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The Linear Complexity of Whiteman’s Generalized

Cyclotomic Sequences of Period p

m—|—1qn—|—1

Ligin Hu, Qin Yue, and Minhong Wang, Member, IEEE

Abstract—In this paper, we mainly get three results. First,
let p, ¢ be distinct primes with gcd((p — L)p.(¢ — l)g) =
ged(p — 1,4 — 1) = e; we give a method to compute the linear
complexity of Whiteman’s generalized cyclotomic sequences of
period p" ¢!, Second, if ¢ = 4, we compute the exact linear
complexity of Whiteman’s generalized cyclotomic sequences.
Third, if p = ¢ = 5 (mod 8), ged(p — 1.g — 1) = 4, and we fix
a common primitive root g of both p and ¢, then 2 € Hy = (g),
which is a subgroup of the multiplicative group 2, if and only
if Whiteman’s generalized cyclotomic numbers of order 4 depend
on the decomposition pg = a” + 4% with 4|b.

Index Terms—Generalized cyclotomic number, linear com-
plexity.

I. INTRODUCTION

SEUDORANDOM sequences have wide applications

in simulation, software testing, radar systems, stream
ciphers, and so on. Several authors show cyclotomic sequences
with good randomness properties [2], [8], [9], [12]. Although
Whiteman [15] studied the generalized cyclotomy of order
2 and 4 for the purpose of searching for residue difference
sets, several authors apply generalized cyclotomy to construct
cyclotomic sequences (see [1], [3]-[7], and [14]).

A sequence s = ($g,81,-..,8N_1,...) is said to be N-pe-
riodic if s; = s;4n for all ¢ > 0. The linear complexity of
a sequence s over GF(2) is an important characteristic of its
equality (see [11]). It is defined to be the smallest positive in-
teger L for which there exist constants ¢y,...,c;, € GF(2)
such that

Sqg =C18g-1+ CaSg_2+ -+ +crsg_pforallg > L.

In this paper, generalized cyclotomic sequences always mean
Whiteman’s generalized cyclotomic sequences. We will calcu-
late the linear complexity of generalized cyclotomic sequences
of period N = p™*1¢"T (m,n > 0). Let us recall the con-
struction rules of these generalized cyclotomic sequences.

In this paper, we always assume that p and ¢ are distinct odd
primes and N = p™+t1¢"*! m, n > 0, unless otherwise stated.
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Let ged((p — 1)p™. (¢ — 1)¢") = ged(p — L,g - 1) = e
and R = W Although N does not possess a primitive
root, by the Chinese remainder theorem there exists a common
primitive root g of both p™*+! and ¢"*1.

We have two relations (see [9])

m—+1 n+1
me,1 = U pzZ;m+17 quz+1 = U qZZ;rH,l
1=0 1=0

where p™ 2%, = {0} and ¢" ' Z,_, = {0}.
Now we investigate a factorization of Zn.Letd :=ordy(g)
denote the multiplicative order of ¢ modulo /V; then

LI

d=ordy (g)=lem(ord, .1 (g), ord, . (g)= p=Da=r"e"

&4
Then, the subgroup Dy = (g) of the multiplicative group Z3, is
of order d.
Let y be an integer satisfying the simultaneous congruences

y = g (mod p (1.1)

m,+1) n+1).

.y =1(modgq

We define generalized cyclotomic classes analogous to [15]

Dy={¢"y*:5s=01,...,d-1}, k=0,1,...,e—1. (1.2)
Then, we get
N = U Dy.
k=0
Lemma 1.1:
m~+1n+1
Zv=J Urdzy (13)

i=0 5=0

where the multiplication is performed in the ring Zn and
pm,-l—lqn-f—lzif — {0}

Proof: 1t is clear from [5, Lemma 12]. O
Ifi <m, j <mn,then
p'¢' Dy = {p'¢’ala € D}, k=0,....d—1.
Hence
m 7n e—1 ™ n+1
ZN U U U pzq]Dk Upzqn—l—lZ* U pm+1 7z*
i=0j=0 k=0
(1.4)

For convenience, we give a definition.

0018-9448/$31.00 © 2012 IEEE
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Definition 1.2: The assumptions are as above. Define subsets
of ZN

p'¢ Dy, ifi<m,j<n0<k<e—1
ptzZy, ifi<mj=n+1k=0
PPz, ifi=m41,5<n k=0
{0}, ifi=m+1j=n+1k=0

D) —

So D((]im-‘rl) — pianrlZRT for i S m, ngJrLj) — pm+1qu}kV
for j < n, and D((]""H’"H) = {0}, and index sets for 0 < i <
m+1land 0 < 57 < n+ 1 are given as

L {0,1,---?6—1},
ne{fo)

ifi <m,7<n
otherwise.

Suppose that 2 = [ J/+! U"+1 Urer,, D,(:"j).We can define
the generalized cyclotomic blnary sequence s of period N as

1, ifi(mod N) € Q, .
8; = ’ . k all2 > 0. .
5 { 0. otherwise, for alli >0 (1.5)
Define
s(@y=so+s1¢+ -+ sy_ E at (1.6)

1E€S2

as the characteristic polynomial of the sequence s. It is well
known that the minimal polynomial of the binary sequence s
of period N is given by

N —1
ged(z™ — 1, s(x))

and that the linear complexity of s is given by

"= 1s(2))).

