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Abstract—Time-domain circuit simulation based on matrix
exponential has attracted renewed interested, owing to its explicit
nature and global stability that enable millionth-order circuit
simulation. The matrix exponential is commonly computed by
Krylov subspace methods, which become inefficient when the
circuit is stiff, namely, when the time constants of the circuit differ
by several orders. In this paper, we utilize the truncated Faber
Series for accurate evaluation of the matrix exponential even
under a highly stiff system matrix arising from practical circuits.
Experiments have shown that the proposed approach is globally
stable, highly accurate and parallelizable, and avoids excessive
memory storage demanded by Krylov subspace methods.

I. INTRODUCTION

The magnitudes of parasitic components in modern VLSI
circuits can differ by more than several orders, which making
the resulting ordinary differential equation (ODE) system
usually stiff. Efficient numerical simulation of stiff systems
has long been a challenge. Excessively small time steps are
required to maintain the stability of solution when explicit
methods (e.g. forward Euler) are used. Implicit methods like
trapezoidal and Gear methods have been widely used to attack
the stiff issue, but the requirement of solving linear systems
limits their scalability. Recently, a third category of integration
method featuring global stability and explicit nature has been
developed [1]. The new matrix exponential method (MEXP)
exploits the analytical solution of ODE in the matrix exponen-
tial form, and uses the Krylov subspace method to compute the
product eAv efficiently [1]. The Krylov-based MEXP has been
proved to be absolute-stable and involves only sparse matrix-
vector products, rendering it a highly parallelizable technique.

Despite overcoming the stability limitation, the Krylov-
based MEXP still faces certain difficulties when dealing
with stiff circuits. The approximation of matrix exponential
for non-Hermitian matrices, which is usually the case for
modified nodal analysis (MNA) representation, involves the
storing all the basis vectors of the Krylov subspace. Memory
constraint is often an issue especially when the system matrix
A is stiff, calling for a large number of basis vectors. The
high memory requirement also limits the implementation of
Krylov-based methods on state-of-the-art parallel computing
architectures such as Graphics Processing Uint (GPU) and
Field Programmable Gate Array (FPGA), with scarce local
memory resource. A common remedy to alleviate the memory

bottleneck is by restarting the algorithm each time the Krylov
subspace has reached a maximum dimension. Nevertheless, the
restarted Krylov methods suffer from a degraded convergence
and even diverge under some conditions.

Compared with the Krylov subspace method, computing
matrix exponential via polynomial approximation has been
less explored. Chebyshev series expansion can be used to com-
pute matrix exponential for large and symmetric matrices. The
performance of the Krylov subspace method and the Chebyhev
series expansion is compared in [6], showing that the latter
has significant memory saving and can outperform the former
when handling stiff systems. However, the Chebyshev method
is not available for asymmetric matrices. The Faber polyno-
mial and series were first proposed by Georg Faber in 1903
[12]. Curtiss has summarized the development of the Faber
polynomial and series in [11]. The approximation of the matrix
exponential with non-stiff matrix based on the Faber series has
been studied [4]. In special cases, The Faber polynomial can
be reduced to the Chebyshev polynomial [8] and the Taylor
Series [4] for matrix exponential approximation.

In this paper, we extend the Faber series machinery to
practical situations with stiff system matrices. The results are
contrasted with the Krylov subspace method. Advantages of
Faber series method include: 1) Only a smaller number of
vectors need to be stored because of a recurrence relation; 2)
It guarantees convergence if the spectrum of A is included in
a bounded set Ω where eAt is analytic everywhere; 3) The
computational cost for each iteration is constant [5]; 4) Each
recursion step involves only one matrix-vector multiplication
which is highly parallelizable to further decrease the computa-
tion time. The parallelization is realized on a GPU with CUDA
architecture. In the following, the theoretical background of
Faber series is reviewed in Section II. The application of
the Faber series in approximating matrix exponential will be
detailed in Section III, followed by numerical experiments in
Section IV. Section V then draws the conclusion.

II. FABER POLYNOMIAL AND FABER SERIES

Let Ω ⊂ C be a compact set containing more than one
point and bounded by a Jordan curve ΓΩ. C\Ω denotes the
complement of Ω which is simply connected in the extended
complex plane. Then, by the Riemann mapping theorem, a
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unique function which has the Laurent expansion

z = φ(ω) = cω + c0 +
c1
ω

+
c2
ω2

+ ... (1)

conformally maps the exterior of a unit disk in the ω-plane,
i.e. {ω : |ω| > 1} onto C\Ω in the z-plane, where c is the
logarithmic capacity of Ω, φ(∞) =∞ and φ′(∞) = c.

