oscillation turns into a slow relaxational drift.

A quantitative understanding of all these observations is a
theoretical challenge due to the nonequilibrium nature of the
process. In bosonic experiments [9], the dipolar motion due
to the sudden shift reflects the dynamical excitations in the
many-body system and has stimulated considerable theoretical
interest, involving semiclassical solutions [10] and numerical
diagonalization of the Bose-Hubbard Hamiltonian in a small
system [11]. By using the time-dependent density-matrix
renormalization-group (tDMRG) technique [12–17], simula-
tions of the bosonic model have been successful in quantitative
comparisons with the experimental data [18,19]. This indicates
that tDMRG is an ideal tool in the strongly correlated regime
in one spatial dimension even far away from equilibrium.

In this paper, we present a comprehensive numerical
simulation of the fermionic experiment by Strohmaier et al. [8]
in the attractive interaction regime and extend the study to
the repulsive interaction regime, which is also experimentally
achievable. To take into account the full time dependence, we
focus on one spatial dimension by using exact diagonalization
and tDMRG. Our approach is similar to that of Okumura
et al. [20] who present results for the same system, but we go far
beyond this short note by analyzing the results and explaining
the qualitative and quantitative features and studying the
repulsive case. In our tDMRG simulations, up to 400 states are
kept in the reduced Hilbert space, and a second-order Trotter
decomposition is used in the time evolution.

II. MODEL

Ultracold fermions in a one-dimensional optical lattice can
be described by the Hubbard model [21,22],

Ĥ (t) = −J
∑
i,σ

(ĉ†i+1,σ ĉi,σ + H.c.) + U
∑

i

n̂i,↑n̂i,↓

+�
∑
i,σ

n̂i,σ [i − i0 + �(t)�x]2. (1)

The first term describes the tunneling of fermions between
nearest-neighboring sites, where J denotes the tunneling
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FIG. 1. (Color online) (a) The position of the COM as a function
of time with different interactions. (b) U/J dependence of the
damping rate β. The line is a fit of the data to Eq. (4). The trap
curvature is � = 0.005J , equivalent to a trapping frequency of about
50 Hz in the experiment.

matrix element between adjacent lattice sites and ĉi,σ denotes
the fermionic annihilation operator on site i in the “spin” state
σ (↑ or ↓). The second term is the on-site interaction with
strength U , where n̂i,σ = ĉ

†
i,σ ĉi,σ . The last term models the

additional confinement of the harmonic trap with curvature �,
initial center i0, and displacement of the trap center �x. In all
our calculations, the shift �x is set to be 5, close to that in the
experiment [8]. For brevity, we work in units where the lattice
spacing is unity hereafter. To study the dipolar motion, we are
interested in the position of the COM, which is defined as

X =
∑

i,σ ini,σ

2N
− i0. (2)

Here, N↑ = N↓ = N is the particle number per spin species
of a population-balanced gas.

III. ATTRACTIVE INTERACTIONS

A. Weakly interacting regime: Underdamped oscillation

Unlike the bosonic case, the fermionic dipole oscillations
are weakly damped even in the noninteracting case. This
damping is caused by the dephasing of particles in the same

spin state due to Pauli’s principle. When a weak on-site
interaction is introduced, the dephasing is more pronounced
because interaction between particles with different spins also
contributes to incoherence.

Figure 1(a) shows these oscillations in a system with L=80
and N =16. In this regime, the COM motion can be described
by an underdamped harmonic oscillation around the new trap
center after the shift. We fit the motion of the COM to

X(t) = A + Be−βt cos ωt, (3)

where β is the damping rate and ω is the frequency. Figure 1(b)
shows the damping rate β as a function of the interaction
strength U/J . The results are well fitted by the empirical power
law,

β

J/h̄
= a

( |U |
J

)b

+ c, (4)

with a = 0.0104, b = 1.62, and c = 0.002 58. The first term
is a power law describing the interaction effect, and the second
term describes the dephasing due to Pauli’s principle.