In this paper, there are three main results. First, we show
a method to compute the linear complexity of the aforemen-
tioned generalized cyclotomic sequences of period p™ g™ +!.
Second, if ged(p™(p — 1),q"(q¢ — 1)) = e = 4, we easily
calculate the linear complexity of the aforementioned gener-
alized cyclotomic sequences. Third, if p = ¢ = 5 (mod 8),

mx) =

L =N — deg(ged(a?
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ged(p — 1,4 — 1) = 4, and we fix a common primitive root g
of both p and ¢, then 2 € Hy = (g), which is a subgroup of
the multiplicative group Z,,, if and only if Whiteman’s gener-
alized cyclotomic numbers of order 4 depend on the decompo-

sition pg = a? + 4b% with 4b.

II. GENERALIZED CYCLOTOMIC SEQUENCES
OF PERIOD p™Higntl

In this section, we generalize the results from [9] and give a
formula for the linear complexity of the generalized cyclotomic
binary sequence s of period N = p™+1g"+1 defined as (1.5).

Lemma 2.1:

1) Lete=ged(p—1,q—1)and R = %;then

Do={¢* + hpglk =0,1,...,R—1;h =0,1,---,p™¢" — 1}.

If+ < m and 7 < n, then see the first equation shown at
the bottom of the page.

2) Ifi < mand j = n + 1, then see the second equation
shown at the bottom of the page.

3) If: = m + 1 and j < n, then see the third equation
shown at the bottom of the page.

Proof:

1) Since g is a common primitive root of both p and
q"t1, g is also a common primitive root of both p and
g. Hence in the multiplicative group Z5, ordpg(g) =
(p—1)(qg—1)/e = R, so g"#£g* (mod pq) for 0 <
kK <R-1.
Ifa = g% (mod pg) for0 < k < R—1,thenp 1 a
and ¢ t a,soa € Z},. Suppose that @ € D, where r €
{0,1,. — 1}; then @ = y"g* (mod pmHigntl).
Soa = y’ g"l = ¢"*t* (mod p) and @ = g** (mod q).
Hence, p — 1|r + k1 — k and ¢ — 1|k1 — k. Then by
ged(p—1,9g—1) =¢,e|r,sor =0and a € Dy.
Moreover, if(k,h) # (K h)for0 < k& < R-1
and 0 < h,h' < pmg™ — 1, then ¢* + hpq;?égk/ +
h'pq (mod g "*1). By [Do| = p™q"(p — 1)(q —
1)/e, this proves the first part of 1). Similarly, we can
prove the second part of 1).

m+1

D(().;,j) =p'¢’Dy = {piqj(gk + hpg)lk =0,1,-

JR—1:h=0,1,...,p" "7 — 1}

i,n+1
Dyt =

P 2y = (P T g+ hp)k=0,1,-+p

-2,h=0,1,....p" " =1}

m—+1

DY) = i 7y = {p e (6F + ha)lk = 0,1,

qg—2,h=0,1,....¢" 9 -1}
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2) Since n : p¢"TIZ% — piZ;m+1 x {0} is a bijec-
tive map and by [9] pi = {p'(g" + hp)|k =
0,1,..., —2,h =0, 1 p™ % — 1}, we prove 2).

Slmllarly, we can prove 3). ]

Let « be a primitive Nth root of unity in an extension of
GF(2). Then by Blahut’s theorem, the linear complexity of the
sequence s defined as (1.5) is

)y =0,t=0,1,...

— I{t]s( N -1}

2.1)
where s(7) = sg + 517+ -+ - + sy _12" ~1 is the characteristic
polynomial of the sequence s. So the linear complexity of the
sequence s reduces to counting the number of roots of s(z) in
the set {of|t = 0,1,..., N — 1}.

To explore the roots of the polynomial s(x), we need the fol-
lowing auxiliary polynomials forz < m,7 < n

m—i n—j

qul

Z :l;p'Hrlqurlh

e E:L_E:pqg
1eni) k=0 h=0
2.2)
P
i n—1 ] i+1 _n+1
Siny1(x > T—E zP' d S ar Tk
leDé +1) k=0 h=0
q—2 qn,fj 1
1 mt+l Gk m+1 J Ly
Sma1,i(T) = E T = P e E P 2
lEDéerl’j) k=0 h=0
(4.5) _ (t )
Since D, for: < m and 7 < n, by the definition
of s as (1.5)
m n
Z Z 1‘ Z
U + 61 n4+18i n+1(05 )
i=0 j=0 keI, ; =0
n+1
. t
+ Z 5m,+1,j5m+1,j(06 ) (23)
=0

where 5, ¢, si (o) = 0if I;; = 0,i < m,j < n,and
fors < mandj <n+41,

1,
6i,n+1 - { 0

Lemma 2.2: For integers h and ¢, we have equalities

lfIL sl = {()}, s o 1 ifIm—l—l,;j = {()}
L =0, "~ 0, if L ;=0
(2.4)

h

si (@) =s; (@) i<m+1,j<n+1

"’D((Ji’j) = D((f"j) fore <m+1landy <

O

Proof: Since g
n + 1, we prove Lemma 2.2.