There exists an inverse function ψ(z) = φ−1(z) from
z exterior to a sufficiently large circle and has a Laurent
expansion

ω = ψ(z) = dz + d0 +
d1

z
+
d2

z2
+ ... (2)

which maps C\Ω back onto {ω : |ω| > 1} and d = 1/c. Then
the n-th Faber polynomial Fn(z), for n = 1, 2, ... with respect
to Ω is defined as the principle part of the Laurent expansion
at∞ of [ψ(z)]n with F0(z) = 1 [11]. The generating function
of the Faber polynomial is then (cf.[11])

ωφ′(ω)

φ(ω)− z
= 1 + F1(z)

1

ω
+ F2(z)

1

ω2
+ ..., (3)

where |ω| > 1 and z ∈ C\Ω. By multiplying φ(ω)−z on both
sides of (3) and expanding φ(ω) and φ′(ω) in their Laurent
series, a recursion formula for Faber polynomial Fn(z) is
easily deduced,

F0(z) = 1, F1(z) =
z − c0
c

,

Fn+1(z) =
(z − c0)Fn − [c1Fn−1 + ...+ cnF0]− ncn

c
,

(4)
for n = 1, 2, ... (cf. [8]). where c, c0, c1, ... are the coefficients
of (1). Given any function f(z) which is analytic everywhere
inside Ω, by the exterior mapping function (1) with CR =
{z : z = φ(ω), |ω| > 1} and the Cauchy Integral Formula, for
any z0 ∈ Ω, we obtain

f(z0) =
1

2πi

∫
CR

f(z)

z − z0
dz

=
1

2πi

∫
|ω|=1

f(φ(ω))φ′(ω)

φ(ω)− z0
dω.

(5)

Dividing ω in (3) and substituting into (5), the Faber series
expansion reads

f(z0) =
1

2πi

∫
|ω|=1

f(φ(ω))

[ ∞∑
n=0

Fn(z)

ωn+1

]
dω

=

∞∑
n=0

anFn(z),

(6)

where

an =
1

2πi

∫
|ω|=1

f(φ(ω))

ωn+1
dω (7)

is the Faber coefficient of f(z0) and Fn(z) is the Faber
polynomial for n = 1, 2, ....

III. MATRIX EXPONENTIAL IN THE FABER SERIES

In MNA, a circuit is represented by a system of ODEs (here
we only consider linear circuits)

Cẋ(t) = Gx(t) +Bu(t), (8)

where C is the capacitance/inductance matrix, G denotes the
conductance matrix and u(t) the input. The analytic solution
of (8) is given by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)b(τ)dτ, (9)

where A = C−1G (explicit computation for C−1 is not
needed [1]), and b(t) = C−1Bu(t). Although C is possibly
singular, previous work [2] has proposed a pragmatic means
to regularize C with affordable cost and sparsity preservation.
The computation of (9) boils down to evaluating the action of
the matrix exponential on a vector [1]

y = f(At)v = eAtv, (10)

where A ∈ CN×N which is stable (Re(σ(A)) < 0,where σ(A)
denotes the spectrum of A) and asymmetric, t is the time step
and v ∈ CN . For σ(A) ⊆ Ω. If the conformal mapping from
{ω : |ω| > 1} onto C\Ω is (1), then for σ(At) ⊆ Ωt, the
conformal mapping from {ω : |ω| > 1} onto C\Ωt is

φt(ω) = φ(ω)t = ctω + c0t+
c1t

ω
+
c2t

ω2
+ .... (11)

By (5) and (6), the Faber series expansion of this matrix
exponential is

f(At)v =
1

2πi

∫
CR

f(z)(zI −At)−1vdz

=

∞∑
n=0

anFn(At)v,
(12)

where I is the identity matrix. By (7) and substituting ω = eiθ,
an is changed to a closed-loop integral:

an =
1

2πi

∫
|ω|=1

f(φt(ω))

ωn+1
dω

=
1

2π

∫ 2π

0

[ece
iθ+c0+c1e

−iθ+c2e
−2iθ)+...]te−niθdθ,

(13)
and Fn(At) is obtained by substituting At into (4). Since t
in Fn(At) cancels out, Fn(At) = Fn(A). The scaling factor
t only changes the value of the Faber coefficient an and has
no effect on the Faber polynomial Fn.