B. Strongly interacting regime: Overdamped relaxation

In the strongly attractive case, the experiment [8] shows a
relaxational COM motion. Here, we study this overdamped
behavior in a system with L = 80 and � = 0.005J . First, we
find a critical value Uc ≈ −3.5J for the crossover between
underdamped oscillations and overdamped relaxation in sim-
ulations with N = 10–20 particles per spin species. Note that
this critical value is estimated by examining whether the COM
oscillates around the new trap center or not after the shift.

As can be seen in Fig. 2 (a), the motion of the COM in
the strong interacting regime is characterized by a relaxation
towards the new trap center. Unlike the previous weakly inter-
acting regime, the COM mass can no longer oscillate around
the new trap center, although its motion still shows some
negligible undulations [see the case U = −8J in Fig. 2(a),
for example]. As the attraction increases, the fermions form
stronger bound pairs with a larger effective mass. This slows
the motion of the atoms towards the new trap center.

We extract the relaxation rate by fitting the curves to an
exponential decay,

z(t) = z∞(1 − e−�t ), (5)

where z∞ is the position at t → ∞, which is assumed to be
the new trap center (in our case, z∞ = −5).

The relaxation rate as a function of interaction for different
particle numbers per spin is shown in Fig. 2(b). We find very
good agreement with the experimental data in the regime of
strong interactions. N = 16 corresponds to a system with
half filling at the center, consistent with the experiment.
We also find that, for a given interaction strength U , the
relaxation rate decreases as the particle number increases
as has been observed experimentally. The good agreement
is strong evidence that the single-band Hubbard model can
capture all the features of the experiment.

In the strong interaction limit, the fermions form local
singlet pairs on a lattice site. The transport properties in this
regime are, thus, governed by the dynamics of these local pairs,
which can be approximated as hard-core bosons (HCBs). Here,
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FIG. 2. (Color online) (a) COM position as a function of time
in a system with N = 16. The interaction strengths U are indicated
in the figure. (b) The relaxation rate � vs the ratio U/J for various
particle numbers per spin in the lattice. Black circle: the experimental
results are obtained from Fig. 3 of Ref. [8]. Note that our results can
be qualitatively compared with the experimental data, although the
experiment was performed in a three-dimensional optical lattice.

we perform simulations to test the validity of this mapping to
an effective HCB model,

ĤB(t) = −Jeff

∑
i

(b̂†i+1b̂i + H.c.)

+�′ ∑
i

b̂
†
i b̂i[i − i0 − �(t)�x]2, (6)

where b̂i’s are bosonic annihilation operators with additional
hard-core constraints b̂

†2
i = b̂2

i = 0 and {b̂i ,b̂
†
i } = 1. The ef-

fective hopping integral of a pair is

Jeff =
√

16J 2 + U 2

4
− 1

4
|U |, (7)

which reduces to 2J 2/|U | in the large |U | limit [23]. Since one
HCB represents a pair of fermions, whose bare mass is twice
that of a fermion, the trapping curvature �′ = 2� is twice that
of the original one.
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FIG. 3. (Color online) Static and dynamical mappings for the
HCB model. Density distributions in the initial states for (a) U =
−24J and (b) U = −5J , respectively. (c) The relaxation rate � as
a function of U/J . The results of both the original fermionic model
and the HCB model are shown for comparison. Here, we use N = 16
particles per spin species.

By exactly diagonalizing the model, it is straightforward
to obtain numerically exact results for the time evolution of
the system.

To test the validity of the HCB approximation for static
properties, we consider the density distribution. From the
comparison of the fermionic and the effective models shown
in Figs. 3(a) and 3(b), we find that the mapping of static
quantities to an HCB model is valid in the large |U | limit
but less so in the regime of intermediate interactions. The
HCB model overestimates the central density at U ∼ −5J

because it assumes most fermions form fully local pairs even
when the attractive interaction is not strong enough. For the
dynamical mapping, the HCB model captures the interaction
dependence of � qualitatively. However, the poor mapping
of static quantities at U ∼ −5J significantly compromises the
approximate relaxation rate � based on the HCB model, which
deviates from the exact results by about 50%. The HCB model
also underestimates the relaxation rate in the intermediate
regime where single particles and local pairs coexist.