Lemma 2.3: Letp 1t and ¢ 1 ¢. Suppose thati < m, j < n,
and i+ j < m+n — 1. Then, s, (o) = 0.
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Proof- Since v is a p™T1¢" 1 th primitive root of unity, we
have

41

0= 1 —1=
(apiq*f 1)(1 NI A Y (N RTIN (b _j—l)piq‘i)
fore+ 5 < m +n+ 1. Hence
pritligndi—i_y
hplq? _
> o =0. (2.5)

h=0

Since p 1 ¢ and q t ¢, ! is also a p™T1¢" T 1th primitive root
ofunity. If: < m,j < mn, andi+j < m+n—1,thenby (2.2) and
| (ytpi+lqj+1h _

(25), .Si_j(()zt) = ZkR;Ol )[tP qjy Zp_o q
0. 0

Lemma 2.4: Letpti,g4t,0<u<m+1,and0 < v <
n+ 1.
1) Suppose that+ < m, 3 < n; then

0, ifeither u<m—iorv<n—j

smanlat), ifu=m—i,v=n—j
si; (@ )= (g=1)/e, ifu=m—i,v>n—j

(p—1)/e, ifu>m—i,v=n—j

0, ifu>m—i,v>n—j.

2) Suppose that ¢ < m, 3 = n+ 1; then

Sint1 (atp“qu ) = {

1, ifu=m-—1
0, ifu#m—1.

3) Suppose that: = m + 1, 5 < n, then

3m+17j(atp“ @ ) - {

1 ifve=n—3y
0, ifv#n-—7j

Proof:

1) Suppose thate < m, 5 < n,ifu < m — . Without loss
of generality, we assume that v < n — 7; then for any
b e {0,1,... pmuighvd 1}, there exist p*g"
elements i € {0 Lo..,pm™ tgm=7 — 1} such that b =

h (mod p™~"~q"~v~7). Hence by (2.2) and (2.5)

Si j((xtpuqv)

m—i— uqn i— v_q

P
Z putiqetigh Z ppitutl
— pllql (y o ¥4

k=0 b=0

gty

=0.

Similarly, if w < m — ¢ and v > n — j, then we get the
same result.

Ifu =m-—-—itandv = n - j, then by (2.2) and
ol g =1, s ( Jép ") = 8, (at) (mod 2).
Ifu= me andv > n—j,then o? g 1 and
g = af T s a pth primitive root of unity. For any
- l} there are (g — 1)/(’ elements g e

— 1} such that ¢ = ¢g* (mod p).
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Hence by (2.2) and (2.5), s; ; (af?"?") = p™ g™ 7 (¢ —
1)/eS2P_1 gt= (g —1)/e (mod 2). Similarly, if v >
m —iand v = n — j, then s; ;(a?") = (p —
1)/e (mod 2). _

Ifu > m—i v > n—j,thenby (2.2) anda?’ " = 1,
s; (a4 t) = Rp™~ig" 7 = R =0 (mod 2).

2) Supposethat: < mandj =n+ 1. Ifu > m — 1,
then by (2.2) and ot ¢! ey =
(p—1)p™* =0 (mod 2).

If u = m — ¢, then a? T L and P T

is a pth pr1rn1t1ve root of unity. Hence by (2.2) and

(25)’ qt,n-&-l( ’tp q" ) _ pm zZP 2 tp“+1q1+n+lqk =
1 (inod 2).

Ifu < m —i,then forany b € {0,1,...,p™ """ — 1},

there exist p* elements h € {0,1,...,pm " — 1}

— 1 84 n+1(

such that b = A (mod p™~i~%). Hence
by (22) and (25), sip41(a®??) =
o =2 pputigrbntl k meusi o witl gutnl
Zi oa? DI a't ! b=
3) The proof is similar to that for (2). O

By the previous lemmas, we know that the computation of
the linear complexity of the sequence $ turns into the compu-
tation of the values of $,,, » () for the generalized cyclotomic
sequence.

We know that g is also a common primitive root of both p and
q. Let Hy = (g) be a subgroup of the multiplicative group 7.
Let us introduce the polynomial () = 37, 2"

Let 3 = a?"¢" be a pgth primitive root of unity in an exten-
sion field of GF(2). Then we have s,,, (o) = T(5%).

For the computation of the linear complexity of the sequence
s defined as (1.5), we need the following notations. For 0 < u <
mand 0 < v < n, set

111—{]{'|Z ﬂu _0/{:0,1,_”76_1”
lel,,
= [{kl Z B =L k=0,1,....e—1}|
1€l ,

Setfor0 <u<mand0 <v<n

— > |Iu,j|+p%1 Z |7 |

T
j=v+1 i=u41
+ 6'u,n+1 + 6m+1,'v + 6m+1,n+1 (26)
Oun+1 = 'u,.,j| + 611,,77.-&-1 + 5m+1,n+1
7=0
Om+1luv = i,v| + 5'"1,—&-1,'0 + 6m+l,'n+1
i=0

where 6y 041, Smt1,05 Omt1,n+1 are defined as (2.4) and
Zy w41 |Iu j| = (0 ifv = n. Set

Eu,'tn
Au,,ﬂ - {Fu,’u-,

1,
Au,n-{—l - {0

ifoy,, = 0 (mod 2)
ifoy,, =1 (mod 2)
if oy ny1 =0 (mod 2)
ifoyny1 =1 (mod 2)
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A 1, ifomtr,. =0 (mod2)
mAle =, if omg1., =1 (mod 2).
Now we get the most important theorem in this section.
Theorem 2.5: If the sequence s is defined as (1.5), then the
linear complexity of the sequence s is