Instead of computing Fn from (4), we compute pn which
has the form of

p0 = v, p1 =
A− c0I

c
v,

pn+1 =
(A− c0I)pn − [c1pn−1 + ...+ cnp0]− ncnv

c
.

(14)
Equation (12) becomes:

f(At)v =

∞∑
n=0

anpn. (15)
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Thus, in each recursion iteration, only one matrix-vector mul-
tiplication (the most costly step when A is large) is needed and
the rest is just vector summation. Note that Av is computed
by C−1(Gv) which involves only the solution of a linear
sparse system. With this structure, each recursion is highly
parallelizable in terms of the matrix-vector multiplication
and vector-vector summation, whereas only parallelization
of matrix-vector multiplication can be done in the Krylov
method. In our implementation, GPU computation is used to
speed up the iteration process.

It is obvious that the coefficients in z = φ(ω) are important
for computing both the Faber coefficients and the Faber
polynomial. And they depend on the distribution of σ(A).
Since A is large, it is prohibitive to compute all the eigenvalues
of A. However, if Ω is a polygon and its vertices are known,
the coefficients of φ(ω) can be calculated conveniently. To
estimate the vertices of Ω, we adopt the Arnoldi-Faber iterative
method in [8] to estimate σ(A) and compute the coefficients
of z = φ(ω) by the methods proposed in [8] and [10].

In practice, we truncate the Faber series expansion up to m
terms to approximate (15)

ym =

m−1∑
n=0

anFn(A)v =

m−1∑
n=0

anpn ≈ f(A)v. (16)

Thus, a reliable error estimate is needed to terminate the
expansion. We adapt the method in [5]. In addition, by
experiment, when a large time step is applied (e.g. max(σ(At))
> 103), the estimated error is out of the acceptable range.
Scaling technique (modified from the 2N algorithm) is applied
to overcome this undesirable situation, namely, we scale the
exponential by a factor s as follows

f(At) = eAtv = (e
At
s )sv. (17)

Then, the truncated Faber series approximation by (16) is

ym =

[
m−1∑
n=0

anFn(
At

s
)

]s
v, (18)

and the error is given as

err(At) = err
(
At

s

)
s, (19)

which lies in a acceptable range of err < 10−5.

IV. NUMERICAL EXAMPLES

Two examples are tested with the Faber series expansion
method. The results are compared with the Krylov subspace
method to evaluate the performance. We take v ∈ CN
to be an all-one vector. The algorithm is implemented in
Matlab. Both methods are also implemented on GPU (NVIDIA
GeForce GTX 570 with 1.25GB RAM) with Jacket v2.0 [13]
to demonstrate the speedup from parallelization.

Fig. 1. Relation between Nc and the shape of Ω.

A. Example 1

The first matrix is of size 972 × 972. Fig.1 shows the
spectrum of A, min(Re(σ(A))) = −4.506 × 1018 while
max(Re(σ(A))) = −2.0309×105. The upper and lower bounds
of the imaginary axis are 5.3191× 1011 and −5.3191× 1011,
respectively. This is an extremely stiff system with the max-
imum and minimum magnitudes of eigenvalues differing by
1013. Given the extreme points of the spectrum, the compact
set Ω can be constructed by the method in [8]. For simplicity,
rectangle [−4.506× 1018, 0]× [−6× 1011i, 6× 1011i] is used
to enclose σ(A). The number of coefficients Nc of φ(ω) will
affect the bounded region of the eigenvalue. Fig. 1 also shows
that the more coefficients are used, the tighter Ω bounds the
spectrum. In addition, the smaller is the logarithmic capacity
c (first coefficient in φ(ω)), the faster is the convergence. The
Faber coefficient an in (13) is computed by the trapezoidal
numerical integration trapz in Matlab. Since the computation
involves only scalars, the time for computing an is negligible
compare with the matrix-vector multiplication when A is large.

Table I shows the results of the Faber series approximation
of y = eAtv with Nc = 5, which are compared with the
Krylov subspace method in terms of the number of matrix-
vector products (mvps) and the total runtime for the same error
estimation. In general, the Faber series approach requires more
mvps than the Krylov method, which is expected since the
Arnoldi process is nearly optimal in terms of error reduction.
The number of iterations also increase for the Faber approx-
imation when stiffness grows. Nevertheless, the total runtime
of the Faber series method is higher than the Krylov method
by only 1.4× with a nearly doubled number of mvps. This
suggests the performance of the two methods may not solely
depend on the number of mvps, as will be evident in the next
example.