We can improve the approximation by using an extended
HCB Hamiltonian,

Ĥ ′
B(t) = ĤB(t) + V

∑
i

n̂i n̂i+1, (8)

where the term with V > 0 describes the nearest-neighbor
interaction between local pairs. This repulsive term reduces the
deviation in density profiles shown in Fig. 3(b). However, the
dynamical mapping cannot be perfect even with this extended
HCB model because the internal dynamics of the pairs are not
taken into account.
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(b) � = 0.01J , respectively. In each panel, the on-site interactions
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IV. REPULSIVE INTERACTIONS

In the repulsive case, we need to distinguish between low-
and high-density regimes. At low density (or in a shallow
trap at a fixed particle number), the fermions are delocalized,
leading to compressible metallic states with central densities
less than unity at U = 0. In this case, Mott-insulating states
never appear even when U is increased due to the low density.
On the other hand, if the particle density is high enough (or
the external trapping potential is deep enough), a central Mott
domain is formed beyond some critical value of U .

In the low-density (shallow trap) case, the COM motion is
always underdamped as shown in Fig. 4(a) and converges in
the large U limit.

However, for a high density (deep trap), the situation is
very different as shown in Fig. 4(b). Here, there is a crossover
between underdamped and overdamped behaviors at around
U = 2J . However, when U is further increased beyond 4J ,
a Mott domain is formed at the center (see Fig. 5, for
example), and oscillations reappear on the background of a
very slow relaxation. By increasing U , the dipolar motion
exhibits a collapse and a revival of oscillation with interaction
strength.
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FIG. 5. (Color online) Density distribution for U = 12J . The
particle number in the Mott domain is about 16, and there are
about eight fermions in each metallic domain on the left and right.
Therefore, due to the incompressibility of the central Mott phase,
only a quarter of all the particles contribute to the oscillation after the
sudden shift.

Analyzing the revival of the COM oscillations for � =
0.01J and U = 12J as shown in Fig. 5, we see that their
frequencies are the same as the noninteracting one, i.e., the
harmonic trap, similar to the case of cyclotron motion of
electrons [24]. Furthermore, the oscillating amplitude is about
one quarter of the noninteracting case, suggesting that only
one quarter of the atoms is oscillating. This agrees with
the corresponding density profile (see Fig. 5), which shows
that half of the atoms form the Mott plateau, leading to one
quarter at the each edge of the domain. We argue that the
whole COM motion can be interpreted within a two-fluid
model as follows: The metallic component at the edges of the
Mott domain oscillates with moderate damping, whereas, the
incompressible Mott-insulating counterpart becomes nearly
localized. In this two-fluid model, the oscillation due to the
metallic component is also conceptually equivalent to the
residual current in the effective model with two coupled bands
separated by U [19].

V. CONCLUSION

Using tDMRG, we have presented an accurate analysis
of the dipolar motion of an interacting Fermi gas in an
optical lattice. In the regime of attractive interactions, the
numerical calculations for the COM dynamics after a sudden
displacement of the trap minimum are in good agreement with
the experimental results.

To further theoretical understanding, we have mapped the
fermionic model to an effective HCB model in the strong
interaction limit. To improve the validity of the mapping
for intermediate interactions, an extended HCB model is
necessary and will be the subject of further papers.

For repulsive interactions, a very different behavior has
been found. In a deep trap, we find a revival of the oscillation
for the COM by increasing the interaction strength when
the trap is deep enough to support a central Mott domain
with increasing U . This revival is due to the fact that, as
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the central Mott plateau is nearly frozen, there inevitably
are mobile metallic states at the edges. By comparing with
the lower-density case, we conclude that the overdamped
relaxation in the repulsive Hubbard model can be regarded as
a dynamical signature for the emergence of the Mott domain
for an inhomogeneous Fermi gas in an optical lattice.
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