T T

L = pm"rl n+l Z ZA’”’:Upuqu _ Z Au,n-}—lpu(p _ 1)

u=0v=0 u=0

- Z Aerl,qu(q - 1) =y

v=0
where

if]m+17n,+1 = {0}

if]m+1,n,+1 — @ (27)

0,

= { "

Proof- Ifany t = p“q"y*g" € DF(\,“"U) for0 <u<m+1,
0<v<n+land0 <k <e—1,thenby Lemma 2.2 and (2.2)

e n
w_w k41l

wov, k
S(apqyy E:E:E:% A
i=0 j=01€l,
T
+ g 51:m,+187:,n+1(04p ¢ )
i=0

n

+ E é.TrL+1,j<q'rrL+1,j(ap a )+(5m+1,n+l~
j=0

IfO0<u<mand0 < v < n, then by Lemma 2.4

E—1
E Yy
S"L,"L(Cy‘ ) + UTVI.—H,"L—'U

s(at) =

153 SRR
= > T@ )4 omwne. (28)
leln—wn—w
We conclude that s(a®) = 0 if and only if
ket
ZIEI,,,,,,,,,_,,,,,W T(BY ) = Om—un—v (mod 2). Hence,
the order of set {t € Ui {pUq"Dils(a®) = 0}
s Ap—un-op™ “¢" "R, so the order of set
{t € um o Uty ptqvZx|s(at) = 0} is
ZT:Q Z:o Au,ypuqu-

Ifu =m+41and v < n, then by (2.2) and Lemma 2.4

m

E ‘L‘.,nf'v|+6m+l,nf'v + 67n+1,n+1:0—m+1,nf'u~

= 2.9)

We conclude that s(a’) = 0 if and only if 6p410—0 =

0 (mod 2). Hence, the order of set {# € p™T1q° Z% |s(a?) = 0}

is Amgin-vg™ (¢ — 1), so the order of set {f €
U™ g 28 [s(at) = 0F i 20—y Amesr o0 (a — 1).
Ifu <mand v = n 4+ 1, then by (2.2) and Lemma 2.4

s(a)=

_1 m
—Z |Im7u.j|+67n7u,n+1+6m+1.77,+1:0—m,7u,n+1~

=0

s(a’)=

(2.10)
Similarly, the order of set {t € U™ (p“q" T Z%|s(a’) = 0} is
Ym0 Aunsrp(p — 1).
Ifu = m+1and v = n + 1, then we conclude that
s(a%) = s(1) = 0 if and only if §,,41.,41 = 0 if and only
if]771+1,n+1 =0.
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TABLE I

even

OlE| & W~
| T Qe
TGRSR

Lo~
SIESESIESES

TABLE 11

=3
u
U

SlQ W e
= = O |~
& Q= Qe
D | O w

L[|~

Hence by the definition of E,, ,,, F, ., Ay.v, 6, we get the
linear complexity of the sequence defined as (1.5). O

III. GENERALIZED CYCLOTOMIC SETS OF ORDER 4

In this section, we will assume that ged(p — 1,¢ — 1) = e =
4 and g is a primitive root of p and ¢q. We will generalize the
results from [8] and give values of Gauss periods of Whiteman’s
generalized cyclotomy of order 4 over GF(2). Moreover, we
determine b up to sign in Whiteman’s generalized cyclotomic
numbers of order 4 if p = ¢ = 5 (mod 8).

Since ged(p — 1,9 — 1) =4

ord,,(g) =lem(ord,(g), ord,(g)) = lem{p — 1,4 — 1)
_p-e-1 _,
4
Whiteman [15] defined generalized cyclotomic classes

Hi={¢*y :5=0,1,...,R—1},i =0,1,2,3, (3.1)
y =g (mod p),y =1 (mod q).

And we have Z;q = HyUH; UHsUHS;.
The corresponding generalized cyclotomic numbers of order
4 are defined by

(i,7) = |(H; + 1)y N Hj|, for all4,j =0,1,2,3.

By Gauss’s theorem, there are exactly two representations over
z
pg = a’® +4b%, pg = a? + 467, a

a’ =1 (mod4). (3.2)
Lemma 3.1: The 16 cyclotomic numbers (4,7),i,5 =
0,1, 2,3, depend solely upon one of the two decompositions in
(3.2).

If (p — 1)(q — 1)/16 is even, then in Table [ 84 = —a +
2M + 3,883 = —a —4b+2M — 1,8C = 3a + 2M — 1,
8D = —a+4b+2M — 1,8E = a+ 2M + 1, where a. b is
defined as (3.2) and M = @202 1

If (p—1)(g—1)/16 is odd, then in Table 1 8A = 3a+2M +5,
88 = —a+4b+2M +1,8C = —a+2M +1,8D =
—a—4b+2M +1,8E = a+2M — 1.

In fact, % is even if and only if p = ¢ + 4 (mod 8);
(p—lzéq—l)

is odd if and only if p = ¢ = 5 (mod 8).
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Lemma 3.2: Letmy,ms be two positive integers. The system
of congruences

y =t (mod my), y =t (mod mo)

has solutions if and only if

ng(ﬂ’Ll, 777,2)|t1 — tg.