B. Example 2

The second example is a large sparse matrix of 479201 ×
479201. The extreme eigenvalues are min(Re(σ(A))) =
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TABLE I
RESULT OF ym : EXAMPLE 1

Faber series Krylov-Arnoldi
t #itr m CPU(ms) #itr m CPU(ms) err

1E-18 10 16.854 8 15.594 10−8

5E-18 18 20.851 12 18.224 10−7

1E-17 24 23.803 15 20.576 10−6

5E-17 51 37.965 32 27.419 10−6

1E-16 70 46.800 45 34.358 10−6

5E-16 148 86.452 90 63.201 10−6

1E-15 207 116.372 110 81.842 10−5

−9.2272 × 1012 while max(Re(σ(A))) = −2.4673 × 108. A
rectangle set Ω = [−1×1013, 0]× [−5.8×104i, 5.8×104i] is
applied. Tables II and III show respectively the performance
of the Faber series with Nc = 5 and the Krylov method for
different time steps (i.e., different degrees of resulted stiffness).
Both tables use an estimated error of 10−6. sf denotes the
scaling factor used in the Faber series method. According

TABLE II
RESULT OF ym BY THE FABER SERIES: EXAMPLE 2

t #itr m sf CPU-T (ms) GPU-T (ms) Speedup
1E-13 6 1 92.46 54.89 1.68X
5E-13 11 1 181.85 65.19 2.79X
1E-12 14 1 221.50 71.83 3.08X
5E-12 30 1 475.68 108.98 4.36X
1E-11 41 1 645.07 128.59 5.02X
5E-11 104 1 1678.76 261.591 6.41X
1E-10 213 2 3387.18 502.723 6.74X
5E-10 957 8 15152.53 2079.66 7.29X

TABLE III
RESULT OF ym BY THE KRYLOV-ARNOLDI METHOD: EXAMPLE 2

t #itr m CPU-T(ms) GPU-T (ms) Speedupmvps orth total
1E-13 5 30.22 40.34 155.29 157.04 0.989X
5E-13 6 36.04 56.15 186.71 185.99 1.004X
1E-12 6 36.18 56.03 187.11 186.83 1.001X
5E-12 8 48.75 95.265 256.33 254.47 1.007X
1E-11 11 66.38 175.66 400.82 376.99 1.063X
5E-11 20 120.01 556.08 931.46 891.858 1.044X
1E-10 30 179.73 1250.83 1839.85 1752.9 1.050X
5E-10 96 589.35 12428.00 14224.07 13847.81 1.027X

to the result, the number of iterations needed for the Faber
series are still larger than the Krylov method, up to 10 times
for the stiffest case. However, the total computation times of
the two methods do not scale in the same manner. The Faber
series method runs comparably fast with the Krylov method
on CPU for the last case. The reason of this mismatch lies
in the cost of orthogonalization (orth) process in the Krylov
subspace construction, whose complexity grows quadratically
with the number of iterations. When the matrix is very sparse
and mvp is relatively inexpensive, the orthogonalization tends
to dominate the total computation. The increasing portion
of time that orthogonalization takes is evident in Table III,
which reaches 87% in the last case. In addition, when a
large number of basis vectors is required for stiffer problems,

the Krylov method actually has to be restarted, for instance
every 20 iterations, due to the memory constraint for ordinary
machines. This will further downgrade the performance of
Krylov method. On the other hand, the Faber series method
only needs to store a small, constant number of vectors in
memory (4 vectors for Nc = 5), and is therefore particularly
suitable for memory-limited scenarios.

The advantage of Faber series method is more prominent for
GPU implementation. The major computation in the Faber ap-
proximation involves only mvps and vector summation, which
can benefit most from parallelization. The GPU implementa-
tion therefore can bring a significant speedup (up to 7 times
in the test) compared with the CPU implementation. Since the
orthogonalization is less straightforward for parallelization, the
improvement from GPU implementation is relatively small for
the Krylov method. The Faber series approach is about 3 to 6
times faster than the Krylov method on the GPU platform.

V. CONCLUSION

We have developed an explicit, globally stable time-domain
circuit simulation method based on the matrix exponential
formulation. The Faber series is employed to compute the
matrix-exponential-vector product efficiently. Numerical result
have shown that the Faber series method is advantageous in
terms of memory usage and ease of parallelization, and can be
faster than the Krylov-based methods in practice even using
more iterations. The Faber series method can be a valuable
complement with the Krylov subspace method when dealing
with large and stiff circuit simulation problems.
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