Proof: See [13, Theorem 2.9].

Lemma 3.3:
1) —1 € Hyifandonlyifp = ¢ = 5 (mod 8); —1 € H,
ifand only if p = ¢ + 4 (1nod 8).
2) 2 € HyUH;y ifand only ifp = ¢ = 5 (mod 8), and
2 € HyUHgifand only if p = ¢ + 4 (mod 8).
3) Letp =g =5 (mod 8) and

2 = ¢" (mod p), 2 = ¢ (mod q). (3.3)

Then?2 € Hj ifand only only if 4|£; —¢5; in other words,
2 € Hy ifand only if4 1 #1 — ¢s.

Proof:

1) Since g is a primitive root of p and g, —1
and —1 = ¢g" (mod q).

If p = ¢ = 5 (mod 8), then 2||£; and 2||t2 (see [10]),
so 4|t; — t2. Hence, there is & € Z such that k& =
t1 (mod p— 1) and k& = 3 (mod ¢ — 1), so by Lemma
3.2—1=g* (mod pg) and —1 € Hy.Ifp = 1 (mod 8)
and ¢ = 5 (mod 8), then 4|ty and 2|t2, so 4]ty — 2 — 2.
Hence, there exists k& € 7 such thatk = £ —2 (mod p—
1) and k& = #5 (mod ¢ — 1). Thus by Lemma 3.2 — 1 =
y2g* (mod pq) and —1 € Hs, where y is defined as
(3.1). The converse is straightforward.

Let2 = g"* (mod p) and 2 = g™ (mod ¢). Ifp=¢q =
5 (mod 8),then2 1 #; and 2 1 #2, s0 2|1 —t2. Similarly,
we have 2 € HoU Hy. If p = 1 (mnod 8) and ¢ =
5 (mod 8), then 2|1 and 2 1 12,502  £1 —t2. Similarly,
we have 2 € H; U Hj. The converse is straightforward.
Since p = ¢ = 5 (mod 8), £, and t» are odd in (3.3), so
2|t1 — t2. By Lemma 3.2, we conclude that 4|t — ¢ if
and only if there is & € Z such that k& = #; (mod p — 1)
and k = 3 (mod ¢ — 1) ifand only if 2 = g* (mod pq)
and 2 € Hy. Moreover, we have that 4 1 £; — 5 if and
only if 4|t; — t» — 2 if and only if there is £ € Z such
thatk =t; — 2 (mod p— 1) and &k = t5 (mod ¢ — 1) if
and only if 2 = y2¢* (mod pq) and 2 € H, where ¥ is

g™ (mod p)

2)

3)

defined as (3.1). O
We define
P= {pa2pv"':(q_ 1)])}.(2 = {Qv2q7"'7(p_ 1)(1}

Lemma 3.4: Foreachw € PUQ

p—1)(g—1 Iy r
IEE Y
(p—1)(g—5)
16 :
(p—5)(g—1)
16

|H; N (Hj +w)| = ifi = j, plw

. ifi = qlw.
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Proof: See [15, Lemmas 2 and 4]. O

Lemma 3.5: Letp = ¢ = 5 (mnod 8). Then there are exactly
two representations over Z

pg = a4+ 4* = o+ 46'2, a=a =1(mod4) (3.4)

where one of & and ¥’ is divided by 4 and another is exactly
divided by 2.

Proof: Letp = 2} + 4y} and ¢ = 23 + 443, 2.y, €
Z,j =1,2;then2 1 y;,7 = 1,2by p = ¢ = 5 (mod 8).
Hence, pg = a®> + 4b* = a? + 4b’2, b = z1ys + x2y1, and
b = x1y2 — z2y1, where one of b and b’ is divided by 4 and
another is exactly divided by 2. O

LetT(z) = > e m, «! and 3 a pgth primitive root of unity in
the extension over GF(2). Define

TL(8) = (T(B). T(B8"), T(8”). T(8))
where y is defined as (3.1) or (1.1).

Lemma 3.6: If p = q + 4 (mod 8), then Ty(3) =
(7757 or Tu(B) = (v,7%, 7% 7%), where v* 4+~ +
Y +y+1=0o0ry*++43>+1=0.

Proof: If p = ¢ + 4 (mod 8), then by Lemma 3.3 2 €
Hy U Hj. Suppose that 2 € Hy; then T(3)* = 3, . 82 =
Sie, 8 = T(0). Similarly, T(5)* = T(3), T(B)® =
T(3Y"). Sety := T(3); then T4(3) = (7,72, v, +®) satisfies
Y+ 47 498 = 1 soy 493 97 +y+1 = Oory 4% 4+1 =
0. Suppose that 2 € Hs; then T4(3) = (v, 7%, v, +?). O

3.5)

The following is a well-known result.

Lemma 3.7: Letp = ¢ = 5 (mod 8) be distinct primes
with ged(p — 1,9 — 1) = 4. Fix ¢ a common primitive root
of p and g. Then 2 € Iy if and only if T(3Y') € GF(2),i =
0,1,2,3;2 € Hy if and only if either T(3), T(3"") € GF(2)
or T(3Y), T(3") € GF(2).

Now we give the values of Ty(3) clearly.

Theorem 3.8: Let 3 be a pgth primitive root of unity. Suppose
that the cyclotomic numbers of Lemma 3.1 depend upon the
decomposition pg = a* + 4b*,a = 1 (mod 4). Let Ty () =
(T(B),T(8¥), T(8¥"), T(8¥")). Then by a choice of 3 (i.c., a
pqth primitive root of unity), we have:

1) Tu(B)=1(0,0,1,0)0r(1,0,0,0),ifa = 1 (mod 8) and
4/b;
2) Tu(B)=1(0,1,1,1)0r (1,1,0,1),ifa = 5 (mod 8) and
4/b;
3) Tu(B) = (u,l,p+ 1,1) or (p+ 1,1,,1),ifa =
1 (mod 8) and 2||b;
4) Ty(B) = (1,0, 4+ 1,0) or (p + 1,0,4,0), ifa =
5 (mod 8) and 2||b;
5 Tu(B) = (mA3A5A%) or (1.4%9%97), if
b =1 (mod 2);
where p satisfies 42 + p + 1 = 0, and + satisfies either v* +
V2 y+1=00ry*++43+1=0.
Proof: Set

U, =T(8Y),i=0,1,2,3.
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Ifp = ¢ = 5 (mod 8), then —1 € Hp, and then by Lemmas
3.1,3.3,and 3.4

VoW = Z 3 Z g = Z Z g
leHy meEH; leHy mecH>
=(2,0)¥g+ (1,3)¥; +(0,2)¥s + (3, 1) ¥y
=D —-1)
8
-1 —1
=C (Vg + Vo) + E(U; + ¥3) — (p)+)
—a+1 a+2M -1 (p—1)(¢-1)
= Uy + W —
1 (Wo+ Uy) + 3 3
—a+1 —4b? — a2 +2a -1
= |\ g
1 (Vo + Wy) + 16
@1‘1’3: Z ﬁl Z ﬂm: Z Z ﬁlfm
leH, mCHj leH; mecHs
= (3 1)‘110 —+ (27 0)‘1’1 + (17 -3)\112 + (0 2)‘1’3
C(p-De—-1
8
-1 -1
= B(Vg + Uy) + C(Ty + U3) — (p)%
—a+1 —4b? — a2 +2a -1
= \I} ‘I/ .
1 (Uy +W3) + 16
If p = ¢ = 5 (mod 8), then by Lemma 3.5 set o = 4s + 1,
b= 2t,s,t € Z, and then we have
UoUy =s(Wg + Wy) —#° — 57 (3.6)
U0y =s(¥y + Uy) — 7 — 5% (3.7)

By Lemma 3.3, we have 2 € Hy U Hy and by Lemma 3.7 we
have ll‘()"‘lllg, U +Us5 € GF(Z) Since Vg4V +Wo+ V3 =
1, without loss of generality (i.e., by a choice of 3) we may
assume that
Yo+ Uy =1,V + V3 =0. (3.8)
Then by (3.6) and (3.7), we have
UoUs=5—t2— 52 ={(mod 2), U, Uy =22 =s+t(nod 2).
3.9)
Solving systems (3.8) and (3.9), we obtain:
1) T4(8) =(0,0,1,0) or(1,0,0,0),if s = 0 (xnod 2) and
t =0 (mod 2);
2) Ty(B)=(0,1,1,1) or(1,1,0,1),if s = 1 (mmod 2) and
t =0 (mod 2);
3) Tu(p) = (wLip+ 11 or(p+1,1,p1),ifs =
0 (mod 2) and ¢t = 1(mod 2);
4) Tu(B) = (1 0,u + 1,0) or (p + 1,0,1,0), if s =
1 (mod 2) and t = 1(mod 2);
where 4 is a root of the equation > + 2 + 1 = 0.
If p = q + 5 (mod &), then b is odd and (5) is clear from
Lemma 3.6. (]
Corollary 3.9: Letp = g = 5 (mod 8). Fix a common
primitive root g of p and ¢. Then 2 € H, if and only if the
generalized cyclotomic numbers of Lemma 3.1 depend on the
decomposition N = a? +4b? with 4|b; 2 € H, if and only if the
generalized cyclotomic numbers depend on the decomposition
N = a® + 4b* with 2|Jb.
Proof: 1t is clear from Lemma 3.7 and Theorem 3.8 [
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By Corollary 3.9 and Lemma 3.3, we can determine b up to
sign in Whiteman’s generalized cyclotomic numbers of order 4
in the case p = ¢ = 5 (mod 8) if fixing a common primitive
root g of p and q.

IV. APPLICATIONS

A. Sequence of Period pq

We can use the method in Sections II and III to compute the
linear complexity of the generalized cyclotomic pg-periodic bi-
nary sequence of order 4 in [1]. But we can not use the method in
[1] to calculate the linear complexity of the following sequence.

The generalized cyclotomic pg-periodic binary sequence s of
order 4 with respect to the primes p and g is defined as

where P = {p,2p, ..., (¢ — 1)p} and @ = P U H,.

Now we compute the linear complexity /. and the minimal
polynomial m(x) of Whiteman’s generalized cyclotomic se-
quence of order 4. Let 5 be a pgth primitive root of unity in

an extension over GF'(2). Set

Il @-8Yi=0123

lcH,;

1,
0,

ifi (mod N) € ©

. 4.1
otherwise @1

d;(x)

By Theorem 2.5 and 3.8, we can get the following result.
Theorem 4.1:
(D) Ifp =1 (mod 8) and ¢ = 5 (mod &), then
e —1

r—1"

L=pg—1, wmx)

(M) Ifp = 5 (mod 8) and ¢ = 1 (mod 8), then
(7~ 1)z~ 1)
(zP — 1)(z9 = 1)
(IIT) Let2 € Hy and pg = 1 (mod 16). Then

I — W" m(x) =

L=pg—p-q+1, mz)=

P4 —1
T} @t — 1)
(IV) Let 2 € Hg and pg = 9 (muod 16). Then

(p—1){(g+3) (a7 — 1)do(z)
4 ' z—1 '

L=

m(x)

(V) Let2 € Hs and pg = 1 (mod 16). Then

_ =D+l ' — 1
L= 2 ’ (z) di(z)ds(x)(ze — 1)

(VD) Let2 € Hs and pg = 9 (mod 16). Then

2P —1
m(z) = T

L =pq—yq,

Proof: By Theorems 2.5 and 3.8, we compute the linear
complexity of the sequence s defined as (4.1). About Theorem
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2.5, we know that n = m = 0, D" = Hy, DS = pz;;

+

P,é10=1,801 =0,611 = 0,000 =1, 010

1 (mod 2), 091 = q;l (mod 2),6 = 1.

p—
4

(D Ifp = 1 (mod 8) and ¢ = 5 (mod 8), then g1 9 =
1 (IIlOd 2), 0,1 = 1 (IIIOd 2), and E(]’() = F[LU =0 by
Theorem 3.8. Hence, 4g 9 = A1,0 = Ag,1 = 0, so by
Theorem 2.5

ZP? — 1

L=pq—1,mz)=

z—1"

(I) If p = 5 (mod 8) and ¢ = 1 (mod 8), then oy
0 (mod 2), 09,1 = 0 (mod 2), and Eg o = Fpg =
Hence, A0,0 = 0, AI,O = A071 = 1, SO
L=pg—(p-1)—-(¢-1-1=pg-p—q+1

P! — 1)z —1
m(x) = w

(2P — 1)(z¢ = 1)

() If2 € Hyp and pg = 1 (mod 16), then o1 o = 0 (mod 2),
00,1 = 1 (mod 2), Exy = 3, and Fyy = L. Hence,
AAO,O =1, Al,(] =1, and A071 =0, so0

<l

p—1)(¢g—1 p—1)3g+1
P 11 o R PV R a1)
4 4
Choosing # with T4(8) = (1,0,0,0) in Theorem 3.8
(1), we have
P —1
m(z) = ——————.
() do(@){(wt — 1)

(IV) If2 € Hy and pg = 9 (mod 16), then o1 9 = 0 (mod 2),
00,1 = 1 (IIl()d 2), Fo,o = 3. Hence, AQ’O = 3, ALO =
1, and A071 = 0, SO

—1 —1 -1 3
L:qug(p (g )7( 71)71:(1? Na+3)
4 4
Choosing # with Ty(8) = (0,1,1,1) in Theorem 3.8
(2), we have
P4 — 1 P — 1)dy(x
m(x) = f = (= )(O(T).

(V) If2 € Hy and pg = 1 (mmod 16), then oy o = 0 (mod 2),
00,1 = 1 (mod 2), Fy o = 2. Hence, Ap g = 2, A1 =
1,and Ag; = 0, so

(p—1)(g—1)
vy 1 (¢-1) 5
Choosing 8 with T4(3) = (¢, 1, # + 1,1) in Theorem
3.8 (3), we have

(p—Dlg+1)

Pl —1

dy(x)ds(x)(x? — 1)

(VD) If2 € H; and pg = 9 (mod 16), then o1 o = 0 (mod 2),
0p,1 = 1 (HlOd 2), FO,O = 0. Hence, AO,O = (), ALO =
1, AU,l = 0, SO

m(z) =

a? — 1

27 —1°

L=pg—(¢-1)—1=pg—q, m(z)=
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B. Sequence of Period N = p™Tiqnt!

Suppose 2 = ;2 Uj—o pig D) (m >0, n > 0) and
if7 (mod N) € Q

L,
% {0, otherwise.

Then by Theorem 2.5, we get the linear complexity of the se-
quence in (4.2).

Theorem 4.2: Let ms and no be the largest even integers
such that mo < 7 and ne < n, respectively. Let i and ng
be the largest odd integers such that my < m and ny < n,
respectively.

(1) Suppose that p = 1 (mod 8),¢ = 5 (mod 8); then

4.2)

I = (p'rrl+1 _ 1)(q'n+1 _ 6")
where
5 — 0, ifn is even
11, ifnis odd.

(2) Suppose that p = ¢ = 5 (mod 8).
(D) If2 € Hy and pg = 1 (mod 16), then see the
first equation shown at the bottom of the page.

() If 2 € Hy and pg = 9 (mod 16), then see
the second equation shown at the bottom of the
page.

(T If2 € Hs and pg = 1 (mod 16), then see the
third equation shown at the bottom of the page.
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Proof: By Theorems 2.5 and 3.8, we compute the linear
complexity of the sequence. About Theorem 2.5, we know that
57‘,:,,,_,_1 = OZ = 0,1,...,7”, 6m+1,j = O, j = 0,1,...,Tlr-|— 1,

Ouy = qf(n —v) + pf(m —u), Cynyl = qf(n +1),
Tmtlo = J’Zl(m +1)for0<u<m0<wv<n,andé =1.
1) Since p = 1 (mod 8) and ¢ = 5 (mod 8), by
Lemma 3.6 we know E,, = 0 = F,,, so
Ay = 0for0 < »w < mand 0 < v < n.
By Omi1e = % S ollie]l = 0 (mod 2),
Tontl = % ;»L:O |[Zs,;] = n + 1 (mod 2). Hence,
by Theorem 2.5 we have
n m
L=N-Y q"(¢-1) =6, > p"(p-1) -1
v=0 u=0
= (pm+1 - 1)(qn+1 — On)
where 8,, = 1 if n is odd and ¢,, = 0 if » is even.
2) Ifp=gq=5(mod8)

(D If2 € Hy and pg = 1 (mod 16), then for
0 < u <mand 0 < v < n, by The-
orem 3.8 By, = 3and Fy, = 1, 04, =
P Y gl + 30
m — u 4+ n — v (mod 2), 04 nt1
n+1(mod 2}, and 6,41, = m+1 (mod 2).
Hence, we have

(413 n

L=N- ZZp“q“R

(IV) If 2 € H; and pg = 9 (mod 16), then see u=02=0
the fourth equation shown at the bottom of the 9 Z UG R — (" T = 1) = S, (p" T = 1) — 1.
page. m4n—u—v even
m+1 _ 1 n+1 _ 1
L=N-— (p 21((1 ) _ 6m(qn+1 _ 1) _ 6n(pm+l _ 1) -1
B (p'm+2 _prrL—rrtg)(qu+2 _ qn—ng) + (pm—',-l _p'm.—ml)(qn+1 _ q”—‘ﬂl)
2p+1)(g+1)
m+1 1 n+l _ 1
L=N-_— (p ?1((] ) _ 67n(qn+1 _ 1) _ 6n(p1n+1 _ 1) -1

(p171,+2 _ pm,fm,g)(qn—&-l _ q"*nl) + (pm+1 _ pmfm,l)(qn-f—Q _ qnf’n,g)

2(p+ 1)(g+ 1)

L=N—6,(¢g"" —1) -

om+2 _  m—ms

(p P

(Sn(pm,-f—l o
)(qn+1 _ q"*ﬂl) + (pm,+1 7pm,7m,1

1)-1
N+ = qmre)

2(p+1)(g+1)

L=N—6p(¢g"tt —1) -

(p171,+2 o

m—mz

P

6n(pm+1 o
)(qn,+2 _ qn,fnn

1) -1

)+ (pm+1 7pm7m,1)(qn+1 _ qn*’”/l)

2(p+ 1)(g+ 1)
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Moreover, we have the first equation shown at
the bottom of the page. Hence, we prove (I).

(I) If2 € Hy and pg = 9 (mod 16), then E,, ,, =
land F,,, =3 for0 <u <mand0 < » <
n. Similarly, we have

L:N—ZZp“q“R

u=0v=0

S P R—bm(d" T 1) =6 (p T 1) - L.
m+n—u—v odd

-2

Moreover, we have the second equation shown
at the bottom of the page. Hence, we prove
(10).
I If 2 € H» and pq
Theorem 3.8 E,, ,
0 < u<mand0
have
=N-2 Y p"¢"R-6m@™ - —6,""" -~ -1,

ritn—u—v odd

1 (mod 16), then by
0 and F,, = 2 for

< v < n. Similarly, we

So we prove (III).

(IV) If2 e H() and Pq
Theorem 3.8 E,, ,
0 <wu<mandO
have

9 (mod 16), then by
2 and I,, = 0 for
v < n. Similarly, we

L=N-2 > pg"R—6,ug"™" =) —8.p"™" - —1.

mtn—u—u cven

So we prove (IV).

V. OPEN PROBLEM

Ifp = g + 4 (mod 8), how do Whiteman’s generalized cy-
clotomic numbers of order 4 depend on the two decompositions
pg = a® + 4b? = 4+ a=a =1 (mod 4)?
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e T T (£

(" = D - 1)

Sy sn=ny ey e - P

u=0v=0 u=0 v=0

>

m—u+n—v even u+v even

P R="Y ptTU"R=p"¢"R Y ptiq"

u+v even

:pman[(l +p—2 N +p—'m2)(1 + q—2 N q—nz)
+p ™ T ™)

(pm+2 _

pmfmg)(anr2 _ qnfng) + (pm+1 _ pmf‘ml)(qu»l o qnfnl)

Ap+1)(g+1)

>

m—utn—u odd v odd

=p"¢"R[(14+p 4 +p™)(g

P R=)Y . P T R=p"q" R

—u -

pq
utv odd

1+(]73+"'+(j7nl)

+<pfl+p73_|_. i ~—|—pfml)(1—|—q72—|—- . ._I_qﬂlz)]
(pm—l—Q _pmfmg )(qn-l—l _ qnﬂzl ) + (pm—i-l _pm—ml )(qn+2 _ qnmz)

4(p+1)(g+1)
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